

Tiaochang Xiaoyan extract tablets ameliorate chronic inflammation by activating macrophage lysosomes in chronic colitis rats

Shiying Wang^{1,2}[,], Chun Guo¹, Tao Zhang³, Cailing Zhong¹, Xiying Zhao¹, Yisheng Su¹, Wei Wei³, Beiping Zhang^{1,}

¹Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; ²Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, China; ³Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China

Contributions: (I) Conception and design: B Zhang, S Wang; (II) Administrative support: B Zhang, W Wei; (III) Provision of study materials: S Wang, C Guo, T Zhang, C Zhong, X Zhao, Y Su; (IV) Collection and assembly of data: S Wang, C Guo; (V) Data analysis and interpretation: T Zhang, C Zhong, X Zhao, Y Su; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Wei Wei. Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Wangjing Middle Ring South Road, Chaoyang District, Beijing 100102, China. Email: sxxtyy@sina.com; Beiping Zhang. Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou 510120, China. Email: doctorzbp@163.com.

Background: *Tiaochang Xiaoyan tablet (TCXYT)* is a traditional Chinese medicine prescription derived from the *Xianglian pill*, which is a traditional Chinese medicine for treating chronic dysentery recorded in the *Taiping Huimin Heji Bureau* [1078–1085]. For many years, *TCXYT* has been used to treat ulcerative colitis, however, its therapeutic mechanism is still unclear. In the present study, we used colonic lamina propria macrophages (LPM) and mouse-derived macrophage cell line RAW264.7 cells as the research objects, with the aim of exploring the therapeutic effects and mechanisms of *TCXYT* on colitis.

Methods: We used 2,4,6-trinitrobenzenesulfonic acid (TNBS) to induce a rat model of chronic colitis, and normal rats as the control. The disease activity index (DAI) and colonic histopathological changes of rats were used to evaluate the severity of colitis. Rats were divided into the control group; model group; high, middle-, and low-dose TCXYT group; and the hydroxychloroquine sulfate group. *TCXYT* was administered by gavage on the 3rd day after model replication and lasted for 7 days. The doses used for the high-, middle-, and low-dose *TCXYT* groups were 0.8, 0.4 and 0.2 g/kg, respectively. Enzyme-linked immunosorbent assay was used to detect the serum concentration of cytokines. Western blot was used to detect the expressions of Toll-like receptor 9 (TLR9), myeloid differentiation primary response 88 (MyD88), interleukin (IL) receptor-associated kinase (IRAK) 1, and IRAK4 in colonic LPM and RAW264.7 cells. Immunofluorescence was used to detect lysosomal activity. The chemical constituents of *TCXYT* were separated and identified based on Q-Orbitrap high resolution LC/MS data.

Results: *TCXYT* promoted the repair of colonic mucosal injury, attenuated inflammation, increased lysosome activity in macrophages, and decreased the DAI in rats with colitis compared with those in the model group. *TCXYT* decreased the serum concentrations of IL-1 β and tumor necrosis factor- α (TNF- α), increased those of IL-4 and IL-10, and decreased the TLR9, MyD88, IRAK1, and IRAK4 protein levels in LPM and RAW264.7 cells compared to the model group.

Conclusions: *TCXYT* could ameliorate colon inflammation and CD11c⁺ macrophage infiltration in rats with chronic colitis. This effect may be mediated by activating lysosomes in macrophages by inhibiting the TLR9/MyD88/IRAK signaling pathway.

^ ORCID: Shiying Wang, 0000-0002-1005-0381; Beiping Zhang, 0000-0003-2979-9226.

2204

Keywords: Tiaochang Xiaoyan tablet (TCXYT); ulcerative colitis; macrophages; lysosome; inflammation

Submitted Jan 13, 2021. Accepted for publication Feb 04, 2021. doi: 10.21037/apm-21-250 **View this article at:** http://dx.doi.org/10.21037/apm-21-250

Introduction

Ulcerative colitis (UC) is a chronic and progressive colonic inflammatory disease with recurrent mucosal inflammation and mucosal damage. Recurrent inflammation in colonic mucosa is the most important pathological factor that leads to the occurrence of mucosal ulcers (1,2), and has been linked to increased risk of ulcer-associated colorectal cancer (3). It was found in previous studies that the occurrence of colonic mucosal inflammation in UC patients is closely related to mucosal hypoxia, abnormal activation of inflammatory cells, and autophagy disorder (4,5). Abnormal colonic mucosal inflammation is not only related to the toxin and pathogen translocation to submucosa that is caused by the increased permeability of UC colonic mucosa but is also closely related to the clearance of apoptotic body and necrotic fragments and abnormal immune mediators, and then destroy the immune homeostasis (6,7). Some studies have suggested that the accumulation of apoptotic fragments can lead to tissue damage and the destruction of immune homeostasis, which further leads to abnormal autoimmune and immune homeostasis (8,9). In addition, it was discovered that mucosal damage in colonic mucosa of UC is related to abnormal immune homeostasis (7,10), which is caused by the formation of an abnormal immune complex in colon mucosa. In this process, phagocytosis of macrophages plays an important role in removing pathogenic microorganisms, the clearance of apoptotic body, and other abnormal immune mediators, and maintaining the immune homeostasis of colonic mucosa (9). The lysosome is considered an important organelle in macrophages, which plays an important role in regulating the immune functions of macrophages. Previous studies have found that the maturation of macrophage lysosomes is important for the stabilization of macrophage-mediated autophagy, immune presentation, and other functions (11,12). However, the mechanism of lysosomal function in macrophages is unclear. The Tolllike receptor (TLR) signaling pathway plays an important role in the development of colonic mucosal inflammation in UC (13). Previous studies have found that the activation

of the TLR9 signaling pathway in colonic lamina propria macrophages (LPM) can significantly inhibit macrophage autophagy, aggravate the inflammatory response, and increase the apoptosis of mucosal epithelial cells (13-16). Furthermore, the dysfunction of lysosomal activity in LPM has been found to be the main cause of macrophage dysfunction (14). In addition, the TLR9 signaling pathway is involved in the regulation of autophagy of LPM in UC (13), but the effect of the TLR9 signaling pathway on the regulation of lysosomal structure and the function of LPM is unclear. Therefore, the aim of the present study was to explore the role and mechanism of lysosomes in LPM on chronic inflammation.

UC belongs to the categories of diarrhea, dysentery, and intestinal wind of traditional Chinese medicine. Chronic recurrence belongs to the categories of rest dysentery and chronic dysentery of traditional Chinese medicine, which are characterized by long unhealing and easy recurrence. According to the theory of traditional Chinese medicine, it is generally believed that ulcerative colitis is mainly caused by spleen and kidney deficiencies and stagnation of dampness, heat, phlegm, and qi (17). The onset of UC is believed to be related to pathogenic toxins in the body (18). It is believed that the pathogenic toxins are the root of UC, which can cause UC. Therefore, in terms of treatment, detoxification is considered the main method of treatment. Detoxification is used throughout the whole process of UC and is supplemented by heat and damp clearance, qi activation, and blood circulation. TCXYT is derived from the Xianglian pill, which is a traditional Chinese medicine for treating chronic dysentery recorded in the Taiping Huimin Heji Bureau [1078-1085]. TCXYT consists of Radix Astragali, Lindera aggregata, Rhizoma coptidis, Oldenlandia diffusa and coix seed. Our previous research found that TCXYT can effectively inhibit the chronic inflammation of colonic mucosa and promote the repair of colonic ulcers in patients with ulcerative colitis; the mechanism may be related to inhibiting the autophagy function of colon cells by regulating the balance of pro-inflammatory and antiinflammatory factors (19-21). Our findings indicated that TCXYT can regulate the lysosomal activity of macrophages

Annals of Palliative Medicine, Vol 10, No 2 February 2021

in the colon of rats with chronic colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). We conducted the following research.

