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Introduction

Fungal infections can be life-threatening, and have 
been shown to cause high morbidity and mortality in 
immunocompromised and intensive care patients (1,2). 
Candida albicans (C. albicans) is a common microorganism 
in the human intestine. Under physiological conditions, 

when the host has an intact intestinal mucosal barrier and 
a functioning innate immune system, C. albicans acts as a 
symbiotic member of the gastrointestinal flora. There exists 
a homeostasis between the host and the yeast (3). However, 
when homeostasis is disrupted, C. albicans can enter the 
bloodstream by invading the intestinal epithelium barrier 
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through microfold cells, resulting in invasive candidiasis 
and candidemia (4). In recent years, C. albicans infection has 
emerged as a life-threatening disease (5).

The infections caused by C. albicans are associated with 
biofilm formation, which is controlled by the quorum 
sensing molecule farnesol (6,7). It has been reported 
that farnesol is endogenously generated in C. albicans by 
enzymatic dephosphorylation of farnesyl diphosphate, 
and plays a critical role in the physiology of C. albicans 
by inhibiting hyphal and biofilm formation (8-10). 
Interestingly, our previous study demonstrated that 
supplementation of exogenous farnesol that is consistent 
with the structure and function of farnesol secreted by 
C. albicans can promote intestinal barrier integrity (11). 
We speculated that farnesol may protect the intestinal 
epithelium barrier from invasion by C. albicans by inhibiting 
hyphal and biofilm formation. However, the underlying 
mechanisms need to be explored.

Metabolomics has emerged as a promising tool in various 
fields of human health (12,13). Metabolites are the final 
products of cell metabolism and regulation, and can act as 
measures of biochemical status to reflect tissue physiology. 
Thus, a comparison of different metabolomic profiles can 
aid in understanding disease mechanisms (14). In this study, 
we aimed to explore the mechanisms of farnesol on Caco-
2 cells, a monolayer model of intestinal epithelial cells, via 
untargeted metabolomics.

We present the following article in accordance with the 
MDAR checklist (available at http://dx.doi.org/10.21037/
apm-20-2414).

Methods 

Candida strains and cell line

The C. albicans reference strain SC5314 was used, which was 
grown in yeast extract-peptone-dextrose (YPD) medium 
containing 2% glucose from glycerol stock cultures for 48 h 
at 30 ℃. Human colorectal cancer epithelial cells (Caco-2)  
were purchased from Stem Cell Bank, Chinese Academy of 
Sciences, and grown in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 15% fetal bovine serum (FBS) 
and 1 × non-essential amino acid at 37 ℃ with 5% CO2.

CCK-8 assay

Caco-2 cells were seeded in a 96-well plate with 2×104 
cells per well, and were cultured in DMEM containing 

15% FBS to a density of 85–95%. C. albicans at logarithmic 
growth stage were washed twice with PBS and suspended 
in serum-free DMEM containing 100, 200, or 300 μM 
farnesol (Sigma Aldrich, USA) and 0.3% methanol. Then, 
the Caco-2 culture medium was removed, and 100 μL of 
C. albicans suspension (8.3×106 cells/mL) was inoculated in 
each well (4 wells per group). After incubation at 37 ℃ with 
5% CO2 for 1, 2, and 3 h, respectively, the culture medium 
was removed and the nonadherent cells were rinsed with 
sterile PBS 3 times. Then, 100 μL DMEM was added 
followed by the addition of 10 μL CCK-8 to each well for  
1 h incubation. The absorbance was detected at 450 nm.

C. albicans biofilm cultivation

Logarithmically grown C. albicans were washed, counted, 
and suspended in RPMI1640 medium with a cell density of 
106 cells/mL. A 96-well plate was inoculated with 100 μL 
suspension in each well, with 6 wells for repetition. The 
plate was incubated at 37 ℃ (5% CO2) for 2 h. The culture 
medium was then removed, and wells were rinsed with 
sterile PBS 3 times. The experimental group was treated 
with 100 μL RPMI1640 containing 200 μmol/L farnesol, 
and the control group was treated with 100 μL RPMI1640. 
The morphology of C. albicans was observed and the culture 
medium was changed every day.

