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Introduction

P a r k i n s o n ’s  d i s e a s e  ( P D )  i s  t h e  s e c o n d  m a j o r 
neurodegenerative diseases secondarily to Alzheimer’s 
disease. Its main clinical manifestation is resting tremor, 

bradykinesia, myotonic rigidity, motion retardation, 

postural gait, and other behavior disorders. In the midbrain 

substantia nigra of Parkinson’s patients, the level of 

autophagy was increased and the expression of autophagy-
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Methods: PD model was established by intraperitoneal injection of MPTP for 5 days. The effect 
of intraperitoneal injection of rapamycin for treating the symptoms caused by PD was evaluated by 
behavior observation and HE pathological section. In order to understand the possible mechanism, 
immunofluorescence and immune precipitation mainly analyzes were used to measure the expression of 
critical protein p-4ebp1 in mammalian target of rapamycin (mTOR) signaling pathways in the striatum and 
substantia nigra. 
Results: Rapamycin can effectively alleviate symptoms of PD. The levels of key protein p-4EBP1 in the 
striatum and substantia nigra were both significantly higher in PD group compared with control group 
(P<0.01), while being pretreated with rapamycin, the expression of p-4EBP1 in the striatum and substantia 
nigra were both decreased obviously (P<0.01).
Conclusions: p-4EBP1 protein may be involved in the pathogenesis of PD via mTOR signaling pathway. 
Inhibited mTOR-4EBP1 pathways could make a certain protective effect for the acute attack of PD induced 
by MPTP.
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related protein was also increased, leading to autophagic 
apoptosis of neurons, dopaminergic neuron damage and 
degeneration. The etiology study of PD found that oxidative 
stress, mitochondrial failure, calcium overload, toxic effect 
of excitatory amino acids, apoptosis, immune abnormalities, 
and other mechanisms induced by the dysfunction of 
dopaminergic neurons are important pathological processes 
in the pathogenesis of PD, and which mainly involved in 
environment, genetic deficiency, aging and other potential 
mechanisms (1). However, the treatment of Parkinson’s 
disease is under slow development. At present, researches of 
potential drugs are still not enough and there are still a lot 
of potential monomers needed for development, including 
natural monomers.

Rapamycin (Rapa) is a fermentation product, which 
derived from Streptomyces hygroscopius. It is approved 
by FDA as an immunosuppressant drug for prophylaxis of 
allograft rejection and is a well-known specific mammalian 
target of rapamycin (mTOR) inhibitor (2). Rapa targets 
several cellular functions such as proliferation, cell growth, 
autophagic cell death and exerts antioxidant defense through 
the inhibition of mTOR signaling pathway (3,4). Recent 
studies have found that the signaling pathway of mTOR is 
involved in the pathological process of PD (5), but it is still 
not clear how mTOR signaling pathway is involved in the 
pathogenesis of PD. 

It was reported that rotenone injections, which used 
to generate murine models of PD, oppositely impacted 
TORC1 activity in different regions of mouse brains, 
increasing activity in the midbrain and decreasing activity 
in the striatum (6). What if a PD patient suffering from 
substantia nigra atrophy were treated with an mTORC1 
inhibitor based on a rationale from data collected from 
hippocampal pathology? What if a frontotemporal dementia 
patient suffering from primarily temporal lobe pathologies 
was treated with an mTORC1-targeting drug based on 
frontal lobe data? As there is limited evidence to support 
that mTORC1 responds consistently to a wide range of 
interventions across brain regions, and some evidence to the 
contrary, it’s responsible to not overgeneralize and assume 
globalized impact on the brain. More research needs to 
be conducted on the regional specific impacts of different 
mTORC1-directed interventions.

In this study, we mainly focused on the sporadic PD, 
which accounts for about 90% incidence of PD (7). The 
study use Rapa to pretreatment and block the signaling 
pathway of mTOR, to determine the role of the key protein 

p-4EBP1 of mTOR signaling pathway in the sporadic 
PD through the changes in the behavioral and molecular 
pathological levels.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/apm-20-1096).

