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Introduction

Mesenchymal stem cells (MSCs), which are multifunctional 
mesenchymal stromal cells with self-renewal ability, can 
be found and extracted from almost any mature organ 
and tissue. According to their intended use, MSCs are 
generally isolated from umbilical cord blood, fat, dense 
bone, and other tissues (1). Previous studies have shown 
that injection of MSCs has a significant effect on protecting 

cardiac function (2). The MSCs can produce a large amount 
of cytokines with immunomodulatory and nutritional 
properties. Cytokines secreted by MSCs can induce the 
secretion of relevant cytokines from neighboring cells to 
exert immunomodulatory effects, and have shown great 
potential in promoting cardiovascular repair (3). In an 
ischemic animal model bone marrow, MCSs exert anti-
apoptotic and anti-inflammatory effects on cardiac cells 
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and vascular endothelial cells via paracrine signals (4). 
The therapeutic effect of MSCs on cardiovascular diseases 
seems to be mainly due to its paracrine cytokines. The 
MSCs not only secrete paracrine factors, but also secrete 
membrane vesicles such as exosomes and microvesicles. 
Exosomes have a membrane vesicle structure containing 
biologically active elements such as proteins, miRNAs, 
and messenger (m)RNAs, and can stably and specifically 
deliver these molecules to the recipient cells. The MSC 
exosomes have already been successfully applied in animal 
models of cardiovascular disease (5,6); thus, administration 
of MSC exosomes may be a potential method for treating 
cardiovascular diseases.

The miRNAs, which are a class of small non-coding 
RNAs with about 22 nucleotides in length, promote 
the inhibition and degradation of gene translation, and 
participate in the regulation of cell development and 
physiological processes by guiding Argonaute proteins into 
the targeted binding region of mRNA (7). The miRNAs 
in the circulatory system and exosomes are also considered 
biomarkers indicative of cardiovascular disease, diabetes, 
and cancer, and can therefore help in the diagnosis and 
treatment of diseases (8). The differential expression of 
miRNA in patients with atherosclerosis (AS) has been 
confirmed, and miRNAs may be a potential therapeutic 
target for the reduction of cardiovascular disease (9,10). 
Of the miRNAs that play an important role in disease 
occurrence and immune regulation, MiR-125b-1-3p 
was among the earliest discovered (11). The disease AS 
involves chronic inflammation of the arterial wall. The 
main pathogenic factors leading to the occurrence of AS 
are immune and inflammatory responses and T lymphocyte 
homeostasis disorder (12). We speculated that miR-125b-1-
3p may also participate in the occurrence and development 
of AS by acting on T lymphocytes and regulating the 
expression of inflammatory factors.

The MSCs can be extracted from the stromal part of 
adipose tissues. Due to the easy extraction of fat, adipose 
tissues contain more abundant stem cell sources than bone 
marrow and/or other tissues (13), and the process is more 
easily clinically performed. This study conducted a series 
of functional experiments predominantly to explore the 
effect of human adipose-derived mesenchymal stem cell 
(hMSCs-Ad) exosomes on T lymphocytes, and its possible 
mechanism of action. In addition, an AS mouse model was 
established to verify the therapeutic effects of hMSCs-Ad 
exosomes. We present the following article in accordance 
with the ARRIVE reporting checklist (available at http://

dx.doi.org/10.21037/apm-21-49).

Methods

Cell culture

The hMSCs-Ad (Sciencell, Carlsbad, CA, USA) were 
cultured in mesenchymal stem cell medium (MSCM) (7501, 
Sciencell) in a 37 ℃ incubator with 10% CO2. Human T 
lymphocyte H9 were obtained from American Type Culture 
Collection and was cultured in Roswell Park Memorial 
Institute (RPMI)-1640 (11879020, Gibco, Fremont, 
CA, USA) containing 10% fetal bovine serum (FBS) 
(SV30087.03, GE Hyclone, South Logan, UT, USA) and 
1% penicillin-streptomycin (PB180120). After 72 hours, the 
cells at logarithmic growth stage were taken for subsequent 
experiments.