Metabolite extraction

There were 4 treatment groups: Caco-2 + C. albicans 
(group 1), Caco-2 (group 2), Caco-2 + C. albicans + 
farnesol (group 3), and a quality control (QC group) for 
metabolite extraction. The sample size was 6 for the 3 
experimental groups, and 3 for the QC group. In detail, 
40 mg of samples from each group was dissolved in 1 mL 
of methanol:acetonitrile:H2O (2:2:1, v/v/v), followed by 
sonication for 30 min at 4 ℃. Protein was precipitated at 
–20 ℃ for 1 h then centrifuged at 13,000 rpm at 4 ℃ for  
15 min. The supernatants were lyophilized and stored at −80 ℃. 
Dried samples were re-dissolved in 100 μL acetonitrile:H2O 
(1:1, v/v) and centrifuged at 14,000 rpm for 15 min. 

Liquid chromatography-tandem mass spectrometry  
(LC-MS/MS) analysis

The samples were placed in a 4 ℃ autosampler and 
separated using a HILIC chromatographic column with the 
Agilent 1290 Infinity LC UHPLC system at 0.3 mL/min 

http://dx.doi.org/10.21037/apm-20-2414
http://dx.doi.org/10.21037/apm-20-2414


486 Wu et al. Farnesol protects the intestinal epithelium barrier

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(1):484-494 | http://dx.doi.org/10.21037/apm-20-2414

with a column temperature of 25 ℃. The eluent consisted of 
A: 25 mM ammonium acetate and 25 mM ammonia, and B: 
acetonitrile. Chromatographic gradient elution procedures 
were 95% B (0–0.5 min); from 95% B to 65% B (0.5–7 min);  
from 65% B to 40% B (7–8 min); 40% B (8–9 min);  
40% B to 95% B (9–9.1 min); 95% B (9.1–12 min). 

Electrospray ionization (ESI) was used to detect positive 
and negative ions. The samples were analyzed using a Triple 
TOF 5,600 mass spectrometer (AB SCIEX) after being 
separated by ultra performance liquid chromatography 
(UPLC). ESI conditions were set as follows: Ion Source 
Gas1 60, Ion Source Gas2 60, Curtain gas 30, source 
temperature 600 ℃, IonSapary Voltage Floating ±5,500 V 
(positive and negative ion mode), TOF MS scan m/z range 
60–1,200 Da, product ion scan m/z range 25–1,200 Da, 
TOF MS scan accumulation time 0.15 s/spectra, product 
ion scan accumulation time 0.03 s/spectra, secondary 
mass spectrometry was acquired by information-dependent 
acquisition (IDA) with a high-sensitivity model, declustering 
potential ± 60 V, collision energy 30 eV, IDA excluded isotopes 
within 4 Da, and candidate ions monitored per cycle was 6.

Data processing 

The original data were converted into .mzXML format 
by ProteoWizard, then the peak alignment, retention 
time correction, and peak area extraction were performed 
using XCMS. Accurate mass number matching (<25 ppm) 
and secondary spectrum matching methods were used for 
metabolite structure identification. The metabolites in 
the positive and negative modes were mapped to Kyoto 
Encyclopedia of Genes and Genomes (KEGG) IDs using 
MetaboAnalyst (15).

Data analysis

In the positive or negative ion mode, metabolites that could 
be matched to KEGG IDs were extracted and normalized 
using the Pareto-scaling method in METAGENassist (16). 
Principal component analysis (PCA) was carried out to 
observe the overall sample distribution and the stability of 
the experimental batch using the prcomp function in R. 
Partial least squares discriminant analysis (PLS-DA) was 
applied to identify the overall differences in the metabolic 
profiles among groups, and the differential metabolites 
associated with disease/grouping were determined using the 
mixOmics package in R. 

Differential metabolite screening

The differential metabolites of group 1 vs. group 1 and 
group 3 vs. group 1 in the positive and negative ion mode 
were identified. During the identification of differential 
metabolites, the variable importance parameter (VIP) 
value of multivariate statistical analysis was calculated 
using the ropls package of R. The metabolites with P value 
<0.05, |log2 fold change (FC)| >0.585 and VIP >1 were 
considered as differential metabolites.

