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Introduction

Osteoporosis is a systemic bone disease characterized by low 
bone mass, destruction of bone microstructure, increased 
bone fragility, and being prone to fractures (1). Bone mineral 
density (BMD) has been the most common parameter 
in the diagnosis of osteoporosis, but it is also affected 
by some genetic factors. There is evidence showing that 
genetic factors account for 60–80% of BMD variability (2).  

Multiple studies have shown that osteoporosis syndrome 
is a complex polygenic disease which is the result of a 
combination of genetic and environmental factors (3).

Postmenopausal osteoporosis is a common disease 
associated with aging and significantly affects the quality 
of life of postmenopausal women. Diabetic osteoporosis 
(DOP) is also a clinically concerned disease because of its 
high prevalence and disability rate (4-6). It has been shown 
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that the bone microenvironment and bone metabolism have 
changed significantly in the diabetic patients (7,8). These 
include a large reduction in bone mineral content, a poor 
balance of bone turnover, a significant reduction in bone 
density, and other clinical symptoms of osteoporosis (9-11).

Diabetes can affect bone metabolism in a variety 
of ways (12-14). There is evidence showing that some 
commonly used glucose-lowering drugs, such as glucagon-
like peptide-1 receptor (GLP-1R) agonists, can inhibit the 
bone resorption and improve the bone formation (15-18). 
Glucagon-like peptide-1 (GLP-1) is an endogenous peptide 
hormone and can bind to GLP-1R, exerting glucose-
dependent glucose-lowering effects (19).

In the GLP-1R knockout (GLP-1R-/-) mouse model (16),  
Yamada et  a l .  found the cort ical  BMD decreased 
significantly, and the bone fragility increased markedly, 
which increased the risk for osteoporosis. Moreover, GLP-
1R-/- mice displayed significantly increased bone resorption. 
The study of Stojanovic et al. indicated a close relationship 
between osteoporosis and hyperlipidemia (20). Nuche-
Berenguer et al. found GLP-1 could reverse the reduction 
in bone mass secondary to hyperlipidemia (21).

GLP-1R is encoded by the GLP-1R gene mapped on 
chromosome 6 (6p21) of human genome (22). The gene 
polymorphism varies among races and different individuals 
may have different genotypes. A total of 33 single 
nucleotide polymorphisms (SNPs) have been identified in 
the GLP-1Rgene of CHB (Han from Beijing) population in 
the second phase HapMap data (http://www.hapmap.org).

SNP mainly refers to a DNA sequence polymorphism 
caused by a single nucleotide variation at the genomic 
level. To date, no study has been undertaken to investigate 
the relationship between GLP-1R SNP and osteoporosis 
in the postmenopausal women. After reviewing literature, 
eight SNPs of GLP-1R gene (rs3765467, rs1042044, 
rs2268657, rs6923761, rs2268641, rs2295006, rs4714210 
and rs10305420) were detected in the postmenopausal 
women in Shanghai using the established database and the 
relationship between GLP-1R SNP and BMD was further 
assessed. Our findings may provide evidence on the effects 
of GLP-1 on the osteoporosis and DOP.

The study was approved by the Ethics Committee of 
the Sixth People's Hospital, Shanghai Jiaotong University 
[2014-KY-001(K)]. Han Chinese women who were treated 
in the Department of Osteoporosis and Osteopathy of the 
Sixth People’s Hospital were included. The inclusion criteria 
were as follows: (I) women had natural menopause for more 

than 1 year; (II) women did not receive anti-osteoporotic 
treatment (except calcium and vitamin D supplement); (III) 
there was no disease affecting bone metabolism.

In this study, the iMLDR® multiple SNP typing (23) 

(Shanghai Tianhao Biotechnology Co., Ltd) was used detect 
eight SNPs in 884 subjects.