Extraction and identification of exosomes

Serum in the medium for culturing hMSCs-Ad at 
logarithmic phase was replaced with exosome-free serum 
(A2720803, Gibco, Gaithersburg, MD, USA) to continue 
the culture. Next, the cells were filtered through a  
0.22 μm filter, and concentrated through an ultrafiltration 
tube. Following the kit instructions (the CSB-EI0102, 
CUSABIO, Wuhan, Hubei, China), the cells were combined 
with the corresponding proportion of reagents, thoroughly 
mixed, and incubated at 4 ℃ overnight. After centrifuging 
the cells at 10,000 ×g for 1 hour, the supernatant was then 
aspirated, and the remaining precipitate was exosomes.

The purified exosomes (10 μL) were diluted with an equal 
volume of phosphate buffered saline (PBS), transferred to a 
piece of 2 mm copper mesh, and stood for 1 minute at room 
temperature. The remaining liquid was gently removed 
by filter paper and air-dried at room temperature for  
2 minutes. The exosomes were observed and photographed 
under a transmission electron microscope.

Cell transfection

In GeneBank, B-cell chronic lymphocytic leukemia 
( C L L ) / l y m p h o m a  1 1 B  g e n e  ( B C L 1 1 B )  s m a l l 
interfering RNA (siRNA) was designed according to 
NM_001282237. The sequence of si-BCL11B was 
5'-GCCGCCAGCCAAGAGCAAG-3' and the Si-control 
sequence was 5'-GCCACCGACGAGACGCAAG-3'. 
The mi-BCL11B and Si-control were transfected into H9 
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using Lipofectamine 3000 (L3000015). The transfection 
efficiency was identified by quantitative polymerase chain 
reaction (qPCR) 24 hours after the reaction. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

qPCR

The total RNA in tissues, cells, and exosomes were 
extracted using the miRNA kit (R8107, GBCBIO Tech., 
Guangzhou, Guangdong, China) and TRIzol method 
(15596-026), respectively. The purity and concentration of 
RNA (OD260/280 between 1.8–2.0) were detected by an 
ultraviolet spectrophotometer. The reverse transcription 
kit (Thermo Fisher, Waltham, MA, USA, K1622) was used 
for reverse transcription and cDNA library construction. 
The target gene was amplified by PCR (7500, ABI, Applied 
Biosystems, Foster City, CA, USA) using reaction solution 
consisting of 2 μL cDNA, 2 μL upstream and downstream 
primers, 10 μL BeyoFast™ SYBR Green qPCR Mix (2X) 
(D7260, Beyotime, Beijing, China), and 6 μL Rnase-
free water. The PCR conditions were as follows: pre-
denaturation at 95 ℃ for 30 seconds, denaturation at 95 ℃ 
for 15 seconds, and annealing extension at 55 ℃, for a total 
of 40 cycles. The 2−ΔΔCt was used to calculate the relative 
expressions of target genes. The primer sequences are 
shown in Table 1.

Detection of H9 cell uptake of PKH67-labeled exosomes

The hMSCs-Ad-derived exosomes were labeled using the 
PKH67 Green Fluorescent Cell Linker Midi Kit (MIDI67, 
Sigma-Aldrich, St. Louis, MO, USA). The proliferation of 
H9 was induced by phytohemagglutinin (L0881, GBCBIO), 
and the inactivation of hMSCs-Ad was induced by 
mitomycin C (M1108). A concentration of 5×105 hMSCs-
Ad were inoculated into the upper chamber of Transwell 
(725101, Nest, Wuxi, Jiangsu, China), while 1×105 H9 cells 
were inoculated in the lower chamber. The cells in the two 
chambers were separated by a semi-permeable membrane 
but shared the same medium. Exosomes of different 
concentrations (0, 4, 8, 16 µg/106) were added into the 
medium for co-culture for 48 hours (14,15). Finally, cells 
were washed with PBS, fixed with 4% paraformaldehyde 
for 15 minutes at room temperature, stained with 
4’,6-diamidino-2-phenylindole (DAPI), washed with PBS, 
and the cellular uptake of PKH 67-labeled exosomes was 
observed by confocal microscopy.