KEGG enrichment analysis

To elucidate the biological significance of differences 
in metabolites, compounds, and gene expression, the 
Integrated Molecular Pathway-Level Analysis (IMPaLA) 
tool was used to select significant pathways enriched by 
differential metabolites, with the KEGG database as the 
background. Significance thresholds were set as count ≥2 
and P<0.05.

Results 

Effects of different concentrations of farnesol on the  
co-culture of C. albicans and Caco-2 cells

With the increase in the concentration of farnesol, the 
cytotoxicity of farnesol also increased. Some of the Caco-
2 cells were exfoliated after 200 μM farnesol treatment, 
and most Caco-2 cells were exfoliated when treated 
with 300 μM farnesol. There was no significant effect of  
100 μM farnesol on Caco-2 cells (Figure 1A). Additionally, 
after 2 or 3 h of incubation, farnesol significantly reduced 
the adhesion of C. albicans (Figure 1B). 

Effect of farnesol on the formation of C. albicans biofilm

After being cultured in RPMI for 2 h at 37 ℃ with 5% 
CO2, the cells began to grow short hyphae. The cells 
in experimental group were then cultured with RPMI 
containing 200 μM farnesol. After 48 h of further culture, 
only monolayer biofilm was formed in the experimental 
group, and mycelia could be clearly observed. In the control 
group, multilayer thick biofilm was found, and single 
hypha were difficult to observe (Figure 2). Thus, treatment 
with 200 μmol/L farnesol for 48 h significantly inhibited 
the formation of C. albicans biofilm, with developed 
pseudohypha. 
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Figure 1 Effects of different concentrations of farnesol on the co-culture of C. albicans and Caco-2 cells. (A) The effect of different 
concentrations of farnesol (100, 200, 300 μM, 0.3% methanol) on the adhesiveness of C. albicans (×400); (B) Absorbance after treatment 
with different concentrations of farnesol (100, 200, 300 μM, 0.3% methanol) for 1, 2, and 3 h. *P<0.05 and **P<0.01 compared to 100 μM 
farnesol treatment; #P<0.05 and ##P<0.01 compared to 200 μM farnesol treatment; &&P<0.01 compared to 300 μM farnesol treatment.

Figure 2 The pseudohypha in the experimental (with farnesol) and control (without farnesol) groups after farnesol treatment for 48 hours 
(×400).

100 μM farnesol                                      200 μM farnesol                                    300 μM farnesol                                       0.3% methanol
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Data analysis PCA and PLS-DA analysis of the metabolic 
profiles

There were 190 metabolites with annotation information 
in the positive ion peak, and 109 were mapped to KEGG 
IDs. In the negative ion peak, there were 180 metabolites 
with annotation information, 123 of which were mapped to 
KEGG IDs. PCA and PLS-DA analysis results showed that 
QC samples had only a small deviation in the positive and 
negative ion mode, indicating the stability and reliability of 
the experimental process. The other 3 groups of data showed 
an obvious trend of separation, indicating that the metabolic 

profiles of the 3 groups were different, and the data were 
worthy of further analysis (Figure 3A,B). Additionally, we 
also performed PLS-DA analysis for group 1 vs. group 2 and 
group 3 vs. group 1, respectively, and obtained the VIP value 
as one of the indicators for selecting differential metabolites. 
As shown in Figure 4, in the positive and negative mode, 
different groups presented a clear separation trend, and both 
R2Y (the interpretation rate of the model to the grouping) 
and Q2Y (predictive ability of the model) were close to 1, 
indicating that the interpretation rate and predictive ability 
of the model for grouping were better, and the differential 
analysis results were credible.

Figure 3 Principal component analysis (PCA) (A) and partial least squares discriminant analysis (PLS-DA) (B) for the normalized 
metabolome data in the positive (left) and negative (right) modes. For the PCA results, the X-axis (PC1) represents the maximum covariance 
of the original data matrix, and the Y-axis (PC2) represents the most significant features of the target multidimensional data matrix that can 
be described except for PC1.
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Differential metabolite identification