Postmenopausal women received dual-energy X-ray 
absorptiometry (GE-LUNAR Prodigy USA) for the 
measurement of lumbar vertebrae 1–4 (L1–4), left femoral 
neck (femoral neck) and total hip (total hip) BMD (g/cm2). 
For the quality control, the instrument was standardized 
once daily. The coefficient of variation (CV) of the lumbar 
vertebrae, femoral neck and total hip BMD measurements 
was 1.39%, 2.22% and 0.70%, respectively (24).

Methods

Detection of SNPs

The selection of tag SNP is based on the International 
Human Genome Haplotype Program (International 
HapMap Project. http://www.Hapmap.org/cgi-perl/
gbrowse/hapmap3_B36), and the criteria were as follows: 
(I) the minimum mean allele frequency (MAF) was >0.05; 
(II) the coefficient of link SNP linkage disequilibrium (LD) 
r2 was >0.8; (III) GWAS (Genome-wide association study, 
genome-wide association analysis) SNPs that had been 
reported were included in this study. Finally, eight SNPs of 
GLP-IR gene were detected in the present study, namely 
rs3765467, rs1042044, rs2268657, rs6923761, rs2268641, 
rs2295006, rs4714210 and rs10305420.

Amplification was achieved by multiplex PCR reaction. 
Each measurable allele locus ligated product was obtained 
after two ligation reactions. The raw data files were 
analyzed using GeneMapper software version 4.1 (Applied 
Biosystems, USA). A total of 884 postmenopausal women 
were analyzed.

Statistical analysis

Statistical analysis was performed using SPSS version 24.0 
(IBM SPSS Statistics 24, USA). The continuous variables 
with normal distribution are expressed as mean ± standard 
deviation (x ± SD), and the variables with abnormal 
distribution as median and interquartile range. The 
continuous variables were compared with t-test between 
two groups; the chi-square test was used to compare the 
categorical variables. Haploview 4.2 was used to calculate 
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the D’ value and linkage disequilibrium coefficient (r2) 
of the linkage disequilibrium (LD) between SNPs, and 
the haplotype region and corresponding haplotype were 
obtained. After adjustment for age, a linear regression 
model was employed to assess the relationship between 
GNP-1R SNPs, haplotypes and BMD of different sites in 
postmenopausal women. A value of P<0.05 was considered 
statistically significant.

Results

Characteristics of subjects

A total of 907 postmenopausal women were included, but 
some subjects were excluded from this study because the 
samples were contaminated, had poor quality or were not 
successfully typed after one failure. Finally, 884 samples 
from postmenopausal women (mean age: 67.2±10.0 years) 
were subjected to the detection of SNPs. In addition, 
subjects were divided into the <60 years group and the 
≥60 years group. The baseline characteristics of subjects 
included for the final analysis are shown in Table 1.

Alleles frequency and haplotype

In this study, eight SNPs were genotyped and analyzed. 
During the test, the detection of rs10305420 failed, and 
thus the remaining 7 SNPs were examined in which the 
minimum allele frequency (MAF) was greater than 0.01. 
The genotype distribution met the Hardy-Weinberg 
equilibrium, and the MAF of 7 SNPs was similar to the 
genetic variation of Beijing Han population in China 
(CHBS) (Table 2).

The linkage disequilibrium Lewontin’s D’ value and 
linkage disequilibrium coefficient r2 of 7 SNPs were further 
calculated. There was a strong linkage disequilibrium 
between 7 SNPs in this study (0.908< D’ <1). Thus, these 
7 SNPs could be regarded as a linkage domain (Figure 1). 
Then, the haplotype and frequency in the linkage domain 
block were calculated, and results showed there were 15 
haplotypes with the frequency greater than 1% in the 
linkage region (Table 3).

