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Introduction 

Tourette’s syndrome (TS), also known as Gilles de la 
Tourette’s syndrome, is a neurodevelopmental condition 
characterized by tics and is usually accompanied by 
behavioral symptoms (1). Individuals with TS have 

multiple vocal and motor tics that may trace back to 
their childhood, and the tics are ongoing. According to 
observed signs and symptoms of TS in the clinic, including 
common motor tics including facial grimacing, head/neck 
movements, eye blinking, shoulder/upper body movements, 
and common vocal tics such as coughs, sniffs, grunts, 
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and throat-clearing noises. These signs and symptoms 
can be restrained for periods; however, intense mood  
swings, including excitement, anxiety, or stress, often 
worsen tics (2). Severe TS with noticeable tics significantly 
affects patients’ daily and social life, leading to mental 
disorders,  including inferiority complex,  anxiety, 
depression, and rebellion in specific individuals (3). At 
present, pharmacological treatment options available to 
treat TD are using oral synthetic drugs; Clonidine (4),  
Guanfacine (5), Haloperidol (6), Risperidone (7), and 
Aripiprazole (8). Non-pharmacological treatments, 
including habit reversal therapy (9), are in practice. 
However, most pharmacological treatments available for TS 
alleviate only the symptoms but not intrinsic causes. These 
treatments also cause unwanted side effects, including drug 
dependence. Thus, safer and more effective therapeutic 
options are needed to treat TS.

Traditional Chinese herbal medicine (TCHM) has been 
adopted widely for centuries to treat several diseases. Many 
herbal medicines derived from natural sources have shown 
to display only minimal side effects (10). Many TCHMs 
have already been used in the treatment of TS, and meta-
analysis supports the efficacy and safety of TCHM alone 
and TCHM + Western medicine (WM) in TS patients (11). 
Therefore, it would be helpful to identify the most effective 
TCHM compounds to treat TS. The traditional Chinese 
herbal medicine compound prescription (TCHMCP or 
Chinese medicine prescription) is the main form of Chinese 
medicine. It is based on the dialectical thought point of 
view, to choose the appropriate quantitative compatibility 
of herbal medicines, which is the concrete embodiment of 
the theory of dialectical treatment of traditional Chinese 
medicine. It is of great significance to promote TCHMCP 
to the international community. In order to give full play 
to the advantages and benefits of TCHMCP, it is necessary 
to study Chinese herbal medicine compound prescription 
by modern methodology and technology, clarify the 
material basis (effective components) and action principle 
of compound prescription, which is the ultimate goal of 
modernization research on Chinese herbal compound 
prescriptions, and this could also provide theoretical 
support for the further research and development of new 
drugs.

Earlier studies and clinical observations have revealed 
the feasibility and effectiveness of Qiangzhi decoction (QD) 
in treating TS, significantly reducing tics’ frequency during 
the disease. According to the Zhiyi Dialectical Theory (12) 
and Traditional Chinese medicine (TCM) theory, QD is 

classified as a curative TCHM formula and is being used 
to treat several diseases for decades. The QD contains six 
Chinese herbal medicines, namely renshen (RS) derived 
from Panax Ginseng, C. A. Mey, bajitian (BJT) derived from 
Morindae Officinalis Radix, muxiang (MX) derived from 
Aucklandiae Radix, shanyao (SY) derived from Rhizoma 
Dioscoreae, fuling (FL) derived from Poria Cocos (Schw.) 
Wolf and baiziren (BZR) derived from Platycladi Semen. 
This study aims to predict the potential pharmacological 
mechanisms of QD action and its ingredients in treating TS 
using the network pharmacology method.

Network pharmacology is a powerful and helpful 
method that integrates bioinformatics, network biology, 
chemo-informatics, traditional pharmacology, and network 
analysis (13). The network pharmacology method is being 
established as an alternative method for elucidating the 
potential mechanisms and active compounds of TCHM, 
and its principles are in agreement with those in TCM 
theory. In this study, we have identified the molecular 
targets for the compounds in QD and associated them with 
those targets in TS’s etiology.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/apm-20-2158).