We present the following article in accordance with the ARRIVE reporting checklist (available at http://dx.doi. org/10.21037/apm-21-250).

Methods

Animals

Sprague-Dawley rats (140-160 g, certificate No. 4400210019232) were obtained from the Experimental Animal Center of Southern Medical University, Guangzhou, China (license No. scxk-Guangdong-2006-0015). The Institutional Animal Care and Use Committee of The Second Affiliated Hospital of Guangzhou University of Chinese Medicine approved all of the procedures involving the rats (animal ethics approval No. 2016021-2). Experiments were performed in compliance with the Institutional Animal Care and Use Committee of Guangzhou University of Chinese Medicine's guidelines for the care and use of animals. We quantitatively analyzed the weight, fecal texture, and other metrics of the rats. The rats were housed in a pathogen-free environment and were allowed to acclimatize for 7 days before use. These rats were divided into the control group (n=6); model group; the high-, middle-, and low-dose TCXYT groups; and the hydroxychloroquine sulfate (HS) group. (The dosage of TCXYT in the trial is calculated based on the clinical dosage. For example, the dosage for rats is 60 mg/kg × 70 kg \times 0.018/200 g =378 mg/kg. In the experiment, each rat weighed about 400 g, and given 2.5 mL of the drug solution with a concentration of 0.06 g/mL by gavage. Therefore, the dosage of each rat was 375 mg/kg. In order to facilitate the configuration of the drug, 0.4 g/kg of the trial drug was used as the medium dose, 1/2 times was the low dose, and 2 times was the high dose.)

Reagents

TNBS and lipopolysaccharide (LPS) were purchased from Sigma (St Louis, MO, USA). The Lysosome Staining Kit was purchased from Abnova (Taipei City, Taiwan, China). Enzyme-linked immunosorbent assay (ELISA) kits for interleukin (IL)-1 β , IL-4, IL-10, and tumor necrosis factor- α (TNF- α) were from R&D Systems (Minneapolis, MN, USA). HS (an inhibitor of autophagy and TLR7/9) was obtained from Selleck Chemicals (Houston, TX, USA). Mouse interferon- γ (IFN- γ), IL-1R-associated kinase (IRAK) 1, and IRAK4 were from Cell Signaling Technology (Danvers, MA, USA). CD11c (ab11029), Microtubule Associated Protein 1 Light Chain 3 Beta (LC3B, ab192890), TLR9 (ab134368), and myeloid differentiation primary response 88 (MyD88) antibodies, goat anti-rabbit antibodies, and rabbit anti-mouse antibodies were from Abcam (Cambridge, UK).

Drugs

TCXYT is a herbal preparation that consists of Radix Astragali seu Hedysari, Radix Linderae, Rhizoma Coptidis, Herba Hedyotis and Semen Coicis (Table S1). In addition, all herbal medicines were purchased from Lingnan Traditional Chinese Medicine Co. Ltd. (Guangzhou, China) and provided by the Department of Pharmacy at The Second Affiliated Hospital of Guangzhou University of Chinese Medicine. Quality of herbal medicines was tested according to the standards of the Pharmacopoeia of the People's Republic of China [2015] before the experiment.

Sample preparation and Q-Orbitrap high resolution LC/ MS analysis

The methods and further details used have been described elsewhere (22,23). The extract of TCXYT was powdered and passed through 100-mesh sieves. An aliquot of 50 mg of powder was extracted in 10 mL of 70% methanol (v/v) for 30 min by ultrasonication (40 kHz, 300 W). The sample was maintained at room temperature for 5 min, and the supernatant was filtered through a 0.22- μ m membrane before use. An aliquot of 1 μ L was injected for analysis.

A UHPLC Ultimate 3000 instrument coupled with a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) was used. Samples were separated on a Welch Ultimate Polar reversed-phase C18 column ($150 \times 2.1 \text{ mm } 1.8 \text{ µm}$). Mobile phase A is an aqueous solution containing 5% methanol-0.1% formic acid and 2 mmol/L ammonium formate; and mobile phase B was a methanol solution containing 15% isopropanol+0.1% formic acid. A gradient elution program was used as follows: 0–5 min, 20% A; 5–10 min, 20–50% A; 10–15 min, 50–80% A; and 15–25 min, 80–95% A. The flow rate was 0.30 mL/min, and the column temperature was maintained at 35 °C. The mass spectrometer was operated in the

2206

(+/-) electrospray ionization (ESI) mode. The parameters were as follows: spray voltage: 3.8kV, sheath gas pressure: 40 arb, Aux gas pressure: 10 arb, capillary temperature: 350 °C, heater temperature: 300 °C, scan mode: full MS (Mass spectrometry) (resolution 70,000), and scan range: m/z 100–1,500. The data collected by high-resolution liquid quality were collected by CD2.1 (Thermo Fisher), and then the database was retrieved and compared (mzCloud, mzVault, ChemSpider).

Lysosome staining

RAW64.7 cells and LPM (100 μ L/well, 1.0×10⁵/mL) were cultured in 96-well plates for 24 h. Lysosome staining was detected with the lysosome staining kit (Abnova, KA4111, Taibei City, Taiwan, China). When cells were properly fused, the cells were transferred to the corresponding culture medium and 100 μ L of Lyso Green working solution (20 μ L of 500× Lyso Green stock solution in 10 mL of live cell staining buffer) was added as described previously (8). The cells were incubated at 37 °C in an atmosphere containing 5% CO₂ for 1 h. Finally, the cells were visualized under a fluorescence microscope with a fluorescein isothiocyanate (FITC) filter set (excitation and emission at 490 and 525 nm, respectively).

Lysosome activity

Lysosome activity was assayed as described previously (24). Briefly, RAW264.7 cells were solubilized in 25 μ L of 0.1% Triton X-100. Next, the lysates were incubated with 150 μ L of 10 mM p-nitrophenyl phosphate (Sigma, USA) for 1 h at 37 °C. The reaction was stopped by adding 50 μ L of 0.2 M borate buffer, and absorbance of the mixture at 405 nm was determined using a spectrophotometer. Relative lysosome activity (%) was calculated as the ratio of the absorbance at 405 nm of *TCXYT*-treated cells to that of control cells multiplied by 100%.

Immunofluorescence

Colonic tissue or treated cells were fixed with 4% (w/v) paraformaldehyde (Sigma, USA), and blocked and incubated with an anti-CD11c antibody (1:100) overnight at 4 °C. The cells were then washed in phosphate-buffered saline (PBS). After incubation with a secondary FITC-conjugated antibody and 4',6-diamidino-2-phenylindole (DAPI; Sigma, USA), the cells were rewashed in PBS, mounted in anti-fade

reagent, and observed under an Olympus microscope, as described previously (25,26).