Methods

Materials and reagents

1-methyl-4-phenyl-1,2,3,6 four hydropyridine (MPTP) was 
obtained from Shanghai Xibao Biotechnology Co., Ltd.; 
Rapamycin, Anti-p-4EBP (Thr37/46) and anti-GAPDH 
were bought from Kang Cheng company; Goat Anti-Rabbit 
IgG (γ-chain specific) and FITC-sheep anti mice were 
bought from Boshide Biotechnology Co., Ltd.; Rhodamine 
labeled Goat anti rabbit IgG was obtained from Zhongshan 
Jinqiao company; WB luminescent reagent provided from 
MILLIPORE company. Main instruments: Bio-Rad Doc 
2000 gel imaging system, BECKMAN DU640 nucleic acid 
protein analyzer, frozen and paraffin slice machine (Swiss 
Laica company), HE dying Kit (Shanghai gfan Biology 
Technology Co., Ltd.).

Animals

Forty-eight SPF class male C57BL/6J mice weighing  
22–25 g (age of 8 weeks) were selected. All animal 
experiments were performed after receiving the Chongqing 
Medical University of Medical Sciences Ethical Committee 
approval and in compliance with the principles of laboratory 
animal care (National Institutes of Health publication no. 
85-23; revised, 1985) (No. 20170603). The mice were 
housed under standard conditions on 12 h light/12 h dark 
cycle in a temperature-controlled room (21–22 ℃) with 
frees access to food and water.

Experimental design

MPTP induced Parkinson’s Disease model was established 
as previous study (8). The animals were randomly divided 
into 4 groups, 12 in each group. Group A is Rap + MPTP: 
mice were injected with rapamycin (7.5 mg/kg) for 7 days, 
twice a day, MPTP (30 mg/kg) was injected at 30 min after 
the administration of rapamycin at the day of 3 to 7. Group 
B is Vehicle + MPTP: mice were injected vehicle with 
the same volume of rapamycin for 7 days, twice a day and 
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injected MPTP (30 mg/kg) at 30 min like group A; Group 
C is Rap + Saline: mice injected with rapamycin for 7 days, 
twice a day, saline instead of MPTP was injected at 30 min 
after the administration of rapamycin at the day of 3 to 7. 
Group D is Vehicle + Saline: mice were injected vehicle 
with the same volume of rapamycin for 7 days, twice a day 
and injected saline at 30 min like group C.

Preparation samples of brain tissue

Harvest the brain tissue after the last injection 1h. 
Randomly selected 5 brain tissues of the mice in each 
group to make frozen section for HE staining and 
immunofluorescence detection. The whole brain tissues 
were fixed with 4% paraformaldehyde and then dehydrated 
with 2% sucrose, and cut the thickness of 5 μm frozen 
section from the middle brain for the immunofluorescence 
and HE pathological examination.

The rest of the animals in each group were injected 
with 0.1% lidocaine (1 mg/kg) for anaesthesia, and harvest 
the whole brain tissue immediately on the ice (discard the 
cerebellum and olfactory bulb), then freezing in liquid 
nitrogen, and continue weighed and shredded, added to the 
lysate buffer solution, crushed, and centrifuged, collected 
the supernatant, and measured the protein concentration, 
and finally stored in the −80 ℃ refrigerator for use.

HE staining

The frozen section was stained with hematoxylin staining 
solution for 5 min, then washed 10 min in the water to 
remove the excess dye solution, and use distilled water 
washed 10 s again, then soaked with 95% ethanol for 5 
s. Then use Eosin staining dye stained 60 s, washed with 
70% ethanol for 2 times, dehydrated and transparent, then 
sealing the sections for image obtain.

Immunofluorescence detection

Incubate with anti-phospho-4EBP1 (Thr 37/46) antibody 
(1:100) overnight (>8 h) after repaired the antigen and 
serum blocked of the tissue section. Then washed the first 
antibody and incubated with the fluorescent labeled second 
antibody TRITC-IgG (H + L) (1:100) for 1h at room 
temperature. Finally use 50% glycerol to seal the sections. 
And observed in the high field of fluorescence microscope, 
and take the same slice of brain tissue for magnified. 
The same area was chosen to compare the intensity of 

fluorescence signal in the same location.