The union of the differential metabolites in the positive and 
negative modes was taken as the differential metabolites. 
Finally, based on P value <0.05, |log2FC| >0.585 and VIP 
>1, a total of 22 differential metabolites were identified 
in group 1 vs. group 2, including 1-oleoyl-sn-glycero-3-
phosphocholine (downregulated), 1-palmitoyl-sn-glycero-
3-phosphocholine (downregulated), acetylcarnitine 
(downregu la ted ) ,  a lpha-D-g lucose  1-phosphate 
(upregulated), betaine (downregulated), capric acid 
(downregulated), choline (downregulated), dihomo-
gamma-linolenic acid (downregulated), glutathione 
disulfide (downregulated), glycerophosphocholine 
(downregulated), hypoxanthine (upregulated), L-leucine 
(downregulated), L-phenylalanine (downregulated), linoleic 

acid (downregulated), myristic acid (upregulated), oleic acid 
(upregulated), pantothenate (downregulated), pentadecanoic 
acid (upregulated), spermidine (downregulated), trehalose 
(upregulated), tyramine (downregulated), and UDP-
N-acetylglucosamine (upregulated). In addition, there 
were 18 differential metabolites identified in group 3 vs. 
group 1, including 1-oleoyl-sn-glycero-3-phosphocholine 
(upregulated), 1-palmitoyl-sn-glycero-3-phosphocholine 
(upregulated), acetylcarnitine (upregulated), alpha-
D-glucose 1-phosphate (downregulated) ,  betaine 
(upregulated),  BHT (downregulated),  capric acid 
(upregulated), choline (upregulated), dihomo-gamma-
linolenic acid (upregulated), dodecanoic acid (upregulated), 
hexadecanedioic acid (downregulated), hypoxanthine 
(downregula ted) ,  L-g lutamate  (downregula ted) , 
linoleic acid (upregulated), pantothenate (upregulated), 

Figure 4 Partial least squares discriminant analysis (PLS-DA) results in the positive and negative modes for group 1 vs. group 2 and group 3 
vs. group 1.
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Figure 5 The differential metabolite identified in group 1 vs. group 2 and group 3 vs. group 1. (A) The Venn diagram for the differential 
metabolites in the 2 comparison groups; (B) bidirectional clustering heatmap of the differential metabolites of group 1 vs. group 2 in the 
positive and negative modes; (C) bidirectional clustering heatmap of the differential metabolites of group 3 vs. group 1 in the positive and 
negative modes.
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Figure 6 Pathway enrichment analysis of differential metabolites. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment results of the differential metabolites in group 1 vs. group 2; (B) KEGG pathway enrichment results of the differential 
metabolites in group 3 vs. group 1.

pheny lbutazone  (downregu la ted ) ,  S -methy l -5 ' -
thioadenosine (upregulated), and tyramine (upregulated). 
Venn analysis showed that there were 12 common 
differential metabolites between the 2 comparison groups, 
including linoleic acid, capric acid, choline, dihomo-
gamma-linolenic acid, alpha-D-glucose 1-phosphate, 
1-palmitoyl-sn-glycero-3-phosphocholine, acetylcarnitine, 
tyramine, hypoxanthine, betaine, 1-oleoyl-sn-glycero-
3-phosphocholine,  and pantothenate (Figure 5A) .  
Moreover, the obtained differential metabolites were 
subjected to bidirectional hierarchical clustering based on 
the metabolic data extracted from the normalized data. As 
shown in Figure 5B,C, the differential metabolites were 
divided into 2 distinct groups by clustering. 

Pathway enrichment analysis

Using the IMPaLA tool, 15 pathways were identified 
based on the differential metabolites in group 1 vs. group 
2, including ABC transporters, choline metabolism 
in cancer, protein digestion and absorption, fatty acid 
biosynthesis, glycerophospholipid metabolism, biosynthesis 
of unsaturated fatty acids, insulin resistance, linoleic 
acid metabolism, mineral absorption, starch and sucrose 
metabolism, beta-alanine metabolism, central carbon 
metabolism in cancer, glutathione metabolism, aminoacyl-
tRNA biosynthesis, and glycine serine and threonine 
metabolism (Figure 6A). Furthermore, 8 pathways were 
enriched by the differential metabolites in group 3 vs. 
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group 1, including ABC transporters, choline metabolism 
in cancer, linoleic acid metabolism, protein digestion and 
absorption, fatty acid biosynthesis, glycine serine and 
threonine metabolism, glycerophospholipid metabolism, 
and biosynthesis of unsaturated fatty acids (Figure 6B).