The relationship between 7 SNPs and BMD was further 
assessed in postmenopausal women. Results showed 
there was a correlation between rs2295006 and BMD at 

Table 1 Baseline characteristics of subjects included in this study

Characteristics <60 years (n=224) ≥60 years (n=660) P

Age (years) 54.9±5.8 71.3±7.4 0.00

Height (cm) 156.2±5.2 152.0±5.4 0.00

Weight (kg) 57.6±8.4 55.2±8.5 0.027

BMI (kg/cm2) 23.6±3.3 23.9±3.5 0.497

Blood calcium (mmol/L) 2.34 (2.27–2.40) 2.32 (2.26–2.39) 0.718

Blood phosphorus (mmol/L) 1.14 (1.03–1.23) 1.12 (1.01–1.23) 0.700

Albumin (g/L) 47.00 (46.00–49.00) 46.00 (44.00–48.00) 0.008

Alkaline phosphatase (g/L) 69.00 (56.00–80.00) 72.00 (60.00–90.00) 0.004

Creatinine (μmol/L) 54.00 (49.00–60.75) 59.00 (52.00–66.00) 0.00

25(OH)D3 (ng/mL) 20.92 (16.28–26.86) 21.36 (15.56–27.97) 0.87

Parathyroid hormone (pg/L) 40.65 (32.82–53.34) 42.37 (31.63–56.22) 0.128

β-Collagen specific sequence (ng/L) 403.50 (223.00–5630) 366.00 (216.75–551.00) 0.68

L1–4 BMD (g/cm2) 0.894 (0.806–0.992) 0.859 (0.773–0.968) 0.008

Neck BMD (g/cm2) 0.758 (0.708–0.848) 0.692 (0.623–0.761) 0.00

Total BMD (g/cm2) 0.801 (0.727–0.895) 0.742 (0.662–0.817) 0.00

BMI, body mass index; BMD, bone mineral density; 25(OH)D3, 25-hydroxy vitamin D3; L1–4, lumbar vertebra 1–4.



1735Annals of Palliative Medicine, Vol 9, No 4 July 2020

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2020;9(4):1732-1741 | http://dx.doi.org/10.21037/apm-19-396

specific site (Table 4). The A/A genotype of rs2295006 was 
negatively related to lumbar vertebrae 1–4 BMD (P<0.05). 
There is a negative correlation between rs2295006 and 
BMD of lumbar vertebrae and total hip (Table 5).

The linear regression analysis was employed to evaluate 
the correlation between 15 haplotypes and BMD. Results 
showed haplotypes had no relationships with the age, 
height, weight and body mass index (BMI) (P>0.05). A close 
correlation was noted between haplotypes CGAGCCA/
CGGGCTA and lumbar vertebrae 1–4 BMD (Table 6).

The haplotype CGAGCCA was negatively related to 
the lumbar vertebrae 1–4 BMD (P=0.048). There was a 
negative correlation between haplotype CGAGCCA and 
lumbar vertebrae 1–4 BMD (Table 7).

The haplotype CGGGCTA was positively related to the 
lumbar vertebrae 1–4 BMD (P=0.001). There was a positive 

correlation between haplotype CGGGCTA and lumbar 
vertebrae 1–4 BMD (Table 7).

Discussion

Genome wide association studies (GWAS) have confirmed 
that BMD is associated with multiple genetically susceptible 
regions (25,26). The association between vitamin D 
receptor gene polymorphism and osteoporosis was first 
reported by Morrison et al. in 1994 (27). Since then, more 
than 100 genetic polymorphisms have been identified to 
be associated with bone metabolism regulation, including 
sex hormones and their receptors, bone matrix component-
related proteins and apolipoprotein E (ApoE). These 
findings suggest the important role of genetic factors in the 
pathogenesis of primary osteoporosis.

Table 2 Seven single nucleotide polymorphisms of glucagon-like peptide-1 receptor gene

SNPs Chr. position SNP property Alleles HWE, P value MAF in CHBS MAF in this study

rs2268657 39020542 intron1 C/T 0.1902 0.34 0.326

rs2295006 46182304 nonsynon_exon2 G/A 0.7755 0.07 0.06

rs3765467 46182304 nonsynon_exon4 G/A 0.5521 0.23 0.255

rs6923761 39055485 nonsynon_exon5 G/A 1 0.01 0.01

rs1042044 39041502 nonsynon_exon7 C/A 1 0.47 0.46

rs2268641 39050266 intron12 C/T 0.5249 0.39 0.417

rs4714210 39055485 3'-UTR_exon13 G/A 0.1432 0.29 0.317

SNP, single nucleotide polymorphism; HWE, Hardy-Weinberg equilibrium; CHBS, Beijing Han population in China; MAF, minimum allele 
frequency.