Statistical analysis

Data were analyzed using IBM SPSS version 21.0 (IBM Corp., Armonk, NY, USA) and were presented as mean \pm standard error of mean. One-way analysis of variance or a general linear model with repeated measures was used to analyze the data of \geq 3 groups, and the least significant difference post-hoc test was used for multiple comparisons. Student's *t*-test was used to analyze differences between two groups. P<0.05 indicated statistical significance.

TNBS-induced chronic colitis, the disease activity index (DAI), ELISA, histological analysis and Western blot are described elsewhere (27,28).

The isolation of colonic LPM, cell culture, cell viability, and proliferation have been described elsewhere (29-31).

Results

UPLC/UV chromatograms of the TCXYT extract

The *TCXYT* extract was separated within 20 min on a C18 column ($150\times2.1 \text{ mm } 1.8 \text{ µm}$) eluted with acetonitrile, methanol, and water containing 0.1% formic acid. The compounds were detected in the (–) ESI mode, and their MS/MS spectra were analyzed in an untargeted manner. Although *TCXYT* exhibited only a few major peaks in the HPLC/UV analysis, a number of minor compounds could be observed in the enlarged chromatogram (*Figure 1*). A total of 174 compounds were identified from *TCXYT* (Table S2). The chemical analysis of *TCXYT* extract served as the quality control for the reproducibility of the animal experiment.

TCXYT significantly ameliorates inflammation and colonic mucosal injury

After the colitis model was established, *TCXYT* administration was initiated at day 3 for 7 consecutive days (*Figure 2A*). Compared with the control group, colonic mucosal injury was aggravated in the model group, as evidenced by increased DAI, IL-1 β , and TNF- α serum levels, and decreased IL-4 and IL-10 levels (*Figure 2B,C,D,E,F,G*). Treatment with *TCXYT* for 7 days significantly ameliorated injury to the colonic mucosa (*Figure 2G*). *TCXYT* was also found to significantly decrease

Figure 1 Ultra-high-performance liquid chromatography/UV of Tiaochang Xiaoyan tablet (TCXYT) extract (270 nm).

the DAI and the level of serum pro-inflammatory cytokines in a dose-dependent manner (*Figure 2B,C,D*), and increase the level of anti-inflammatory cytokines (*Figure 2E,F*).

TCXYT reduces the infiltration of CD11c⁺ macrophages in colonic mucosa

Compared with the control group, the degree of CD11c⁺ macrophage infiltration in the model group was more severe (*Figure 3A*), and the number of CD11c⁺ cells in the lamina propria was greater (*Figure 3B*). Compared with the model group, the infiltration degree and number of CD11c⁺ macrophages in the high-, middle-, and low-dose *TCXYT* groups and the HS group decreased. The *TCXYT* group was dose dependent, and there was no significant difference between the middle-dose group and the high-dose group (*Figure 3A*,*B*). In short, *TCXYT* can reduce the infiltration of CD11c⁺ cells in the lamina propria in rats with chronic colitis.

TCXYT promoted the activation of lysosome in LPM

The number and activity of lysosomes in LPM in the experimental colitis groups decreased (*Figure 4A,B,C*). After

7 days of treatment with *TCXYT*, the number and activity of lysosomes in LPM significantly increased compared with those in the model group (*Figure 4A,B,C*). In addition, *TCXYT* regulated the lysosomal activity in LPM in a dose-dependent manner (*Figure 4C*). The expression of LC3B in LPM significantly decreased in the colitis groups compared with the control group (*Figure 4D*). However, after 7 days of treatment with *TCXYT*, the expression of LC3B in LPM significantly increased compared with the model group. These effects were more significant in the medium- and high-dose groups than in the low-dose group (*Figure 4A,B,C,D*).

TCXYT increases the viability, but not the proliferation, of RAW264.7 cells

The viability of RAW264.7 cells was reduced, and their proliferation was reduced significantly, by LPS+IFN- γ (*Figure 5A,B*). However, the viability of RAW264.7 cells increased significantly with *TCXYT* in a dose-dependent manner (*Figure 5C*), and their proliferation was unaffected by treatment with *TCXYT* for 24 and 48 h (*Figure 5D*). *TCXYT* also significantly increased the viability of RAW264.7 cells stimulated with LPS (10 µg/mL) plus

Figure 2 *Tiaochang Xiaoyan tablet* (TCXYT) ameliorates inflammation and colonic mucosal injury. (A) *TCXYT* administration was initiated at day 3 for 7 consecutive days. (B,C,D,E,F) Colonic mucosal injury; daily activity index (DAI) scores; and interleukin (IL)-1 β , tumor necrosis factor- α , IL-4, and IL-10 levels. (G) Histopathological analysis of colon tissue (magnification ×400). The red arrows indicate colonic mucosal inflammatory injuries. Data are presented as mean ± standard error of mean of 3 independent experiments performed in triplicate. **, P<0.01 vs. control; ^{##}, P<0.01 vs. model. Con: Control group; Mod: Model group; *TCXYT* Low, Mid and High: low-, middle-, and high-dose *TCXYT*; HS: HS group (treated with HS).

Figure 3 *Tiaochang Xiaoyan tablet (TCXYT)* reduces CD11c⁺ macrophage infiltration in the colonic mucosa. (A) Infiltration of CD11c⁺ macrophages (CD11c⁺ macrophages was showed by the arrows, magnification ×400); (B) number of CD11c⁺ lamina propria macrophages in colon tissue. Data are presented as mean \pm standard error of mean of 3 independent experiments performed in triplicate. One-way analysis of variance and Student's *t*-test. **, P<0.01 *vs.* control; ^{##}, P<0.01 *vs.* model. The red arrows indicate CD11c⁺ lamina propria macrophages. Con: Control group; Mod: Model group; *TCXYT* Low, Mid and High: low-, middle-, and high-dose *TCXYT*; HS: HS group (treated with HS).

IFN- γ (10 ng/mL) in a dose-dependent manner, but did not influence their proliferation. On the basis of this, we used *TCXYT* at 0.12, 0.06, and 0.03 g/mL in subsequent experiments.

TCXYT activates lysosomes in RAW264.7 cells

The number and activity of lysosomes significantly increased with TCXYT compared with the control group in a dose-dependent manner (*Figure 6A,B,C*).

Figure 4 *Tiaochang Xiaoyan tablet (TCXYT)* promotes the activation of lysosomes in (*in vitro*). (A) Fluorescence images of lysosomes in lamina propria macrophages (LPM) (magnification ×200); (B) ratio of the number of lysosome in LPM; (C) lysosomal activity in LPM; (D) expression of LC3B in LPs. Data are presented as mean ± standard error of mean of 3 independent experiments performed in triplicate. **, P<0.01 vs. control; **, P<0.01 vs. control; **, P<0.01 vs. model. Con: Control group; Mod: Model group; Low, Mid and High: low-, middle-, and high-dose *TCXYT*; HS: HS group (treated with HS).

The effects in the middle- and high-dose groups were similar and were superior to those of the low-dose group (*Figure 6A,B*). However, the expression of LC3B in RAW264.7 cells did not differ markedly among the treatment groups (*Figure 6D*).

TCXYT also significantly increased the number and activity of lysosomes in RAW264.7 cells stimulated with LPS+IFN- γ in a dose-dependent manner compared with cells treated with only LPS+IFN- γ (*Figure 6C,E,F*). The expression of LC3B in RAW264.7 cells treated with LPS+IFN- γ was lower than that in the control group, but increased with TCXYT treatment (*Figure 6G*). However, there was no significant difference between the mediumand high-dose groups.