Western blot detection

The protein samples were loaded in 10% electrophoresis 
gel, 120 V for 2 h, then use PVDF membrane to transfer 
the protein to the membrane, use 5% non-fat milk to block 
1h in the room temperature. Then incubate with the first 
antibody anti-phospho-4EBP1 (Thr37/46) antibody at  
4 ℃ for overnight with 1:1,000 dilution ratio. Next, washed 
with 1×TBST solution, 3 times, 15 min each time. And 
incubated with the second sheep anti rabbit antibody 
at room temperature for 2 h, the washed with 1×TBST 
solution, 3 times, 15 min each time. Finally, the PVDF was 
soaked in the chemiluminescence reagent (MILLIPORE 
company Immobilon Western 100 mL) for 1–3 min, and 
then exposure in the instrument of chemical reaction 
machine, and then scanning the gel image and image 
analysis (Bio-Rad, Gel Doc 2000).

Statistical analysis

The data were processed with the two factors variance 
analysis by SPSS17.0 software, and the measurement data 
were expressed with mean ± standard deviation. P<0.05 was 
statistically significant.

Results

Behavioral observation of the effect of Rapa on MPTP 
induced PD

After 4 days of MPTP injection, the mice both in group 
Vehicle + MPTP and group Rapa + MPTP showed a typical 
Parkinson’s disease, such as tremor paralysis and erect hair, 
foreleg elevation, vertical tail, movement decrease, slow 
motion and so on, compared to the group Rapa + saline and 
group Vehicle + saline (P<0.05, Table 1). While compared 
with the group of Vehicle + MPTP, the score of the climbing 
pole and suspension were significantly increased in the 
group of Rapa + MPTP (P<0.05). Furthermore, the score of 
paralytic shaking in group of Rapa + MPTP was obviously 
lower than that of Vehicle + MPTP group (P<0.05), which 
indicated that Rapa has a effect for MPTP induced PD.

HE staining analysis

In order to observe the pathological changes of brain 
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tissue by MPTP induced PD, we detected the pathological 
changes of striatum and substantia nigra to evaluate the 
effect of rapamycin for MTTP induced PD through HE 
staining. From Figure 1, we can see that there was an 
obvious bleeding and tissue edema in the striatum region 
of the Group B (Vehicle + MPTP), which lead to the 
significant decreased cell density in this area. While as 
shown in Figure 2, there was also showed an obvious tissue 
edema in Group B and the decreased cell density (black 
arrowhead marked edema). Conversely, Group A (Rapa + 
MPTP) significantly relieved tissue edema, and increased 
the cell density in the area of striatum and substantia nigra, 
respectively, compared to Group B (Vehicle + MPTP).

Immunofluorescence assay for the expression of p-4EBP1 
in MPTP induced PD

Figure 3 shows the protein expression of p-4EBP1 
in substantia nigra and Figure 4 shows the protein 
expression of p-4EBP1 in striatum. From the results of 
immunofluorescence staining, we found that the protein 
expression levels of p-4EBP1 significantly increased in 
substantia nigra (Figure 3) and striatum (Figure 4) in 
the model group B (Vehicle + MPTP), compared with 
the control group D (Vehicle + Saline). While Rapa 
pretreatment group A (Rapa + MPTP) was significantly 
reduced the abnormal protein expression of p-4EBP1 in 

Table 1 The behavioral observation of Rapa on MPTP induced PD (mean ± SD, n=12)

Scores Rapa + MPTP (group A) Vehicle + MPTP (group B) Rapa + Saline (group C) Vehicle + Saline (group D)

Climbing pole 6.12±0.94b,c 5.12±1.02a,d 8.70±0.78 8.70±0.78

Suspension 2.05±0.43b,c 1.45±0.56a,d 2.89±0.50 2.87±0.43

Tremor paralysis 2.01±0.23c 2.34±0.88d 0.00±0.00 0.00±0.00
a, P<0.05 vs. group A; b, P<0.05 vs. group B; c, P<0.05 vs. group C; d, P<0.05 vs. group D.
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Figure 1 Effect of rapamycin for the structure of striatum on MPTP induced PD. The histopathological images (HE stain) were captured 
under the magnification of ×40 and ×400, respectively. 
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both substantia nigra (Figure 3) and striatum (Figure 4). In 

addition, pretreatment with Rapa did not affect the basal 

protein expression levels of p-4EBP1 in normal mice, 

compared with Group D (Vehicle + Saline).