Figure 1 Chain transfer imbalance map of seven single nucleotide polymorphism of glucagon-like peptide-1 receptor gene.
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Table 3 15 haplotypes of 7 single nucleotide polymorphisms of glucagon-like peptide-1 receptor gene and their frequencies (>1%)

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rs2268657 C C C T T C T C C C T C T C T

rs2295006 G G G G G G G G G G G G A A G

rs3765467 A G G G G G G G G A G G G G G

rs6923761 G G G G G G G G G G G G G G G

rs1042044 C A C A C A A A C C C C A A A

rs2268641 C C C C C T T T T T T T T T T

rs4714210 A A A A A A G A G G G A G G A

Frequency 0.175 0.104 0.094 0.080 0.067 0.065 0.063 0.057 0.044 0.042 0.033 0.028 0.022 0.018 0.010

Table 4 Relationship between glucagon-like peptide-1 receptor single nucleotide polymorphisms and BMD in the postmenopausal women

Genotype Age (years) Height (cm) Weight (kg) BMI L1–4, BMD (g/cm2) Femoral neck, BMD (g/cm2) Total hip, BMD (g/cm2)

rs1042044

P-dominant 0.416 0.519 0.605 0.445 0.359 0.197 0.153

P-recessive 0.674 0.115 0.072 0.275 0.768 0.638 0.416

P-addictive 0.778 0.597 0.163 0.257 0.446 0.269 0.164

rs2268641

P-dominant 0.497 0.378 0.453 0.694 0.097 0.758 0.711

P-recessive 0.561 0.953 0.239 0.199 0.751 0.627 0.320

P-addictive 0.439 0.532 0.889 0.662 0.198 0.637 0.428

rs2268657

P-dominant 0.275 0.087 0.894 0.478 0.804 0.889 0.886

P-recessive 0.861 0.779 0.628 0.594 0.423 0.510 0.516

P-addictive 0.359 0.145 0.911 0.430 0.577 0.683 0.851

rs2295006

P-dominant 0.434 0.599 0.707 0.800 0.288 0.160 0.076

P-recessive 0.769 0.379 0.063 0.084 0.023* 0.152 0.101

P-addictive 0.497 0.482 0.409 0.495 0.145 0.107 0.045*

rs3765467

P-dominant 0.838 0.261 0.661 0.934 0.229 0.421 0.256

P-recessive 0.595 0.663 0.145 0.210 0.584 0.930 0.461

P-addictive 0.958 0.293 0.340 0.640 0.236 0.543 0.228

rs4714210

P-dominant 0.863 0.909 0.973 0.976 0.325 0.830 0.447

P-recessive 0.489 0.656 0.500 0.356 0.752 0.925 0.513

P-addictive 0.658 0.923 0.754 0.714 0.533 0.834 0.377

rs6923761

P-dominant 0.227 0.986 0.231 0.195 0.283 0.456 0.430

P-recessive 0 0 0 0 0 0 0

P-addictive 0.227 0.986 0.231 0.195 0.283 0.456 0.430

*, P≤0.05. BMD, bone mineral density; BMI, body mass index; L1–4, lumbar vertebra 1–4.