Therefore, *TCXYT* ameliorated inflammation in rats with chronic colitis, possibly by increasing the number and activity of lysosomes in macrophages.

TCXYT regulates the TLR9/MyD88/IRAK signaling pathway

The TLR9 signaling pathway plays a central role in the regulation of mucosal innate immunity, particularly of macrophage autophagy, which is implicated in the pathogenesis of UC (13). In the present study, the TLR9, MyD88, IRAK1, and IRAK4 protein levels in LPM were significantly increased in the groups with colitis compared with the control group. *TCXYT* significantly decreased the TLR9, MyD88, IRAK1, and IRAK4 protein levels in LPM in rats with colitis in a dose-dependent manner. In addition, the effects in the medium- and high-dose groups were superior to those in the low-dose group (*Figure 7A*).

The TLR9, MyD88, IRAK1, and IRAK4 protein levels in RAW264.7 cells treated with LPS+IFN- γ were significantly increased compared with those in the control group. *TCXYT* significantly decreased the TLR9, MyD88,

Figure 5 *Tiaochang Xiaoyan tablet (TCXYT)* reduces the viability, but not the proliferation, of RAW264.7 cells. (A) Viability of RAW264.7 cells at different concentrations; (B) RAW264.7 cell relative viability in different stimulation groups; (C) proliferation of RAW264.7 cells at different concentrations; (D) RAW264.7 cell relative proliferation in different stimulation groups. Data are presented as mean ± standard error of mean of 3 independent experiments performed in triplicate. **, P<0.01 vs. control. Con: Control group; LPS: LPS group (stimulated with LPS); *TCXYT* Low, Mid and High: low-, middle-, and high-dose *TCXYT*.

IRAK1, and IRAK4 protein levels in a dose-dependent manner (*Figure 7B*).

Inhibition of the TLR9 signaling pathway ameliorates inflammation and activates lysosomes

HS, an inhibitor of autophagy and TLR7/9, is an antimalarial agent that is also used to treat inflammatory conditions (32). When RAW264.7 cells stimulated with LPS+IFN- γ were treated with HS for 24 h, the TLR9, MyD88, IRAK1, and IRAK4 protein levels significantly decreased, and the LC3B protein level increased, compared with cells stimulated with LPS+IFN- γ (*Figure 8A*). Similarly, after treatment with HS for 7 days, the TLR9, MyD88, IRAK1, and IRAK4 protein levels in LPM significantly reduced compared with those in the model group (*Figure 8B*). HS treatment also increased the expression of LC3B and the lysosomal number and activity in LPM (*Figure 4A,B,C,D*). Inflammation and colonic mucosal injury were also significantly ameliorated compared with the model group (*Figure 2C,E,F,G*).

Discussion

TCXYT is a herbal preparation that suppresses inflammation in the colonic mucosa of patients with UC (19). The

Wang et al. TCXYT ameliorate chronic inflammation in colitis

Figure 6 Effects of *Tiaochang Xiaoyan tablet (TCXYT)* on lysosomes in RAW264.7 cells. (A) Effects of low-, middle-, and high-dose *TCXYT* on the number of lysosomes in RAW264.7 cells; (B) effects of low-, middle-, and high-dose *TCXYT* on the lysosomal activity in RAW264.7 cells; (C) effects of low-, middle-, and high-dose *TCXYT* on the number of lysosomes in RAW264.7 cells stimulated by lipopolysaccharide (LPS)+interferon- γ (IFN- γ) (magnification ×200); (D) fluorescence micrographs of lysosome activity in RAW264.7 cells stimulated by LPS+INF- γ ; (E) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells; (F) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells; (F) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells; (F) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells; (F) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells; (F) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells stimulated by LPS+INF- γ ; (G) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells stimulated by LPS+INF- γ ; (G) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells stimulated by LPS+INF- γ ; (G) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells stimulated by LPS+INF- γ ; (G) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells stimulated by LPS+INF- γ ; (G) effects of low-, middle-, and high-dose *TCXYT* on the expression of LC3B in RAW264.7 cells stimulated by LPS+INF- γ ; (G) effects of low-, middle-, and high-dose *TCXYT*.

bioactive components of *TCXYT* and their contents vary in composition and extraction methods. To clarify the chemical composition and to evaluate the quality of *TCXYT*, we used HPLC/UV to analyze the composition of *TCXYT* used in the present study. The components of *TCXYT* were detected, indicating that *TCXYT* is a mixture of compounds. The components and their contents are in line with the provisions of Pharmacopoeia of the People's Republic of China and meet the requirements of good clinical practice in China. Macrophages, a type of myeloid cell, play a pivotal role in the innate immune response against pathogens. In patients with UC, a heterogeneous population of inflammatory cells is present in colon tissues, particularly $CD11c^+$ macrophages (33,34). Although the role of macrophages in the development of UC has been explored, the effect and its mechanism are unclear. However, it is well known that increased macrophage infiltration in colon tissue and abnormal polarization are related to the development of inflammation in UC (33). In the present

Figure 7 *Tiaochang Xiaoyan tablet (TCXYT)* regulates the Toll-like receptor 9 (TLR9)/myeloid differentiation primary response 88 (MyD88)/ interleukin receptor-associated kinase (IRAK) signaling pathway. (A) TLR9, MyD88, IRAK1, and IRAK4 protein levels in lamina propria macrophages were significantly upregulated in the experimental colitis groups and significantly decreased by *TCXYT* in a dose-dependent manner. (B) TLR9, MyD88, IRAK1, and IRAK4 protein levels in RAW264.7 cells treated with lipopolysaccharide + interferon- γ were significantly increased compared with the control group, and were significantly decreased with *TCXYT* in a dose-dependent manner. Con: Control group; Mod: Model group; LPS: LPS group (stimulated with LPS); *TCXYT* Low, Mid and High: low-, middle-, and high-dose *TCXYT*.

study, compared with the control group, the infiltration of CD11c⁺ macrophages in the colon of rats with chronic colitis was significantly increased, and the mucosal damage was aggravated. After 7 days of *TCXYT* treatment, the degree of CD11⁺ macrophage infiltration and tissue injury in the colon tissue of the high-, middle-, and low-dose *TCXYT* groups improved at different degrees. Therefore, *TCXYT* alleviates inflammation and promotes the repair of colon mucosal injury by reducing the infiltration of CD11c⁺ macrophages in the colon.

Lysosomes in macrophages are not only degradative organelles but also play a central role in nutrient sensing, metabolism, and cell-growth regulation (35). Lysosomal number and activity, two important elements of lysosome function, are related to the activity and polarization of macrophages (36,37). The lysosomal activity of CD11c⁺ macrophages in the colon of patients with UC was significantly inhibited (38), but the mechanism is unknown. The number and activity of lysosomes in LPM isolated from the colon tissue of rats with chronic colitis significantly decreased, the level of pro-inflammatory cytokines increased, and anti-inflammatory cytokines decreased. In addition, *TCXYT* significantly increased the number and activity of lysosomes in CD11c⁺ macrophages. However, *TCXYT* increased the viability, but not the proliferation, of CD11c⁺ macrophages *in vitro*, suggesting that its anti-inflammatory activity was mediated by effects on lysosomes in macrophages, rather than on macrophage proliferation directly; however, the mechanism is unclear.