Cell proliferation

The H9 cells were inoculated to a 96-well plate, and 
combined with 10 L cell counting kit-8 (CCK-8, YZ-CK04, 
Solarbio, Beijing, China) and 100 L RPMI-1640 to culture 
for 48 hours. After 3 hours culture, the optical density (OD) 
value of each well at the wavelength of 450 nm was detected 
by a marker enzyme (FC, Thermo Fisher). The cell survival 
rate was calculated as: experiment well OD-blank hole OD/
control well OD-blank hole OD ×100%.

Dual-luciferase reporter gene

The target genes for miR-125b-1-3p were predicted by 
TargetScan (www.targetscan.org/vert_72/) and further 
confirmed by dual-luciferase reporter. Luciferase reporter 
plasmids of BCL11B mutant (BCL11B-MUT) and 
BCL2L11 wild-type (BCL11B-WT) were constructed and 
co-transfected with miR-125b-1-3p mimics and negative 
control (NC) using Lipofectamine 3000. The fluorescence 
intensity was measured 48 hours later using a dual-luciferase 
reporter kit (RG009, Beyotime).

Annexin V-FITC/PI

The H9 cells were rinsed in PBS, mixed with 1 mL 70% cold 
ethanol, fixed at 4 ℃ for 2 hours, centrifuged at 1,000 ×g  

Table 1 The primer sequences for genes

Genes Sequences

miR-125b-1-3p

Forward 5'-ACGGGTTAGGCTCTTGGGAGCT-3'

Reverse 5'-CAGTGCGTGTCGTGGAGT-3'

U6

Forward 5'-CTCGCTTCGGCAGCACATATACT-3'

Reverse 5'-ACGCTTCACGAATTTGCGTGTC-3'

BCL11B

Forward 5'-CGGGCGATGCCAGAATAGAT-3'

Reverse 5'-GATCACGGATGAGTGAGGGT-3'

GAPDH

Forward 5'-AATGGGCAGCCGTTAGGAAA-3'

Reverse 5'-GATCACGGATGAGTGAGGGT-3'

GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

http://www.targetscan.org/vert_72/
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for 4 minutes, and precipitated. Annexin V-fluorescein 
isothiocyanate (FITC) and propidium iodide (PI) staining 
solution (630110, Clontech, Mountain View, CA, USA) 
were added, mixed with the cells, and incubated at room 
temperature in the dark for 15 minutes. Finally, cell 
apoptosis was detected by flow cytometry (322457, Bio-
Rad, Hercules, CA, USA).

Cell cycle detection

The cell operation was conducted as above. A total of 0.5 mL  
PI staining solution was added to the cells to react at 4 ℃ 
in the dark for 30 minutes. The red fluorescence at 488 nm  
was detected by flow cytometry, and the cell cycle 
distribution of each group was analyzed by BD software 
(Becton, Dickinson and Co., Franklin Lakes, NJ, USA).

Western blot

Radioimmunoprecipitation assay (RIPA, G3424, Gbcbio) 
was used to lyse cells for obtaining protein samples. The 
proteins were separated on 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gel and 
then transferred to polyvinylidene difluoride (PVDF) 
membrane by wet method. Then, BCL11B (MA5-31434, 
Thermo-Fisher), BCL-2 (MA5-11757), Bax (MA5-14003), 
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, 
437000) were added to incubate with the proteins at room 
temperature for 2 hours. The membrane was combined 
with the primary antibody and incubated overnight at 4 ℃, 
then rinsed 3 times in PBS, combined with the secondary 
antibody (A32723) for incubation at room temperature for 
30 minutes, and then washed 3 times. Chemiluminescence 
was used for color development and fixation. Each strip was 
analyzed and scanned by the gel image processing system.