Methods

Construction of a database of the components of QD 

Figure 1 shows a schematic representation of the method 
adopted in this study, using network pharmacology to 
predict QD molecular mechanisms in treating TS. The 
six herbs in QD are RS, BJT, MX, SY, FL, and BZR. The 
data regarding the compounds present in RS, BJT, MX, SY, 
FL and BZR were derived from TCMSP (the Traditional 
Chinese Medicine Systems Pharmacology database) (14), 
and TCM (the Traditional Chinese Medicine Databases 
@ Taiwan) (15). Five hundred fifty-eight compounds were 
identified in QD, including 190 compounds from RS, 
174 compounds from BJT, 106 compounds from MX, 
34 compounds from FL, 71 compounds from SY, and 28 
compounds BZR.

Screening of the active ingredients in QD

The 558 potential compounds from QD were filtered 
using two models of Absorption, Distribution, Metabolism, 
and Excretion (ADME) in which drug-likeness (DL) 
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Figure 1 A schematic representation of the network pharmacology study of Qiangzhi decoction (QD) in the treatment of Tourette’s 
syndrome (TS), including the six active components, renshen (RS), bajitian (BJT), muxiang (MX), shanyao (SY), fuling (FL), and baiziren 
(BZR).
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and oral bioavailability (OB) were integrated. Drug-
likeliness is a qualitative value applied in drug design to 
decide whether the compound is drug-like and is used as 
a parameter to optimize and improve its pharmaceutical 
and pharmacokinetic properties (16,17). OB represents the 
relative amount of orally administered drug that reaches 
the blood circulation. The compounds with values of DL 
≥0.18 and OB ≥30%, from the information available in 
the TCMSP database and the literature, were selected for 
further analysis (18). The putative targets of the compounds 
in QD were identified from the STITCH (19) and 
PubChem databases (http://pubchem.ncbi.nih.gov/) (20). 
The targets with inadequate information were excluded.

Target genes related to the compounds

Swiss Target Prediction (21) and TCMSP databases were 
used to identify the locks on identifying the relevant target 
genes associated with QD compounds. According to former 
research (22), the target genes with a confidence score 
value of >0.6 in Swiss Target Prediction were selected 
for further studies. The TCMSP is a curated database of 
small molecules’ chemical structure, biological activities, 
and other relevant information. The data in TCMSP is 
usually experimentally verified. We entered all the active 
biomolecules identified in the present study into the Swiss 
Target Prediction and TCMSP databases by drawing the 
chemical structures and selecting Homo -sapiens as the 
species set. The gene information, including the gene ID, 
organism, and name, was confirmed by the Uniprot protein 
sequence resource (23).

Target genes related to TS

Information on TS-associated target genes was retrieved 
from the following resources. GeneCards, a comprehensive 
database, has all the information regarding predicted and 
annotated genes (24). It has identified 694 genes associated 
with TS. DrugBank (25) is a comprehensive online database 
that supplies pharmacological and biochemical information 
on drugs, molecular targets, and action mechanisms. 
Forty genes associated with TS were identified. Online 
Mendelian Inheritance in Man® (OMIM) database) (26) is a 
comprehensive resource of human gene targets and genetic 
phenotypes, from which 200 genes related to TS were 
selected. DisGeNET (27) is a database for exploring certain 
human diseases and their genes, from which TS related 96 
genes were selected. After removing the duplicates, 778 

targets linked to TS were selected for further study. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). 

Construction of pharmacological network method of 
pharmacological network construction

The pharmacological network was constructed, using 
the following processes: (I) a compound-target network 
was established by linking compounds and predicted 
targets with a degree of >3.0; (II) A QD target-TS target 
interaction network [protein-protein interaction (PPI) 
was established]; and (III) Target-pathway network was 
established. The pathway information about the selected 
targets was retrieved from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis. The pharmacological network was visualized using 
Cytoscape3.6.0, an open-source program for visualizing 
network analysis (28).

The topological feature set definition of pharmacological 
network

We selected four parameters to estimate each node’s 
topological features in the QD target-TS target interaction 
network: (I). ‘Degree’ (29); (II) ‘Betweenness Centrality’ (30); 
(III) ‘Closeness Centrality’ (31); (IV) ‘The Stress’. The level 
of the four parameters is the topological importance of the 
nodes in the pharmacological network. A node was defined 
as a major node if all the four topological features were 
higher than the corresponding median levels (32).

Pathway enrichment analysis

Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) (33) was used in this study for gene 
ontology (GO) enrichment analysis. To conduct the 
pathway enrichment analysis, we applied the KEGG (34) 
data retrieved from DAVID.