TLRs play central roles in the regulation of macrophagemediated mucosal innate immunity and in the pathogenesis of UC (31). TLR9 is a conserved transmembrane receptor that recognizes pathogen-associated molecular patterns, and initiates an immune response by modulating lysosomal activity in macrophages (39). TLR9 is an important component of the TLR9/MyD88/IRAK signaling pathway, and its activation triggers the production of cytokines and chemokines, which are important in the development of inflammation in UC (31,40). In addition, the lysosomal activity in macrophages is regulated by the TLR9/ MyD88 signaling pathway in macrophages (41). IRAK1 and IRAK4 are important factors in the TLR9/MyD88 signaling pathway and play a key role in the activation of macrophages (42,43). However, the role of IRAKs (i.e., 2214

В Α Raw264.7 cells LC3B LPMs IRAK4 IRAK1 MvD88 TLR9 β-actin LPS LPS + HS Con Con Mod HS

Figure 8 Inhibition of the Toll-like receptor 9 (TLR9) signaling pathway ameliorates inflammation and activates lysosomes in macrophages. (A) In RAW264.7 cells stimulated with lipopolysaccharide (LPS) + interferon- γ (IFN- γ) and treated with hydroxychloroquine sulfate (HS) for 24 h, the TLR9, myeloid differentiation primary response 88 (MyD88), interleukin receptorassociated kinase (IRAK) 1, and IRAK4 protein levels significantly decreased compared with those in cells only stimulated with LPS+IFN- γ . (B) TLR9, MyD88, IRAK1, and IRAK4 protein levels in lamina propria macrophages treated with HS significantly decreased compared with those in the model group. Con: Control group; Mod: Model group; LPS: LPS group (stimulated with LPS).

IRAK1 and IRAK4) in macrophages in the development of UC is unknown. We found that lysosomal activity in macrophages was inhibited in RAW264.7 cells stimulated with LPS+IFN- γ , and in LPM from the colons of rats with chronic colitis, the IRAK1 and IRAK4 protein levels increased significantly and the TLR9/MyD88 signaling pathway was activated. However, the IRAK1 and IRAK4 protein levels significantly decreased and lysosomal activity in macrophages significantly increased with HS-mediated suppression of the TLR9/MyD88 signaling pathway. Therefore, the lysosomal activity in macrophages may be inhibited by activating the TLR9/MyD88/IRAK signaling pathway. In addition, TCXYT reduced the infiltration of CD11c⁺ macrophages in colon tissue and increased lysosomal activity in macrophages by inhibiting the TLR9/ MyD88/IRAK signaling pathway.

Wang et al. TCXYT ameliorate chronic inflammation in colitis

Conclusions

The composition and stability of *TCXYT* are elevated by chromatography. In the study, the results showed that *TCXYT* can be used as a qualified clinical drug which had stable drug composition and physical-chemical properties. In addition, *TCXYT* is promising for the treatment of UC, as it ameliorates inflammation and CD11c⁺ macrophage infiltration in the colon of rats with chronic colitis. *TCXYT* may promote the activation of lysosomes in macrophages by inhibiting the TLR9/MyD88/IRAK signaling pathway. However, several issues warrant further study, including how lysosomes regulate the differentiation of macrophages and determination of the exogenous regulator of macrophages in the development of UC. These issues must be resolved if *TCXYT* is to be used to ameliorate inflammation in the colon mucosa of patients with UC.

Acknowledgments

The authors thank the technical staff for their assistance with the study and Dr. Zhaoyu Lu who reviewed the article. *Funding:* This work was supported by the National Natural Science Foundation of China (Nos. 81573786 and 81904106) and Young Creative Talents Project of Guangdong Province Universities and Colleges (No. 2018KQNCX044).

Footnote

Reporting Checklist: The authors have completed the ARRIVE reporting checklist. Available at http://dx.doi. org/10.21037/apm-21-250

Data Sharing Statement: Available at http://dx.doi. org/10.21037/apm-21-250

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi. org/10.21037/apm-21-250). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The Institutional Animal Care and Use Committee of The Second Affiliated Hospital of Guangzhou University of Chinese Medicine

approved all of the procedures involving the rats (animal ethics approval No. 2016021-2). Experiments were performed in compliance with the Institutional Animal Care and Use Committee of Guangzhou University of Chinese Medicine's guidelines for the care and use of animals.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Ungaro R, Mehandru S, Allen PB, et al. Ulcerative colitis. Lancet 2017;389:1756-70.
- Boal Carvalho P, Cotter J. Mucosal Healing in Ulcerative Colitis: A Comprehensive Review. Drugs 2017;77:159-73.
- Olén O, Erichsen R, Sachs MC, et al. Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. Lancet 2020;395:123-31.
- Cosin-Roger J, Simmen S, Melhem H, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/ mTOR downregulation and autophagy activation. Nat Commun 2017;8:98.
- Shah YM. The role of hypoxia in intestinal inflammation. Mol Cell Pediatr 2016;3:1.
- Weigert A, Mora J, Sekar D, et al. Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. Adv Exp Med Biol 2016;930:205-39.
- Freire MO, Van Dyke TE. Natural resolution of inflammation. Periodontol 2000 2013;63:149-64.
- Li J, Cui X, Ma X, et al. Recombinant Buckwheat Trypsin Inhibitor Improves the Protein and Mitochondria Homeostasis in Caenorhabditis elegans Model of Aging and Age-Related Disease. Gerontology 2019;65:513-23.
- Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2019;21:267-97.
- 10. Fogarty CE, Bergmann A. The Sound of Silence: Signaling by Apoptotic Cells. Curr Top Dev Biol 2015;114:241-65.
- 11. Shi B, Huang QQ, Birkett R, et al. SNAPIN is critical for

lysosomal acidification and autophagosome maturation in macrophages. Autophagy 2017;13:285-301.

- 12. Aflaki E, Moaven N, Borger DK, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. Aging Cell 2016;15:77-88.
- McAlpine W, Sun L, Wang KW, et al. Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function. Proc Natl Acad Sci U S A 2018;115:E11523-E11531.
- Xia Y, Liu N, Xie X, et al. The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy 2019;15:960-75.
- Figliuolo da Paz V, Jamwal DR, Gurney M, et al. Rapid Downregulation of DAB2 by Toll-Like Receptor Activation Contributes to a Pro-Inflammatory Switch in Activated Dendritic Cells. Front Immunol 2019;10:304.
- Matharu KS, Mizoguchi E, Cotoner CA, et al. Tolllike receptor 4-mediated regulation of spontaneous Helicobacter-dependent colitis in IL-10-deficient mice. Gastroenterology 2009;137:1380-90 e1-3.
- Yamamoto-Furusho JK, Gutierrez-Grobe Y, Lopez-Gomez JG, et al. The Mexican consensus on the diagnosis and treatment of ulcerative colitis. Rev Gastroenterol Mex 2018;83:144-67.
- Zhang Z, Cao H, Shen P, et al. Ping weisan alleviates chronic colitis in mice by regulating intestinal microbiota composition. J Ethnopharmacol 2020;255:112715.
- Beiping Z, Feng I, Suiping H, et al. Clinical study on treatment of Ulcerative colitis with Tiaochang Xiaoyan Tables combined with Changdiqing liquid enema. Pharmaceutical Industry Information 2005:61-2.
- Cailing Z, Chun G, Shiying W, et al. Effect of Tiaochang Xiaoyan Tablets on Serum Cytokines in Patients with Mild-to-moderate Ulcerative Colitis. Journal of Guangzhou University of Traditional Chinese Medicine 2020;37:226-33.
- Zhong CL, Guo C, Wang SY, et al. Effects of Tiao Chang Xiao Yan tables on serum cytokines and LC3B in rats with Ulcerative colitis. Acta Medica Mediterranea 2020;36:571-8.
- 22. Qiao X, Li R, Song W, et al. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J Chromatogr A 2016;1441:83-95.