Construction of AS mouse model

A total of 20 6-week-old C57BL/6 background ApoE-
/- mice were purchased from Jackson Laboratory (Bar 
Harbor, ME, USA), and were evenly divided into an AS 
model group and exosome group, with normal C57BL/6 
mice as the control group (CON group, n=10). There 
was no difference in gender, age, or feeding environment 
among all the mice. The CON group was fed a normal diet 
containing 5% fat, while the rest were fed a high-fat diet 
containing 0.2% cholesterol and 20% fat. After 2 weeks of 

feeding, mice with a high-fat diet were intraperitoneally 
i n j e c t e d  w i t h  1 0 %  c h l o r a l  h y d r a t e  ( 5  m L / k g )  
to be anesthetized, and their right common carotid artery 
was isolated, exposed, and placed with a perivascular collar. 
The artery was then closed, and the operated mice were 
fed for a further 8 weeks (16).

Blood lipid test

Venous blood was collected from the bilateral inner canthus 
veins of mice, and the levels of total cholesterol (TC), 
triglyceride (TG), high-density lipoprotein cholesterol 
(HDL-C), and low-density lipoprotein cholesterol (LDL-C) 
were detected by a biochemical analyzer (Hitachi 7600, 
Chiyoda, Tokyo, Japan).

Enzyme-linked immunosorbent assay

Mouse serum was collected and centrifuged at 1,000 rpm 
for 10 minutes, and the expressions of interferon-gamma 
(IFN-γ), tumor necrosis factor-alpha (TNF-α) (CSB-
E04741m, CUSABIO), interleukin-6 (IL-6, CSB-E04639m, 
CUSABIO), and angiotensin-II (Ang-II, JL11512, Jianglai 
Bio., Shanghai, China) were detected according to the 
kit instructions (EK0375, Sciencell). The sample was 
added to the plate, sealed, and incubated for 30 minutes at  
37 ℃. The liquid was discarded and the cells were washed  
5 times. Apart from the blank wells, 50 μL of enzyme 
labeling reagent was added to each well and incubated at 
37 ℃ for 30 minutes. After washing, 50 μL A and B color 
reagents were added to the plate at 37 ℃ in the dark for 
15 minutes. Finally, the reaction was terminated by adding 
50 μL stop solution. The blank well was adjusted to 0, 
and the OD value of each well was read at 450 nm using a 
microplate reader within 15 minutes following the reaction. 
The concentration of the target factor was calculated 
according to the standard curve.

All animal experiments were performed in accordance 
with the guidelines for animal care and approved by the 
regional ethics committee of Bengbu Medical College (No.: 
20190213).

Statistical analysis 

The data were shown as mean ± SD. Independent sample 
t-test, Pearson test, one-way analysis of variance (ANOVA), 
and repeated measurement ANOVA were used for statistical 
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Figure 1 Co-culture of hMSCs-ad exosomes at different concentrations with H9 cells. (A) Exosome morphology observed under an electron 
microscope; (B,C) Western blot to detect protein expression; (D) CCK-8 to detect cell activity; (E,F) flow cytometry to detect apoptosis and 
cell cycle. hMSCs-ad, human adipose-derived mesenchymal stem cells; CCK-8, cell counting kit-8.

analysis in GraphPad prism version 8 (GraphPad software, 
San Diego, CA, USA). A P value <0.05 was considered 
statistically significant.

Results

hMSCs-Ad was co-cultured with H9 cells

Under the electron microscope, we observed that exosomes 
were saucer-shaped or hemispherical with a concave side, 
diameter of about 30–100 mm, and a complete membrane 
structure. The proliferation of H9 cells decreased with 
the increase of the exosome concentration, and the cell 
apoptosis increased significantly when the exosome 
concentration reached 16 μg/106; moreover, the proportion 
of the cells in G1 phase also increased greatly. Western blot 
analysis showed that the expression of anti-apoptotic protein 
Bcl-2 in H9 cells was down-regulated, while the expression 
of Bax, Caspase 3, and Caspase 9 proteins was up-regulated 
when the exosome concentration was 16 μg/106 (Figure 1).