Western blotting detection the protein expression of 
p-4EBP1 in substantia nigra and striatum

Furthermore, we detected the protein expression of 
p-4EBP1 in substantia nigra and striatum in the brain 

Figure 2 Effect of rapamycin for the structure of substantia nigra on MPTP induced PD. The histopathological images (HE stain) were 
captured under the magnification of ×200.

Vehicle + saline Vehicle + MPTPRap + saline Rap + MPTP

p-4EBP1

Vehicle + MPTP Rap + MPTP Rap + saline Vehicle + saline

Figure 3 The expression level of p-4EBP1 in striatal neurons for rapamycin pretreated PD model. The fluoresce images were obtained 
under the magnification of ×100.

Figure 4 The expression level of p-4EBP1 in substantia nigra neurons for rapamycin pretreated PD model. The fluoresce images were 
obtained under the magnification of ×200.

p-4EBP1

Vehicle + MPTP Rap + MPTP Rap + saline Vehicle + saline
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tissue of the mice by Western blotting technology  
(Figure 5). The results showed that the protein levels of 
p-4EBP1 significantly increased in the PD model group 
(Vehicle + MPTP) and the Rapa pretreatment model 
group (Rapa + MPTP), compared with the Rapa pretreated 
control group (Rapa + Saline) and the blank control group 
(Vehicle + Saline) (P<0.01). While, compare with the model 
group (Vehicle + MPTP), Rapa pretreatment model group 
(Vehicle + MPTP) was significantly inhibited the increase 
of the p-4EBP1 protein levels (P<0.05). And there was 
no significant difference in the protein levels of p-4EBP1 
between the pretreated control group and the blank control 
group, as shown in Figure 5.

Discussion

mTOR plays an important role in cell growth and cell 
apoptosis. It is the central link for the control of the cell 
growth and cell proliferation, participates in biological 
processes such as gene transcription, protein translation, 
ribosome synthesis and so on. Inhibition of mTOR 
activity in low biological yeast and mammalian mice can 
prolong their life span (9-11). Oxidative stress is one of 
the important factors for inducing sporadic PD. From the 
cellular levels, the essence of the cell response to stress  
in vivo and in vitro is survival for their self (12-16). And the 
abnormal translation of proteins in cells is an important 
factor for leading to oxidative stress. Under the normal 

circumstances, the translation of proteins in cells is 
precisely regulated by various signaling pathways, especially 
in the initiation stage of the protein translation, which 
regulated by the factor of 4E (eIF4E). EIF4E, eIF4A and 
eIF4G were together constitute the eIF4F complex and are 
specifically associated with the 5’-terminal cap structure of 
the eukaryotic cell mRNA, participate in the translation of 
mRNA, and play the regulatory role of in the starting phase 
of the cap dependent translation (17,18). EIF4E binding 
protein (4EBPs) can regulate the activity of eIF4E, and the 
activity of 4EBPs is strictly regulated by phosphorylation. 
The activation of mTOR leads to phosphorylation of 
4EPB1, and phosphorylated 4EPB1 cannot be combined 
with eIF4E, causing eIF4E not to be inhibited by the 
transcriptional suppressor 4EBP1, but to bind to the 5’ 
end of mRNA and initiate protein translation. The center 
of phosphorylation regulation of 4EBP1 is a conserved 
mTOR signaling pathway, including activation of PI3K/
AKT1 pathway and activation of mTOR in vivo. Therefore, 
mTOR phosphorylates 4EBP1, which further to promote 
the protein’s translation. In summary, mTOR signals play a 
role in coordinating cell growth and altering physiological 
metabolism (19-22).