Statistical analysis

The pathway information about the selected targets was 
retrieved from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis. The 
topological data were analysed by Cytoscape version 3.6.0. 
for Windows, WPS Office version 11.1.0.9739-Release 
for Windows. Pathway enrichment analysis was run by 
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Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) version 6.8. All the relevant data 
analysis results are presented in “Results” Section below.

Results

Screening for the active compounds of QD 

From the six active components of QD; RS, BJT, MX, 
FL, SY, and BZR; 558 compounds were retrieved from 
TCMSP and TCM databases. Out of 558 compounds, 190 
(31.5%) compounds from RS, 174 (28.9%) compounds 
were from BJT, 106 (17.6%) compounds were from MX, 34 
(5.6%) compounds were from FL, 71 (11.8%) compounds 
were from SY, and 28 (4.6%) compounds were from BZR. 
Seventy-eight compounds meet the OB (≥30%) and DL 
(≥0.18). The network of the Herbs-Compounds was 
constructed, and the top five compounds were found with 
edge betweenness. The five compounds are kaempferol 
(MOL000422, OB =41.88, DL =0.24, found in RS), 
stigmasterol (MOL000449, OB =43.83, DL =0.76, found 
in RS, SY, MX), beta-sitosterol (MOL000359, OB =36.91, 
DL =0.75, found in BJT, RS), hederagenin (MOL000296, 
OB =36.91, DL =0.75, found in FL), and arachidonic 
acid (MOL001439, OB =45.57, DL =0.20, found in BZR)  
(Table 1).

Target analysis and prediction

The STITCH, Swiss Target Prediction, and PubChem 
databases were used in this process for target fishing on the 
558 active compounds from chemical similarity, gaining 588 
relevant targets, among which there were 313 in BJT, 82 in 
MX, 454 in RS, 71 in FL, 221 in SY, and 71 in BZR. Seven 
hundred seventy-eight targets were identified for TS from 
the database; GeneCards, DrugBank, OMIM database, 
DisGeNET. Fifty-four of these targets were the same as 
those predicted molecular targets of the QD compounds 
and considered the potential targets for QD in TS  
(Figures 2,3).

The PPI network of the above 54 targets was constructed 
using the STRING database. Four hundred six human 
proteins associated with the 54 targets were identified 
and resulted in 406 nodes and 9,348 edges. The PPI 
network topology was analyzed on the four parameters: 
“betweenness”, “degree”, “closeness”, and “stress”. The 
targets with the value greater than the median values of 
each parameter were targets through which QD could 

show a therapeutic effect in TS. In the first screening, the 
threshold values were set at closeness ≥0.474736, degree 
≥40, stress ≥5,366, and betweenness ≥0.001055. It resulted 
in 156 hub nodes and 4,043 edges. The 156 hub nodes were 
further by setting the threshold values: closeness ≥0.596154, 
degree ≥50, stress ≥1,174, and betweenness ≥0.002695. 
It results in 61 big hub nodes and 1,116 edges (Figure 4). 
The entire process of the topological feature analysis of the 
PPI network is shown in Figure 5. For the degree value in 
descending order and previous research studies on TS, we 
eventually selected 14 core targets: Akt1 (degree =116), INS 
(degree =114), CXCL8 (degree =86), POMC (degree =84), 
GNG2 (degree =82), EGFR (degree =81), PIK3CA (degree 
=78), GNG7 (degree =76), GNG3 (degree =75), TNF 
(degree =74), OXT (degree =67), STAT3 (degree =67), 
DRD2 (degree =67), Pten (degree =62) (Table 2).

The main active ingredient—target molecular docking

It is generally considered that the lower the conformational 
stability of ligand receptor binding, the greater the 
possibility of interaction. Based on former study, a docking 
score greater than 4.25 indicates a certain binding activity 
between the docking molecule and the target, values greater 
than 5.0 indicate good binding activity between the docking 
molecule and the target (35). 