1737Annals of Palliative Medicine, Vol 9, No 4 July 2020

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2020;9(4):1732-1741 | http://dx.doi.org/10.21037/apm-19-396

Table 6 Relationship between 15 haplotypes of 7 single nucleotide 
polymorphisms of glucagon-like peptide-1 receptor gene and BMD 
in the postmenopausal women (linear regression analysis)

Haplotype
L1–4 BMD Neck BMD Total BMD

β P β P β P

CGAGCCA −0.037 0.048* 0.003 0.652 0.007 0.400

CGGGACA −0.002 0.922 −0.001 0.919 −0.004 0.685

CGGGCCA 0.012 0.647 0.008 0.429 0.005 0.619

TGGGACA −0.003 0.920 −0.007 0.514 −0.004 0.748

TGGGCCA 0.052 0.086 0.000 0.999 0.008 0.546

CGGGATA 0.007 0.807 −0.009 0.453 −0.009 0.499

TGGGATG −0.017 0.590 0.010 0.399 0.008 0.532

CGGGATG 0.003 0.915 0.004 0.742 0.001 0.945

CGGGCTG −0.004 0.910 −0.013 0.356 −0.018 0.271

CGAGCTG 0.013 0.732 −0.010 0.483 −0.006 0.701

TGGGCTG 0.007 0.867 −0.008 0.637 −0.019 0.292

CGGGCTA 0.154 0.001** 0.012 0.516 0.007 0.730

TAGGATG −0.082 0.090 −0.024 0.197 −0.037 0.071

CAGGATG 0.043 0.449 −0.010 0.651 −0.011 0.641

TGGGATA 0.041 0.589 −0.005 0.867 0.015 0.643

*, P≤0.05; **, P≤0.01. BMD, bone mineral density; L1–4, lumbar 
vertebra 1–4; β, regression coefficient.

It has been confirmed that the bone resorption 
experiences a circadian change which may be related to the 
secretion of incretin after eating (28). Animal studies have 
revealed that, in case of intake of the same energy and the 
same compositions of carbohydrate, protein, and fat, the 
BMD of rats with high frequency of food intake (more than 
once daily) was significantly higher than that of rats with 
food intake once daily (29). In addition, patients with long-
term total parenteral nutrition (>3 months) often develop 
bone pain, hypercalciuria and elevated serum alkaline 
phosphatase (30). Blood calcium, blood phosphorus, 
25-hydroxy vitamin D and parathyroid hormone remained 
normal. These findings were subsequently confirmed 
by many studies (31). Many investigators have therefore 
proposed the concept of “entero-osseous axis” (32), which 
means that bone metabolism may be regulated by incretin.

GLP-1 is a type of incretin, and human bone marrow 
mesenchymal stem cells can express GLP-1R (33). In the 
GLP-1R-/- mouse model (16), the risk for osteoporosis 
increases significantly. In rats with type 2 diabetes mellitus 
(T2DM) and insulin-resistance (34), subcutaneous injection 

of GLP-1 enhanced bone synthesis in an insulin independent 
manner. It is speculated that this enhancement of bone 
synthesis may be related to the increase in OPG/RANKL 
ratio. In addition, dyslipidemia has been identified as a 
major risk factor for osteoporosis-related fractures (35,36). 
Most patients with osteoporosis will develop hyperlipidemia 
(20,37). In rats fed with high fat, results showed GLP-
1 reversed the reduction of bone mass secondary to 
hyperlipidemia (21). The above findings suggest that the 
lack of GLP-1 may adversely affect the bone metabolism, 
and supplementation with GLP-1 can improve bone 
metabolism to a certain extent.

To date, only a few studies have investigated the effects 
of GLP-1R SNPs on the bone metabolism. In a Chinese 
study (38), the relationship between GLP-1R SNPs and 
BMD was investigated in 427 male core families. The 
six SNPs (rs2295006, rs3765468, rs6923761, rs1126476, 
rs1042044andrs3765467) were detected in this study, and 
results showed no correlation between genotypes and 
BMD. However, rs1042044 and rs3765467 are quantitative 

Table 5 Correlation between glucagon-like peptide-1 receptor 
single nucleotide polymorphisms rs2295006 and BMD