Wang et al. TCXYT ameliorate chronic inflammation in colitis

- 23. Cao Y, Chen J, Wang Y, et al. HPLC/UV analysis of chlorfenapyr residues in cabbage and soil to study the dynamics of different formulations. Sci Total Environ 2005;350:38-46.
- Chung CY, Yang WC, Liang CL, et al. Cytopiloyne, a polyacetylenic glucoside from Bidens pilosa, acts as a novel anticandidal agent via regulation of macrophages. J Ethnopharmacol 2016;184:72-80.
- 25. Yuan Z, Zhu X, Li Y, et al. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide. BMC Oral Health 2018;18:56.
- Uematsu S, Jang MH, Chevrier N, et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 2006;7:868-74.
- Wang SY, Tao P, Hu HY, et al. Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis. World J Gastroenterol 2017;23:8308-20.
- Wang YH, Ge B, Yang XL, et al. Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis. Int Immunopharmacol 2011;11:1620-7.
- 29. Shiying W, Boyun S, Jianye Y, et al. The Different Effects of VEGFA121 and VEGFA165 on Regulating Angiogenesis Depend on Phosphorylation Sites of VEGFR2. Inflamm Bowel Dis 2017;23:603-16.
- Ichikawa N, Yamashita K, Funakoshi T, et al. Novel antiinflammatory agent 3-[(dodecylthiocarbonyl)-methyl]glutarimide ameliorates murine models of inflammatory bowel disease. Inflamm Res 2016;65:245-60.
- Ungaro R, Fukata M, Hsu D, et al. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am J Physiol Gastrointest Liver Physiol 2009;296:G1167-79.
- 32. Mortezagholi S, Babaloo Z, Rahimzadeh P, et al. Evaluation of TLR9 expression on PBMCs and CpG ODN-TLR9 ligation on IFN-alpha production in SLE patients. Immunopharmacol Immunotoxicol 2017;39:11-8.
- 33. Fuke N, Takagi T, Higashimura Y, et al. Lactobacillus brevis KB290 With Vitamin A Ameliorates Murine Intestinal Inflammation Associated With the Increase of CD11c+ Macrophage/CD103- Dendritic Cell Ratio. Inflamm Bowel Dis 2018;24:317-31.
- Bernardo D, Marin AC, Fernandez-Tome S, et al. Human intestinal pro-inflammatory CD11c(high)CCR2(+)

CX3CR1(+) macrophages, but not their tolerogenic CD11c(-)CCR2(-)CX3CR1(-) counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol 2018;11:1114-26.

- 35. Durso W, D'Autilia F, Amodeo R, et al. Probing labelinginduced lysosome alterations in living cells by imagingderived mean squared displacement analysis. Biochem Biophys Res Commun 2018;503:2704-9.
- 36. Robinet P, Ritchey B, Smith JD. Physiological difference in autophagic flux in macrophages from 2 mouse strains regulates cholesterol ester metabolism. Arterioscler Thromb Vasc Biol 2013;33:903-10.
- Moheimani F, Kim CH, Rahmanto AS, et al. Inhibition of lysosomal function in macrophages incubated with elevated glucose concentrations: a potential contributory factor in diabetes-associated atherosclerosis. Atherosclerosis 2012;223:144-51.
- Bauer C, Duewell P, Mayer C, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010;59:1192-9.
- De Leo MG, Staiano L, Vicinanza M, et al. Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat Cell Biol 2016;18:839-50.
- Uematsu S, Sato S, Yamamoto M, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med 2005;201:915-23.
- Ewald SE, Lee BL, Lau L, et al. The ectodomain of Tolllike receptor 9 is cleaved to generate a functional receptor. Nature 2008;456:658-62.
- 42. Park SH, Baek SI, Yun J, et al. IRAK4 as a molecular target in the amelioration of innate immunity-related endotoxic shock and acute liver injury by chlorogenic acid. J Immunol 2015;194:1122-30.
- 43. Hirayama T, Tamaki Y, Takakubo Y, et al. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J Orthop Res 2011;29:984-92.

(English Language Editor: R. Scott)

Cite this article as: Wang S, Guo C, Zhang T, Zhong C, Zhao X, Su Y, Wei W, Zhang B. *Tiaochang Xiaoyan extract tablets* ameliorate chronic inflammation by activating macrophage lysosomes in chronic colitis rats. Ann Palliat Med 2021;10(2):2203-2216. doi: 10.21037/apm-21-250

Supplementary

Table S1 Herbal composition of Tiaochang Xiaoyan tablet

Latin name	English name	Chinese name	Dosage	Place of origin	Lot number
Radix Astragali seu Hedysari.	Milkvetch root	Huang-Qi	15 g	Nei Mongol, China	1804001
Radix Linderae	Combined spicebush root	Wu-Yao	15 g	Hunan, China	1804001
Rhizoma Coptidis	Coptis Root	Huang-Lian	10 g	Sichuan, China	1804001
Herba Hedyotis	Hedyotis	Bai hua she she cao	20 g	Hunan, China	1712001
Semen Coicis	Coix seed	Yi yi ren	30 g	Guizhou, China	1803001