The five compounds, kaempferol (MOL000422), 
stigmasterol (MOL000449), beta-sitosterol (MOL000359), 
hederagenin (MOL000296),  and arachidonic acid 
(MOL001439) are the most important active ingredients 
which have the highest degree in the network of the 
Herbs-Compounds of QD. The Ledock (Ledock is a 
cross platform (win, Linux, Mac OS) molecular docking 
software developed by Dr. Zhao Hongtao of the University 
of Zurich. It shows strong advantages in analysis speed and 
accuracy.) was used to verify the molecular docking of the 
five main medicinal ingredients and the 14 core targets. 
The docking results showed that the average docking score 
of the chemical components, i.e., kaempferol, stigmasterol, 
beta-sitosterol, hederagenin, and arachidonic acid with the 
targets, i.e., Akt1, INS, CXCL8, POMC, GNG2, EGFR, 
PIK3CA, GNG7, GNG3, TNF, OXT, STAT3, DRD2, 
and Pten, was 4.44. Arachidonic acid and POMC have a 
max docking score of 6.35 (Figure 6). This docking analysis 
showed that kaempferol, stigmasterol, beta-sitosterol, 
hederagenin, and arachidonic acid have good binding 
activity with Akt1, POMC, PIK3CA, GNG2, GNG3, 
GNG7, OXT, STAT3 and Pten (Figure 7). 
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Table 1 The five significant ingredients of Qiangzhi Decoction (QD)

Molecule ID Molecule name Structure OB DL Herb

MOL000422 Kaempferol 41.88 0.24 RS

MOL000449 Stigmasterol 43.83 0.76 RS, SY, MX

MOL000359 Beta-sitosterol 36.91 0.75 BJT, RS

MOL000296 Hederagenin 36.91 0.75 FL

MOL001439 Arachidonic acid 45.57 0.20 BZR

RS, Renshen; SY, Shanyao; MX, Muxiang; BJT, Bajitian; BZR, Boziren.
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Figure 2 The “compound-target” network diagram of Qiangzhi Decoction (QD) in the treatment of Tourette’s Syndrome, and red is the 
compounds.

Figure 3 The “herbal-compound-target” network diagram of Qiangzhi Decoction (QD) in the treatment of Tourette’s Syndrome. Yellow is 
herbals. Red is the component. Green is the target.
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Figure 4 Construction of protein-protein interaction (PPI) network expressed by hub target protein. Sixty-one nodes are 61 proteins, and 
1,116 edges are the interactions between 1,112 pairs of proteins. The node size and color represent the degree, and the data comes from the 
string.

Figure 5 The process of topological screening for the protein-protein interaction (PPI) network.
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KEGG pathway enrichment and GO biological analysis 
process

The 61 targets retrieved from the STRING database were 
given as input in DAVID v6.8 for enrichment analysis, with 
screening threshold set at FDR <0.01. The analysis resulted 
in 48 GO items and 79 related KEGG pathways used for 
further analysis.

KEGG pathway enrichment analysis

For further revelations of the potential mechanism of 
QD ion TS’s pharmacological effect, the KEGG pathway 
enrichment analysis was performed on the 61 targets. 
Seventy-nine pathways were screened with the threshold 
value set at FDR <0.01. Figure 8 shows the top 20 pathways 
of KEGG enrichment, and they are pathways in cancer, 

Figure 6 Molecular docking model of arachidonic acid and POMC.

Table 2 Information on the 14 core targets in Qiangzhi Decoction (QD) treating Tourette’s syndrome (TS)

Gene Description UniProt Degree

Akt1 RAC-alpha threonine-protein kinase P31749 116

INS Insulin P01308 114

CXCL8 Interleukin-8 P10145 86

POMC Pro-opiomelanocortin P01189 84

GNG2 Proteins subunits 2 P59768 82

EGFR Epidermal growth factor receptor P00533 81

PIK3CA Phosphatidylinositol 4,5-bisphosophate 3-kinase 
catalytic subunit α isoform

P42336 78

GNG7 Proteins subunits 7 O60262 76

GNG3 Proteins subunits 3 P63215 75

TNF Tumor necrosis factor P01375 74

OXT Oxytocin P01178 67

STAT3 Signal transducer and activator of transcription 3 P40763 67

DRD2 Dopamine D2 receptor gene P14416 67

Pten Phosphatase and tensin homolog P60484 62



4203Annals of Palliative Medicine, Vol 9, No 6 November 2020

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2020;9(6):4194-4210 | http://dx.doi.org/10.21037/apm-20-2158

Estrogen signaling pathway, Prostate cancer, Cholinergic 
synapse, Prolactin signaling pathway, Chemokine signaling 
pathway, Cleavage on pair of basic residues, Serotonergic 
synapse, Rap1 signaling pathway, Dopaminergic synapse, 
PI3K-Akt signaling pathway, Ras signaling pathway, 