The hMSCs-Ad-derived exosomes up-regulate the 
expression of miR-125b-1-3p in H9 and AS arterial 
tissues

We performed qPCR to detect the miR-125b-1-3p 
expression in hMSCs-Ad and exosomes (16 µg/106), and the 
results showed that miR-125b-1-3p expression in exosomes 
was significantly up-regulated. Co-culture of hMSCs-
Ad and their exosomes (16 µg/106) with H9 up-regulated 
the expression of miR-125b-1-3p in H9. The expression 
of miR-125b-1-3p was low in the arterial tissues of the 
AS model, but it was up-regulated after the injection of 
hMSCs-Ad exosomes (16 µg/106) via tail vein into the mice 
(Figure 2).

miR-125b-1-3p targeted and regulated the expression of 
BCL11B

TargetScan was used to predict the binding sites between 
miR-125b-1-3p and BCL11B. Dual-luciferase reporter 

0	 20	 40	 60	 80
Cell viability (%, 450 nm)

Normal

Normal Normal

G2 

S 

G1

Cas
pas

e 9

Cas
pas

e 3Bax

Bc1
-2

Exosome 
Normal

Exosome	 Normal

Bcl-2 

Bax 

Caspase 3 

Caspase 9 

GAPDH R
el

at
iv

e 
ex

pr
es

si
on

 
le

ve
l o

f p
ro

te
in

s

0.8 

0.6 

0.4 

0.2 

0.0

40 

30 

20 

10

0

100 

80 

60 

40 

20 

0

μg
 e

xo
so

m
es

/1
06  c

el
ls

C
el

l a
po

pt
os

is
 (%

)

P
ro

po
rt

io
n 

of
 c

el
ls

 (%
)

μg exosomes/106 cells μg exosomes/106 cells

0 

4

8 

16

16	 8	 4	 0 16	 8	 4	 0

B

E

C

F

A

D

100 nm



2128 Yu et al. Mesenchymal stem cells alleviate atherosclerosis

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(2):2123-2133 | http://dx.doi.org/10.21037/apm-21-49

Figure 2 hMSCs-Ad exosomes can up-regulate the expression of miR-125b-1-3p in H9 cells and AS arterial tissues. (A) qPCR detection of 
miR-125b-1-3p expression in HMSCs-ads and exosomes; (B) qPCR detection of miR-125b-1-3p expression in H9 cells; (C) qPCR detection 
of miR-125b-1-3p expression in mouse arterial tissues. hMSCs-Ad, human adipose-derived mesenchymal stem cells; qPCR, quantitative 
polymerase chain reaction; AS, atherosclerosis.
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assay showed that the luciferase activity decreased when 
BCL11B-WT was co-transfected with miR-125b-1-
3p mimics (P<0.05). Detection by qPCR found that the 
mRNA expression of BCL11B in the AS model group was 
significantly higher than that in the CON group (P<0.05). 
Pearson test was used to analyze the correlation between 
miR-125b-1-3p and BCL11B in the tissues of the AS model 
group, and the results showed that the relative expression 
of miR-125b-1-3p was negatively correlated with mRNA 
expression of BCL11B, and that miR-125b-1-3p negatively 
regulated the expression of BCL11B (Figure 3). 

Knocking out BCL11B promoted apoptosis of lymphocytes

Transfection efficiency was detected by qPCR and western 
blot. After the transfection, si-BCL11B was low-expressed 
in H9 cells. The data of CCK-8, flow cytometry, and 
western blot revealed that in the si-BCL11B group the 
proliferation of H9 cells was significantly decreased, 
apoptosis rate was increased, cell cycle was blocked, and 

apoptotic protein expressions were up-regulated (Figure 4).

hMSCs-Ad exosomes relieved the symptoms of AS

The levels of TC, TG, and LDL-C in the AS model group 
were significantly higher than those in the CON group 
(P<0.05). Enzyme-linked immunosorbent assay (ELISA) 
revealed that serum IFN-γ, TNF-α, IL-6, and Ang-Ⅱ in 
the mice of the AS group were significantly higher than the 
CON group (P<0.05). Inflammatory factor levels in serum 
were significantly reduced in tail intravenous HMSCs-ad 
extrapyramidal mice (P<0.05) (Figure 5).