Rapamycin, as an inhibitor of mTOR, has the function 
of regulating mTOR signaling pathway. The study of the 
hereditary PD model showed that 4EBP1 and mTOR 
signaling pathway were involved in the pathogenesis and 
showed a certain protective effect (23-25). Parkin and 
PINK1 are the pathogenic genes of hereditary familial PD. 
In vivo and in vitro studies suggest that the treatment of 
rapamycin in parkin and PINK1 mutated mice can reduce 
the inhibitory effect of 4EBP1 on protein translation 
and thus produce a protective effect (26). The treatment 
of rapamycin in parkin and PINK1 mutant mice can 
significantly reduce the phosphorylation of 4EBP1 and 
improve the pathological phenotype of PD, including 
muscle degeneration, mitochondrial damage, and exercise 
ability. While the continued administration of rapamycin 
after adulthood can completely improve the dopamine 
neuropathy. From gene and genetic aspects, LRRK2 
homologue mutation of the Drosophila will produce a 
similar PD phenotype as that of parkin/PINK1 mutation. 
LRRK2 can regulate the activity of 4EBP1 (9,26), and 
LRRK2 pathogenicity mutation can leads to a decrease in 
4EBP1 phosphorylation in vivo, thereby reducing oxidative 
stress and degeneration in dopaminergic neurons (26,27). 
Take a together, 4EBP1 and rapamycin were all showed a 

Figure 5 The expression levels of p-4EBP1 in the tissue of 
Substantia nigra and Striatum in different groups by western blot 
analysis. GAPDH was used as the internal control (n=12, *P<0.05; 
**P<0.01; n.s., no significance).
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protective effect in the above of the three PD models.
Activated Akt1 is an upstream regulator of 4EBP1, 

and Akt1 is activated by phosphorylation of upstream 
signal kinase. Some studies have shown that in parkin and 
PINK1 mutant Drosophila, the relative numbers of active 
Akt1 were decreased significantly, and further leading 
to the downregulation of the Akt1/mTOR signaling 
pathway, which resulted in the down regulation of 4EBP1 
activity and the inhibition of the total protein translation  
(28-33). mTOR regulates the inhibitory effect of 4EBP1 
on translation initiation by phosphorylation, which can be 
inhibited by rapamycin. For the parkin and PINK1 mutant 
Drosophila, the Drosophila melanogaster depression, crawl 
retardation, muscle degeneration and mitochondrial damage 
can be improved and the degeneration of dopamine neurons 
can be completely inhibited by treated with rapamycin (34).

In this study, we found that rapamycin pretreatment 
can significantly improve the behavioral characteristics 
and reduce the p-4EBP1 levels in Parkinson mice. This 
decrease in p-4EBP1 may help activate the overall protein 
translation levels of the Parkinson model mice and improve 
the pathogenesis of sporadic PD. At present, p-4EBP1 and 
mTOR signaling pathways are involved in the research 
of PD, which mainly focusing on the heredity related 
familial PD. In our study, it is found that the mTOR and 
its downstream 4EBP1 signal not only participate in the 
pathogenesis of sporadic PD, but also plays a protective 
role, based on the relationship of the characteristics related 
to the environmental impact of most cases of Parkinson’s 
disease. The mTOR inhibitor rapamycin can improve 
the Parkinson’s phenotype of the PD mouse model in 
behavioral science, suggesting that mTOR may play a 
positive role in the prevention and control of sexual PD. 
And which may be a new target for the study of PD. More 
importantly, the previous study about inhibition of mTOR 
could relieve L-DOPA induced dyskinesia and the results 
of our currently study confirmed that the mTOR signaling 
pathway may be an important target for the treatment of 
Parkinson’s disease (35). The main limitation of this study 
was that the results of this study was based on mice PD 
model, how was the validity in human was still needed to be 
further investigated.

Conclusions

In our study, we evaluated the protective effect of Rapa 
on the protein expression of p-4EBP1, and which may be 
involved in the pathogenesis of PD. In addition, inhibited 

of mTOR-4EBP1 pathways may make a certain protective 
effect for the acute attack of MPTP induced PD.
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