GO biological process enrichment analysis

The top 48 biological processes were selected on FDR 
values after sorting the 466 items, which involved cell 
proliferation, signal transduction, and gene expression. 
The fundamental processes involved in cell proliferation 
are negative regulation of cell proliferation (GO number: 
0008285), positive regulation of cell proliferation (GO 
number: 0008284), positive regulation of smooth muscle 
cell proliferation (GO number: 0048661). The main 
processes involved in signal transduction are signal 
transduction (GO number: 0007165), Ras protein signal 
transduction (GO number: 0007265), cell-cell signaling 
(GO number: 0007267), protein kinase B signaling (GO 
number: 0043491), phosphatidylinositol 3-kinase signaling 
(GO number: 0014065), G-protein-coupled receptor 
signaling pathway (GO:0007186). The fundamental 
processes involved in gene expression are positive regulation 
of gene expression (GO number: 0010628), positive 
regulation of DNA replication (GO number: 0045740), 
positive regulation of transcription from RNA polymerase 
II promoter (GO number: 0045944). The analysis suggested 
that QD could show a therapeutic effect in TD via cell 

proliferation, signal transduction, and gene expression, and 
these three processes produce a synergistic effect. Figure 9 
shows the top 20 biological processes of GO enrichment.

Discussion

TS is a neuro-developmental condition with multiple 
motor tics and vocal tics, which begin in childhood and 
are usually accompanied by behavioral symptoms. We 
noticed that the QD could alleviate the symptoms in TS 
patients. We postulate that QD activity in TS arises from 
the compounds present in it and mediated through multiple 
targets, pathways, and modes. In this study, a network 
pharmacology approach was adopted to predict QD’s 
potential mechanisms in TS.

With the Herbs-Compounds network, f ive hub 
compounds, kaempferol, stigmasterol, beta-sitosterol, 
hederagenin, and arachidonic acid, were identified as 
potent compounds responsible for QD’s therapeutic effect. 
Kaempferol is a bioflavonoid found in many vegetables and 
fruits (36). Kaempferol has shown many pharmacological 
activities; neuroprotective, antioxidant, anti-inflammatory, 
anti-apoptotic, and anti-estrogenic (37). Hederagenin is 
a triterpeneis and is present in many herbal medicines, 
including BZR, and is reported to have anti-inflammatory, 
anti-tumor, and antidepressant (38) activities. 

The results from the Target-Pathway network analysis 
and GO analysis, the potential molecular mechanisms of 
QD in TS treatment, are associated with the dopamine 

Figure 7 The five main active ingredients and the 14 core target genes molecular mocking.
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Figure 8 Top 20 pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment.
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Figure 9 Top 25 gene ontology (GO) terms of GO enrichment.

system, inflammation, infection, and miRNA pathway.
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and striatal D2 receptor gene (DRD2) expression in the 
human brain (43). In our study, we have identified three 
key targets, all of which belong to G-protein subunits: 
GNG2, GNG3, and GNG7 (44); Dopamine is reported to 
control these motor functions, motivation, and some other 
neuro-regulation through G-protein-coupled receptor 
(GPCR) signaling (45). Besides, G-protein signaling 
modulator-3 (GPSM3) could interacts directly with Gα 
and Gβ subunits of heterotrimeric G proteins to regulate 
downstream intracellular signals initiated by GPCR that 
are activated via binding to their cognate ligands. Genome-
wide association studies have recently revealed that single 
nucleotide polymorphisms in GPSM3 are associated 
with chronic inflammatory diseases (46). A study showed 
that GHSR-D2R heteromerization could modulate 
dopamine signaling through a process on G protein  
conformation (47).  Studies showed that estrogen 
increases the production and release of oxytocin and 
other neurotransmitters,  including dopamine and 
acetylcholine, which shows the estrogen signaling pathway 
that may play a significant part in TS (48) are involved 
in the phosphoinositide 3-kinase (PI3K) kinase and the 
extracellular signal-regulated kinase (ERK) pathways. 
Kaempferol was proven to improve motor coordination, 
raising striatal dopamine and its metabolite levels compared 
to the MPTP mouse group.