BMD
Dominant Recessive Addictive

β P β P β P

L1 −0.035 0.031* 0.057 0.453 −0.029 0.060

L2 −0.021 0.244 −0.067 0.428 −0.021 0.209

L3 −0.007 0.730 0.086 0.367 −0.003 0.885

L4 −0.013 0.538 −0.102 0.290 −0.015 0.429

L1−2 −0.018 0.527 −0.177 0.179 −0.023 0.387

L1−3 −0.037 0.240 −0.348 0.019* −0.047 0.114

L1−4 −0.035 0.288 −0.354 0.023* −0.045 0.145

L2−3 −0.055 0.057 −0.383 0.005** −0.064 0.018*

L2−4 −0.054 0.077 −0.388 0.007** −0.064 0.027*

L3−4 −0.061 0.025* −0.432 0.001** −0.071 0.005**

Neck −0.018 0.160 −0.087 0.205 −0.019 0.107

Wards −0.03 0.027* −0.13 0.137 −0.032 0.013*

Troch −0.016 0.185 −0.051 0.393 −0.016 0.154

Inter −0.037 0.034* −0.164 0.123 −0.039 0.016*

Total −0.025 0.076 −0.108 0.175 −0.026 0.045*

*, P≤0.05; **, P≤0.01. BMD, bone mineral density; L, lumbar 
vertebra; β, regression coefficient.
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trait loci for male lean tissue and adipose tissue mutations, 
respectively. The GLP-1R SNPs were significantly 
associated with the lean tissue and adipose tissue, suggesting 
that GLP-1R SNPs may indirectly affect BMD.

However, the association between GLP-1R SNPs and 
osteoporosis in postmenopausal women is still poorly 
understood. In the present study, eight SNPs of GLP-1R 
gene were detected according to previously reported, and 
the relationship between GLP-1R SNPs and BMD was 
further analyzed.

Our results showed, in 884 postmenopausal women, 
the A/A genotype of rs2295006 was negatively related to 
lumbar vertebrae 1–4 BMD (P<0.05), and allele A was 
negatively related to total hip BMD (P<0.05).That is, 
for rs2295006, only the homozygous genotype of A/A 
mutation had a negative correlation with lumbar vertebrae 
1–4 BMD, and the negative correlation between locus and 
total hip BMD increases with the increase of allele A in a 
specific population. Therefore, in a specific individual, the 
rs2295006 of GLP-1R gene appears to be a homozygous 

A/A mutant, which may result in decreased BMD in the 
lumbar vertebrae and total hip. In a specific population 
(such as Shanghai), if the frequency of the GLP-1R SNP 
rs2295006 allele A is higher, the BMD of lumbar vertebrae 
and total hip will be lower. Therefore, the allele A of GLP-
1R rs2295006 predicts a decrease in BMD.

Of 15 haplotypes of 7 SNPs, a correlation between 
haplotype CGAGCCA/CGGGCTA and BMD was 
observed. There was a negative correlation between 
haplotype CGAGCCA and lumbar vertebrae BMD. The 
presence of haplotype CGAGCCA in the linkage domain 
may predicts a decrease in the lumbar vertebrae 1–4 
BMD. There was a positive correlation between haplotype 
CGGGCTA and lumbar vertebrae BMD. That is, the 
presence of haplotype CGGGCTA in the linkage domain 
predicts an increased BMD of the lumbar vertebrae 1–4.

It has been reported that many SNPs may not directly 
induce the expression of disease related genes. However, 
they are close to certain disease genes and thus may 
become important markers of some diseases. These SNPs 
are also known as tag SNPs. The genetically determinant 
SNPs can affect the phenotype of some diseases and it is 
necessary to investigate the corresponding functions. In our 
study, results showed the A/A genotype of rs2295006had a 
negative correlation with lumbar vertebrae 1–4 BMD. It can 
be regarded as a tag SNP and a determinant site associated 
with BMD may be close to it. This determinant site may 
be positively or negatively related to the BMD. This also 
suggests that rs2295006 can be used as a tag SNP to study 
multiple SNPs close to it.