Discussion 

C. albicans is a polymorphic fungal pathogen which 
colonizes the human gastrointestinal mucosal tissues, and 
has effects on the intestinal mucosal barrier (17). C. albicans 
can serve as a pathogen in various infections and cause 
mucosal diseases (18). Farnesol, a quorum sensing molecule, 
can prevent the hyphal formation of C. albicans, and it is 
therefore considered to play a key role in the pathogenic 
processes of C. albicans (19,20). In this study, we also found 
that farnesol inhibited the hyphal formation and biofilm 
formation of C. albicans. Through metabolomics analysis, 
we found that C. albicans altered the metabolism of the 
intestinal epithelial cell model, while farnesol reversed these 
metabolic changes. 

In the present study, by comparing the differential 
metabolites between group 1 (Caco-2 + C. albicans) and 
group 2 (Caco-2), 22 significant differential metabolites 
were identified, such as acetylcarnitine (downregulated 
in group 1). It has been reported that acetylcarnitine, a 
zwitterionic surfactant, has a unique structure which can 
perturb the rat jejunum and decrease membrane resistance 
in the rat colon and in Caco-2 cell monolayers (21,22). 
Additionally, acetylcarnitine is able to open intestinal 
tight junctions by affecting certain claudin subtypes (23). 
Interestingly, acetylcarnitine was upregulated after farnesol 
treatment, which suggests that farnesol may protect the 
intestinal epithelium barrier from the invasion of C. albicans 
by regulating acetylcarnitine.

Intestinal functions are usually affected by intestinal 
morphology such as villus area, villus height, and crypt 
depth (24). Maternal dietary linoleic acid supplementation 
has been shown to increase villus area and villus height 
compared with controls (25). A previous study indicated 
that linoleic acid deficiency in rats resulted in significantly 
lower villus height in the ileum compared to controls (26). 
The above findings suggest the important role of linoleic 
acid in intestinal health. In this study, linoleic acid was 
downregulated in the Caco-2 + C. albicans group compared 
with the Caco-2 group, which showed involvement of 
the linoleic acid metabolism pathway. This indicates that  

C. albicans may impair intestinal health via decreasing 
linoleic acid metabolism. Nevertheless, in the Caco-2 + 
C. albicans + farnesol group, linoleic acid was upregulated 
compared with the Caco-2 + C. albicans group, which 
suggested that farnesol could improve the intestinal 
epithelium barrier by increasing linoleic acid metabolism.

Glutathione, a free radical-scavenging compound, is 
a major antioxidant in intestinal epithelial cells and plays 
an important role in intestinal barrier function (27-29). 
Relatively high concentrations of glutathione have been 
detected in the intestinal epithelium (30). A previous study 
reported that Salmonella infection increases the sensitivity of 
epithelial cells to oxidative damage by reducing glutathione 
levels in mouse ileal cells (31). In this study, spermidine and 
glutathione disulfide, 2 downregulated metabolites in the 
Caco-2 + C. albicans group compared with the Caco-2 group, 
were enriched in glutathione metabolism. We speculated 
that C. albicans may also cause oxidative damage in intestinal 
epithelial cells by decreasing glutathione metabolism.

L-glutamate  i s  a  major  ox idat ive  fue l  for  the 
gastrointestinal tract and is also the preferred energy source 
for the gut (32,33). Studies in mammals have indicated that 
approximately 96% of enteral L-glutamate is metabolized in 
the small intestine during the first pass (34,35). L-glutamate 
is essential for maintaining antioxidative responses and 
intestinal mucosa integrity (36). Jiao et al. (37) reported that 
L-glutamate could maintain intestinal barrier function in 
diquat-challenged enterocytes by increasing the expression 
level of tight junction proteins. In this study, L-glutamate 
was downregulated in the Caco-2 + C. albicans + farnesol 
group compared with the Caco-2 + C. albicans group. We 
speculated that farnesol may promote the metabolism of 
L-glutamate to maintain intestinal barrier function in the  
C. albicans-affected intestinal barrier.

In conclusion, our study suggests that C. albicans may 
damage the intestinal barrier by affecting the metabolism of 
acetylcarnitine, linoleic acid, and glutathione. Farnesol may 
protect the intestinal epithelium barrier from invasion of 
C. albicans by regulating the metabolism of acetylcarnitine, 
linoleic acid, and L-glutamate.
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