Inflammation and infection

Basal ganglia inflammation and streptococcal infection 
are assumed to be involved in TS (49); immune responses 
to β-hemolytic streptococcal infections have triggered 
many psychiatric diseases, including tic disorders  
(49-51). Among the critical targets retrieved from the PPI 
network, TNF gene polymorphisms have been suggested 
as genetic risk factors for the development of TS (50). A 
recent study conducted using in vivo TS rat model showed 
that the inflammatory cytokines IL-6, TNF-α, and IL-
1β had an apparent increase in striatum and serum of TS 
rats (50). Interleukin-8 (CXCL8) is a chemokine family 
member regulating several tissue functions, including 
inflammatory conditions, cell activation, and recruitment 
under homeostatic conditions (52). Research studies 
found that functional suppression of CXCL8 inhibits 
neuroinflammation and neuroglial activation via regulating 
the PI3K/Akt/NF-κB-signaling pathway (53). Signal 
Transducers and Activators of Transcription (STAT3) play 
a pivotal role in cell growth and apoptosis by regulating 

the expression of a range of genes in response to cellular 
stimuli (54). A study conducted by found STAT3 plays 
a significant anti-inflammatory role in repairing the 
damaged tissues (55). The experimental results showed that 
suppressing the mTOR/STAT3 pathway, LPS-induced 
apoptosis, and inflammation in rat intestinal epithelial 
cells was significantly attenuated (56). Either inactivation 
or hyperactivation of STAT3 may lead to certain diseases 
or disorders, showing that the tight regulation of STAT3 
function is crucial to human well-being (57). It should be 
noted that hederagenin, one of QD’s hub compounds, could 
promote the cell apoptosis and inhibit cell proliferation, 
and these processes were proved to be associated with the 
inhibition of the STAT3 signaling pathway (58). Epidermal 
growth factor receptor (EGFR) signaling is regarded as 
a potential target for many pathological processes and 
has been proven to be a therapeutic target in infection-
induced inflammation (59). The precursor protein 
proopiomelanocortin (POMC) produces many biologically 
active peptides via a series of enzymatic steps in a tissue-
specific manner, yielding the melanocyte-stimulating 
hormones (MSHs) (60), and the results of former research 
suggest that anti-inflammatory influences of neural origin 
that are triggered by MSH could be used to treat systemic 
inflammation (61). 

MicroRNA (miRNA) pathway

MiRNAs regulate many mRNA expressions, which are 
small and non-coding RNA molecules. MiRNAs take part 
in the etiology of various complicated diseases, including 
several types of cancer, TS, and Fragile X syndrome,  
etc. (62). The dysregulation of miRNA networks takes part 
in the development and onset of human neurodegenerative 
diseases, including TS (63). POMC is a prohormone that 
encodes multiple smaller peptide hormones within its 
structure (64); it has been proved leptin can modulate the 
expression of miRNAs (miR-384-3p, miR-383, and miR-
488) that potentially target POMC mRNA (65), which 
shows POMC probably is a significant node in the miRNA’s 
process regulation pathway. Oxytocin (Oxt), produced in the 
supraoptic nuclei and hypothalamic paraventricular, plays a 
significant role in the central nervous system by influencing 
diverse behaviors. The study proved that one miRNA, miR-
24, to be a novel regulator of Oxt and can regulate both 
peptide and transcription levels of Oxt (66). Somatostatin 
(SST) was proven to inhibit the exocrine and endo secretion 
of this organ (67). Its analogs have shown to regulate 
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the distinct miRNA expression patterns, and both miR-
148a and miR-7 display growth-inhibitory attributes (68). 
Phosphoinositide kinases (PIKs) are a group of lipid kinases 
that are significant upstream activators of various critical 
signaling pathways (69). The PIK3CA has been proven 
to have significant relationships with a range of miRNA 
regulations (60-71). It has been demonstrated that miRNAs 
could act an essential role in the EGF triggered signaling 
cascade and some anti-miRNAs might have considerable 
effect on this pathway. Simulation results showed that the 
more targets a miRNA has in the EGFR signaling pathway, 
the more likely is the corresponding anti-miRNA to exert 
considerable effect on this pathway (72). 

Conclusions

In this study, using the Network Pharmacology, we 
predicted the genes and protein targets for the QD, which 
could be involved in QD’s activity in treating TS. The 
three fundamental processes involved in the observed TS 
in QD activity are the dopamine system, inflammation and 
infection, and the miRNA pathway. After analyzing the 
specific signaling pathways, we have concluded that PI3K-
Akt, estrogen, and TNF signaling pathways were three 
significant pathways involved in the therapeutic effect of 
QD in TS. The extensive analysis results showed that QD 
elicits its pharmacological effects in TS by modulating the 
multiple pathways and multiple targets. Although this study 
supplies insight into possible molecular pathways involved 
in QD’s TS activity, further clinical validation studies 
should confirm the exact molecular mechanism involved.
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