 Table S2 Main chemical components of Tiaochang Xiaoyan tablet (TCXYT) extract

No.	Retention time (minimum)	Area (maximum)	Formula	Molecular weight	Name
1 2	1.014 1.085	851905.051 2084841.67	C6 H14 N2 O2 C6 H9 N3 O2	146.1057 155.06967	DL-Lysine L-Histidine
3 4	1.088	77920697.6 576947 596	C5 H12 N4 O3	176.09096 188 15266	L-Canavanine
5	1.109	947714.453	C7 H15 N O3	161.10523	DL-Carnitine
6 7	1.113 1.119	31174111.7 4827890.75	C6 H14 N4 O2 C6 H13 N O5	174.11185 179.07954	DL-Arginine D-Glucosamine
8 9	1.178 1.193	248671.276 189415.329	C7 H14 N2 O3 C7 H15 N O2	174.10049 145.11043	N-Acetylornithine Acetylcholine
10	1.202	525769.026	C10 H19 N O4	217.13169	Propionylcarnitine
11 12	1.254 1.268	1534833.42 14620239.8	C3 H7 N O3 C4 H8 N2 O3	105.04307 132.05358	D-Serine Asparagine
13 14	1.278 1.301	1545457.27 299118.409	C4 H9 N O3 C6 H11 N O3	119.05858 145.07403	Threonine 4-Acetamidobutanoic acid
15	1.305	9184726.94	C5 H9 N O4	147.05314	L-Glutamic acid
16 17	1.321 1.321	6788148.17 2254608.67	C4 H7 N O4 C9 H17 N O7	133.03759 251.10045	L-Aspartic acid Muramic acid
18 19	1.323 1.335	1275889.55 737309.153	C9 H13 N3 O5 C6 H13 N O5	243.08552 179.07954	Cytidine Kanosamine
20	1.353	5947307.66	C11 H15 N5 O4	281.11107	2'-O-Methyladenosine
21 22	1.362 1.364	1886193.76 14316910.8	C6 H14 O6 C5 H11 N O2	182.07905 117.07919	L-Iditol Betaine
23 24	1.372 1.373	709537.028 6462121.21	C10 H13 N O3 C10 H18 N4 O6	195.08966 290.12247	N-Acetyldopamine Argininosuccinic acid
25	1.376	1019714.24	C8 H15 N O6	221.0899	N-Acetyl-D-galactosamine
26 27	1.395 1.407	48715428.9 743063.223	C5 H9 N O2 C6 H10 O7	115.06359 194.04177	Proline Galacturonic acid
28 29	1.407 1.418	4731840.36 1036821.52	C11 H19 N O9 C8 H16 N4 O3	309.10585 216.12222	N-Acetylneuraminic acid N-Acetylarginine
30	1.432	7601658.62	C6 H12 O7	196.05743	Gluconic acid
31 32	1.445 1.456	3140574.36 3977688.15	C18 H32 O16 C6 H6 O3	504.16894 126.03186	D-Raffinose 5-Hydroxymethyl-2-furaldehyde
33 34	1.474 1.48	356987.817 13146742.9	C8 H9 N O4 C7 H13 N O2	183.05323 143.09463	4-Pyridoxic acid DL-Stachydrine
35	1.482	16893287.3	C12 H22 O11	342.11584	α,α-Trehalose
36 37	1.491 1.495	630266.766 957480.128	C6 H10 O8 C11 H20 N2 O3	210.03684 228.14746	D-Saccharic acid Prolylleucine
38 39	1.536 1.537	533566.051 1170679.82	C9 H11 N O3 C5 H5 N5 O	181.07411 151.04951	L-threo-3-Phenylserine Guanine
40	1.543	7712636.75	C6 H11 N O2	129.07913	Pipecolic acid
41	1.616	946918.31 113479.558	C6 H15 N O3	149.10539	D-(-)-Quinic acid Triethanolamine
43 44	1.633 1.817	84164.3581 1127450.23	C6 H13 N O4 C6 H13 O9 P	163.08466 260.02972	Bicine Glucose 1-phosphate
45 46	1.995	1258417.31	C6 H5 N O2	123.03229	Nicotinic acid
40	2.37	1087566.73	C5 H4 N4 O	136.03866	Hypoxanthine
48 49	2.404 2.504	5700782.38 260179.995	C6 H13 N O2 C8 H9 N O	131.09477 135.06855	Leucine Acetanilide
50 51	2.568	369847.267 57784033 2	C6 H6 O6	174.01655	Trans-aconitic acid
52	2.831	552223.159	C4 H4 N2 O2	112.02773	Uracil
53 54	2.88 2.92	276983.762 323418.136	C10 H11 N O3 C6 H11 N3 O	193.07423 141.09035	Phenylacetylglycine L-Histidinol
55 56	2.981	11721038.4	C10 H13 N5 O4	267.09645	Adenosine
57	3.61	4413431 33	0 C8 H8 O	120 05788	Acetophenope
58	3.776	307462.154	C6 H11 N O2	129.07921	Nipecotic acid
59 60	4.49 4.526	113151.314 419888.382	C8 H15 N O4 C10 H12 N4 O5	189.10023 268.08086	2-Aminooctanedioic acid Inosine
61 62	4.654 4.74	5301291.55 300443 532	C9 H11 N O2	165.07905 347.06313	L-Phenylalanine 3'-Adenosine monophosphate
63	5.578	359566.303	C10 H14 N2 O4	226.0954	Carbidopa
64 65	5.931 6.035	11550355.7 175369.867	C11 H9 N O2 C11 H13 N O4	187.06337 223.08456	Indole-3-acrylic acid N-Acetyl-L-tyrosine
66 67	6.042 6.172	154793.429 315061 656	C11 H12 O5	224.06857 194 10582	Sinapinic acid
68	6.591	49713.4144	C17 H19 N O3	285.13655	Norcodeine
69 70	6.735 6.788	95652.93 270509.405	C10 H8 O4 C19 H21 N O4	192.04254 327.14697	7,8-Dihydroxy-4-methylcoumarin Hernagine
71 72	6.887 7	237398069 402806 553	C20 H23 N O4	341.16183 143.07362	N-Methylhernagine
73	7.048	247147.547	C11 H12 O3	192.07886	BMK methyl glycidate
74 75	7.067 7.07	197438.512 383587.03	C8 H7 N O C19 H23 N O4	133.05276 329.16261	5-Hydroxyindole Sinomenine
76 77	7.31 7.693	4411193.91 4850576 02	C15 H14 O6	290.07905	Catechin
78	7.697	12481235.2	C21 H25 N O4	355.17794	Glaucine
79 80	7.821 7.833	902085.282 245680.584	C10 H11 N O3 C9 H11 N O2	193.07422 165.07903	4-Methylhippuric acid Benzocaine
81 82	7.879 8.084	1303765.05 74115119.2	C15 H22 O4 C17 H16 F3 N O2	266.15144 323.11473	Verrucarol Flutolanil
83	8.1	9542048.78	C20 H42 O11	458.2727	PEG n10
84	8.14	1784550.5	C11 H12 O6	240.06299	(3R,4S)-4,6,8-Trihydroxy-7-methoxy-3- methyl-3,4-dihydro-1H-isochromen-1-one
85 86	8.311 8.318	4332569.07 300156.932	C22 H46 O12 C9 H10 O2	502.29891 150.06824	PEG n11 4'-Methoxyacetophenone
87 88	8.347 8.405	473669.468	C10 H10 O3 C21 H20 O11	178.06311 448.1004	4-Methoxycinnamic acid
89	8.409	332459.73	C16 H18 O9	354.09458	Neochlorogenic acid
90	8.414	1224657.12	C17 H20 O9	368.11058	(3R,5R)-1,3,5-Trihydroxy-4-{[(2E)-3-(4- hydroxy-3-methoxyphenyl)-2-propenoyl]oxy}
91	8.423	52306256.7	C10 H8 O3	176.04725	4-Methylumbelliferone
92 93	8.434 8.703	84760.9625 28668320.5	C15 H10 O7 C27 H30 O16	302.04222 610.15249	Robinetin Rutin