Discussion

The incidence of cardiovascular diseases is increasing 
rapidly and it has become a major cause of death all over 
the world (17,18), which necessitates improving the 
prevention and control of cardiovascular diseases and 
the disease prognosis. The disease AS, which is the main 
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Figure 3 miR-125b-1-3p can target and regulate BCL11B. (A) The binding site between miR-125b-1-3p and BCL11B; (B) dual-luciferase 
reporter on genes; (C) qPCR detection of mRNA expression of BCL11B in AS model group tissues; (D) Pearson’s test to analyze the 
correlation between miR-125b-1-3p and BCL11B. qPCR, quantitative polymerase chain reaction.

cause of coronary heart and peripheral vascular disease 
(19,20), is a result of atherosclerotic plaque formation (21).  
Inflammation and lipid accumulation play a key role in the 
occurrence and development of AS. Visceral fat deposition 
can lead to an increased risk of AS and cardiac metabolism, 
and excessive visceral fat is closely associated with AS (22).  
Therefore, in this study, ApoE-/- mice were fed a high-
fat diet, and a perivascular cuff was placed on the common 
carotid artery to construct an AS mouse model. Neeland  
et al. (22) showed that high lipid level could be an 
independent risk factor for predicting the occurrence 
and death of AS patients, which was consistent with our 
results that AS mice showed higher lipids than those in the 
CON group. In addition, Neeland (22) also found a causal 
relationship between high lipid level and inflammation, 
which is supported by genetic evidence, and lipoprotein 
marked by high triglyceride was an important cause of 
inflammation, AS, and mortality of patients.

The arterial disease AS is an inflammatory disease 
related to lipid metabolism (23). The active inflammatory 
process may cause plaque rupture and increase the risk 

of developing coronary thrombosis. Innate and adaptive 
immunity play an important role in AS. Macrophages 
and T lymphocytes have potent proatherogenic effects, 
and defects of T lymphocytes can significantly inhibit the 
development of AS lesions (24,25). In the arterial wall, 
subendothelial retention of atherogenic lipoproteins can 
trigger T cells to form AS plaques. Inflammation is caused 
by the innate immune response of modified lipoproteins, 
and T lymphocytes remain active in AS lesions (26).

As a stromal vascular residue in adipose tissue, hMSCs-
Ad are directly involved in the self-renewal and self-
repair of cells in the body, while the inflammatory state in 
cardiovascular diseases can directly affect the proliferation, 
differentiation, and regeneration of hMSCs-Ad (27). The 
MSCs have a dual effect in transforming cells from pro-
inflammatory to anti-inflammatory or pro-inflammatory 
phenotypes (28). Studies (29) have found that MSCs 
can effectively inhibit T lymphocyte proliferation and T 
lymphocyte receptor activation, reduce cytokine secretion 
and cytotoxicity, and regulate the balance of Th1/Th2 
and T cell function in vitro. Compared with other MSCs, 
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Figure 5 hMSCs-Ad exosomes reduced AS symptoms. (A) Detection of blood lipids in mice; (B) ELISA detection of expressions of 
inflammatory factors. hMSCs-Ad, human adipose-derived mesenchymal stem cells; ELISA, enzyme-linked immunosorbent assay; AS, 
atherosclerosis.