In recent years, some studies have been conducted 
to investigate the biological effects of GLP-1R SNPs. 
Some studies have shown GLP-1R SNPs have a positive 
correlation with T2DM, islet cell function and obesity in 
different populations (39-42). Ma et al. (39) proposed that, 
in Han Chinese patients with T2DM, GLP-1R SNPs were 
associated with the risk of coronary heart disease. The GG 
genotype of rs4714210 predicted a lower risk of coronary 
heart disease as compared to the AA genotype (ORa =0.475, 
CIa =0.232–0.970, pa =0.041), and could also reduce the 
severity of atherosclerotic lesions (43). Therefore, the GLP-
1R SNPs can be used as a predictor of risk for coronary heart 
disease in T2DM. In a Chinese study, the GLP-1R SNP 
rs2268657 was found to be associated with T2DM, which 
is mainly caused by the insufficient insulin secretion (40).  
In addition, rs3765467 significantly affected the response of 
islet B cells after infusion of GLP-1 in healthy individuals 
(41). Therefore, the GLP-1R SNPs may be used to guide 

Table 7 Correlation between haplotype CGAGCCA/CGGGCTA 
and BMD

BMD
CGAGCCA CGGGCTA

β P β P

L1 −0.012 0.200 0.048 0.034*

L2 −0.010 0.337 0.072 0.004**

L3 −0.025 0.032* 0.055 0.049*

L4 −0.017 0.153 0.072 0.012*

L1-2 −0.026 0.097 0.124 0.001**

L1-3 −0.034 0.057 0.142 0.001**

L1–4 −0.037 0.048* 0.154 0.001**

L2-3 −0.040 0.017* 0.120 0.003**

L2-4 −0.041 0.020* 0.132 0.002**

L3-4 −0.017 0.261 0.102 0.007**

Neck 0.003 0.652 0.012 0.516

Wards 0.007 0.393 0.003 0.868

Troch 0.008 0.269 0.011 0.537

Inter 0.009 0.367 0.000 0.986

Total 0.007 0.400 0.007 0.730

*, P≤0.05; **, P≤0.01. BMD, bone mineral density; L, lumbar 
vertebra; β, regression coefficient.
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the therapeutic use of GLP-1R agonists. In addition, the 
rs2268641 of GLP-1R gene is associated with obesity in 
European Americans (42), and the rs6923761 of GLP-1R 
gene is closely related to the fasting serum GLP-1 level in 
newly diagnosed T2DM patients (44). Further investigation 
on obese patients with polycystic ovary syndrome (45) 

revealed that rs6923761 and rs10305420 of GLP-1R gene are 
associated with the therapeutic efficacy of GLP-1R agonists.

Recent studies have shown that GLP-1 is able to regulate 
the bone metabolism (46). In the present cross-sectional 
study, the correlation between GLP-1R SNPs and BMD 
was investigated in postmenopausal women. Our results 
showed A/A genotype and haplotype CGAGCCA of 
rs2295006 were negatively related to BMD, suggesting that 
this SNP may negatively regulate bone metabolism. There 
was a positive correlation between haplotype CGGGCTA 
and lumbar vertebrae BMD, and this mutation enhanced 
its positive correlation with BMD. There were several 
limitations in our study. Only 7SNPs of GLP-1Rwere 
detected in our study and they could not represent all the 
GLP-1R SNPs in the postmenopausal women. Thus, 
the effects of otherGLP-1R SNPs on the BMD in the 
postmenopausal women cannot be excluded. The sample 
size is relatively small, and subjects were included from 
a local region, which limit the expansion of our findings. 
Thus, more prospective studies with large sample size are 
needed to confirm our findings.

Conclusions

In summary, our study indicates a correlation between 
GLP-1R SNPs and BMD in the postmenopausal women. 
The GLP-1R SNPs can be used to guide the assessment of 
metabolic diseases and the treatment of osteoporosis in the 
postmenopausal women. However, the specific mechanism 
underlying the relationship betweenGLP-1R SNPs and 
BMD is needed to be further studied.
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