94	8.733	2041735.89	C13 H18 O2	206.13073	Ibuprofen
96	8.803	534398.729	C10 H13 N O2	179.09476	Phenacetin
97 98	8.84 8.856	516591.244 810691.416	C28 H58 O15 C11 H13 N O3	634.37756 207.08884	PEG n14 N-Acetyl-L-phenylalanine
99 100	8.877 8.88	128638451 144802.43	C14 H12 O3 C9 H8 O3	228.07837 164.04755	Resveratrol 4-Coumaric acid
101	8.907	2411037.27	C15 H12 O4	256.07344	Isoliquiritigenin
102 103	8.913 8.973	253302.339 132768.442	C9 H6 O2 C21 H20 O12	146.0369 464.09559	Coumarin Quercetin-3β-D-glucoside
104 105	9.13 9.134	45988.0495 64687.0043	C15 H10 O7 C10 H9 N O3	302.04277 191.05813	Quercetin 5-Hydroxyindole-3-acetic acid
106	9.209	1927855.54	C10 H10 O4	194.05796	Meconin
107 108	9.415 9.614	1765942.49 613299.581	C10 H8 O4 C16 H14 O5	192.04228 286.084	6,7-Dihydroxy-4-methylcoumarin Sakuranetin
109 110	9.676 9.843	12649322.9 6422948.65	C25 H24 O12 C9 H16 O4	516.12641 188.10393	4,5-Dicaffeoylquinic acid Azelaic acid
111	9.903	105308.54	C15 H22 O4	266.15192	3-Hydroxy-4-(2-hydroxy-6-methyl-2-
112	9.96	391564.181	C11 H12 O4	208.07371	6-Hydroxy-8-methoxy-3-methyl-3,4- dihydro-1H-isochromen-1-one
113	10.096	768208.665	C16 H12 O4	268.07344	Formononetin
114 115	10.141 10.417	22539616.5 196633.46	C22 H22 O9 C7 H5 N O S	430.12533 151.00925	Ononin 1,2-Benzisothiazolin-3-one
116	10.766	22507245.3	C14 H14 O4	246.08894	(5S,6S)-5-Hydroxy-4-methoxy-6-[(E)-2- phenylvinyl]-5,6-dihydro-2H-pyran-2-one
117 118	10.793 10.944	419058.666	C10 H18 O4	202.11983 282.14681	3-tert-Butyladipic acid 4-(2,7-Dihvdroxy-6-methyl-2-bostosyl) 2
110	10.982	27464672 4	C16 H12 OF	284.06799	hydroxybenzoic acid
120	11.036	2536982.49	C15 H20 O4	264.13609	Ambrosic acid
121	11.559	411763.661	C22 H23 CI N2 O2	382.14398	Loratadine
122 123	וז.731 11.829	34964.0387 1158473.03	015 H12 O5 C10 H10 O4	∠72.06871 194.05797	waringenin Ferulic acid
124	11.99	23621655.3	C18 H34 O5	330.24034	(15Z)-9,12,13-Trihydroxy-15-octadecenoic acid
125	12.377	5801211.66	C15 H20 O4	264.13608	3-Methylene-4-[(2E)-3-methyl-4-(4-methyl- 5-oxotetrahydro-2-furanyl)-2-buten-1-yl] dibydro-2(3L)-furance-
126	12.481	92053.4197	C12 H22 O4	230.15142	Dodecanedioic acid
127 128	12.537 12.562	11630427.8 71458.3629	C9 H10 O3 C15 H22 O3	166.06301 250.15672	Apocynin 2-[(2S,4aR,8aS)-2-Hydroxy-4a-methvl-8-
					methylenedecahydro-2-naphthalenyl]acrylic acid
129	12.728	302718.891	C15 H22 O4	266.15179	1,9b-Dihydroxy-6,6,9a-trimethyl- 5,5a,6,7,8,9,9a,9b-octahydronaphtho[1,2-c]
130	12.97	24890.2411	C15 H22 O	218.16716	Nootkatone
131 132	12.989 13.035	63719.4854 305373.31	C18 H15 O P C9 H19 N O	278.0861 157.14674	Triphenylphosphine oxide 2,2,6,6-Tetramethyl-4-piperidinol
133	13.156	318209.558	C15 H18 O3	246.12564	3,5a,9-Trimethyl-2,3,3a,4,5,5a,8,9b- octahydronaphtho[1,2-b]furan-2,8-dione
134 125	13.255	119906.479	C9 H10 O	134.07327 224 19977	2,4-Dimethylbenzaldehyde
136	13.436	96136.7631	C15 H20 O3	248.1411	(3aR,8R,8aR,9aR)-8-Hydroxy-8a-methyl- 3,5-bis(methylene)decabydropachthato 2
137	13.794	109643 02	C15 H24 O	220.1828	furan-2(3H)-one (-)-Carvophyllene oxide
137	13.821	17534.1666	C14 H12 O3	228.07863	Trioxsalen
139 140	13.873 13.945	2106417.57 106388.367	C18 H28 O3 C11 H14 O	292.2037 162.10451	9S,13R-12-Oxophytodienoic acid Valerophenone
141	14.057	11174726.7	C18 H32 O4	312.22984	(9Z,12Z)-6,8-Dihydroxy-9,12- octadecadienoic acid
142	14.152	84633.5308	C18 H39 N	269.30832	
144	14.933	153711.354	C9 H6 O3	162.03174	7-Hydroxycoumarine
145 146	14.944 14.976	425342.435 39657905.7	C24 H30 O6 C15 H10 O5	414.20419 270.05239	Bis(4-ethylbenzylidene)sorbitol Genistein
147	15.213	669833.621	C12 H11 N	169.08922	Diphenylamine
148 149	15.518 15.923	105128.32 42065.0361	C16 H30 O4 C20 H26 O3	286.21446 314.18826	nexadecanedioic acid Kahweol
150 151	16.341 16.353	172959.956 513069.811	C13 H17 N O C18 H30 O2	203.13116 278.22466	Crotamiton α-Eleostearic acid
152	16.413	1993012.28	C15 H22 O2	234.16187	3,5-di-tert-Butyl-4-hydroxybenzaldehyde
153 154	16.78 16.782	5787980.42 186332.042	C10 H10 O2 C8 H7 N	162.06807 117.0582	4-Methoxycinnamaldehyde Indole
155	16.894	133196.861	C15 H19 N O3	261.1366	MDPBP
150 157	16.896	270327.051	С17 H24 O3	276.17269	د مرم ، مرد), الدرك)- محتقط Shogaol
158 159	16.968 17.176	732570.078 485466.093	C15 H22 O C12 H14 O4	218.16712 222.08916	3,5-di-tert-Butylbenzaldehyde Monobutyl phthalate
160	17.188	78807.1899	C8 H6 O4	166.0267 278 1515 1	Phthalic acid
162	17.19	-10000940.9 214247.191	C8 H7 N O	133.05285	6-Methylbenzoxazole
163 164	17.541 17.71	31923.0691 431333.43	C14 H26 O4 C18 H34 O2	258.18328 282.25602	Diisobutyl adipate Ethyl palmitoleate
165 165	18.271	74449.2981	C12 H22 O2	198.16214	4-tert-Butylcyclohexyl acetate
167	19.558	2056387.78	C23 H32 O2	340.23987	2,2'-Methylenebis(4-methyl-6-tert- butylphenol)
168	19.862	55974.8979	C16 H30 O	238.22974	Muscone
169 170	19.937 19.997	100935.801 211966.37	C18 H34 O4 C20 H32 O2	314.24583 304.2403	Dibutyl sebacate Mesterolone
171 172	20.242	523726.765 848468 574	C20 H32 O2	304.2403 283.28762	Arachidonic acid Stearamide
173	23.043	2072873.03	C24 H38 O4	390.27677	Bis(2-ethylhexyl) phthalate
17/	26.097	364077.628	C22 H45 N O	339.3502	Jocosanamide

© Annals of Palliative Medicine. All rights reserved.