Figure 4 miR-125b-1-3p can inhibit the expression of BCL11B to promote the proliferation of T lymphocytes. (A,B) qPCR and western 
blot detection of transfection efficiency of si-BCL11B; (C) CCK-8 detection of cell proliferation; (D,E) flow cytometry to detect apoptosis 
and cell cycle; (F) Western blot detection of apoptotic protein expressions. qPCR, quantitative polymerase chain reaction; CCK-8, cell 
counting kit-8.

hMSCs-Ad have a stronger immunosuppressive effect 
on T lymphocyte activation and B lymphocyte function 
inhibition. The hMSCs-Ad are expected to be a therapeutic 

agent with immunosuppressive effect (30). The results of 
this study indicated that after co-culture of hMSCs-Ad with 
its exosomes, there was inhibition of the proliferation of H9 
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cells, increased G1 cell proportion, and significant change in 
the expressions of apoptosis-related proteins, indicating that 
hMSCs-Ad and its exosomes could promote T lymphocyte 
apoptosis.

The hMSCs-Ad can release a large number of exosomes 
that carry miRNAs to target organs into the peripheral 
environment, thus enhancing organ function in various 
chronic diseases and delaying disease progression (31). 
Zhu et al. (32) found that miR-125b-1-3p in exosomes 
secreted by MSCs under anoxic environment can regulate 
apoptosis of myocardial cells, thus promoting ischemic 
heart repair. This suggests that the exosomes secreted by 
MSCs carry miR-125-1-3p, which mediates apoptosis 
of cells and plays a targeted role in myocardial repair. In 
mouse myocardial ischemia-reperfusion model with high-
expressed miR-125b, miR-125 protects the myocardium 
from ischemia/reperfusion (I/R) damage by inhibiting p53-
mediated apoptotic signals and NF-B activation mediated 
by TRAF 6, thus significantly reducing the myocardial 
infarction and preventing cardiac insufficiency (33).  
Li et al. (34) transfected miR-125b-1-3p mimics into 
mouse cardiomyocytes, and the oxidative stress and 
apoptotic protein expressions were significantly increased. 
Other studies revealed that umbilical cord-derived MSCs 
significantly inhibit T lymphocyte proliferation by inducing 
T lymphocyte apoptosis and cell cycle arrest (14).

In this study, we found that hMSCs-Ad exosomes 
could secrete miR-125b-1-3p. Moreover, bioinformation 
analysis and dual-luciferase reporter gene showed that 
there was a targeted binding region between miR-125b-
1-3p and BCL11B. Pearson test analysis of qPCR results 
demonstrated that miR-125b-1-3p could inhibit the 
expression of BCL11B in the AS mice. Knocking out 
BCL11B expression in H9 cells showed that the pro-
apoptotic effect of hMSCs-Ad exosomes was ineffective. 
The protein BCL11B, which plays an important role in the 
differentiation, proliferation, and survival of T lymphocyte 
immune T cells (35), connects directly to a promoter or 
indirectly via heterologous DNA binding domains to 
cause transcriptional repression (36). Huang et al. (37) 
demonstrated that in leukemia inhibition of BCL11B can 
effectively suppress the proliferation of T cells and induce 
cell apoptosis, suggesting that BCL11B siRNA could be 
explored as a novel targeted therapy strategy to maintain T 
cell homeostasis, and this also supports our findings.

An in vivo experiment found that intravenous injection 
of hMSCs-Ad exosomes could effectively reduce the blood 
lipid level of AS mice, and reduce the levels of inflammatory 

factors IFN-γ, TNF-α, IL-6, and Ang-Ⅱ. The current 
findings demonstrated the role of hMSCs-Ad exosomes 
in the treatment of AS. We speculated that hMSCs-
Ad exosomes could secrete miR-125b-1-3p to target the 
expression of BCL11B in T lymphocytes (38-40).

In conclusion, hMSCs-Ad could secrete exosomes 
containing miR-125b-1-3p, and it could target and regulate 
the expression of BCL11B in T lymphocytes after the 
absorption of vesicles by T lymphocytes, thus blocking 
the cell cycle, increasing cell apoptosis, inhibiting cell 
proliferation, and thereby reducing inflammation and blood 
lipid in AS mice.
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