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Abstract: Experimental models of the bladder are key to studying the pathogenic mechanism of catheter-
related bacterial biofilm infection. Although numerous studies have reported multiple models, these model 
designs were heterogeneous. This study aimed to review the status quo and explore the problems associated 
with in vitro dynamic bladder models for studying urinary tract infections (UTIs). The PubMed and 
SinoMed databases were searched from their inception to February 2020. Studies regarding in vitro bladder 
models related to UTIs were reviewed based on a bibliometric evaluation of their basic characteristics and 
model analysis. A total of 74 papers and 44 bladder models were included in this study. The results were 
as follows: (I) urine transmission devices: 10 studies applied the gravity effect of culture media, while the 
others used peristaltic pumps, and 11 of them combined stirring or rotating forces. The flow rates in all 
studies ranged from 15 µL/min to 50 mL/min. (II) Bladder model: two studies reported on simulating the 
bladder using plastic bags, while the others reported on glass cylinders or fermenters with a capacity of 200 
to 700 mL. E. coli and P. mirabilis were the main bacterial strains. (III) Infection carrier: six studies reported 
planktonic bacteria as their infection carrier, while 45 studies reported silica gel, rubber, polyurethane, 
silicone, polytetrafluoroethylene, or perfusion bag. (IV) Infection medium: 25 studies reported the culture 
medium. Thirty-two studies reported artificial urine, while 17 studies reported human urine. (V) Research 
analysis: 45 studies investigated the bacterial biofilm formation in the bladder model. Thirty-six studies 
compared the effects of various drug coatings, diverse material surfaces, or different materials. Only five 
studies compared distinct bladder models. The included studies’ main defects were the single simulation 
of bladder urodynamics, divers parameter settings, and non-standard experimental modeling. Our analysis 
showed for the first time that in vitro dynamic bladder models could provide new ideas for exploring the 
mechanism and prevention of bacterial biofilm infection in urinary implanted biomaterials. Due to the 
limitations of the included studies, more high-quality studies are needed to verify the conclusions above 
further.
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Introduction

Urinary tract infection (UTI) is the most common 
hospital-related infection, and 70–80% of these infections 
are associated with the use of a urethral catheter. The 
crucial part of UTIs’ pathogenesis is the formation of 
bacterial biofilm on the surface of biomaterials, which can 
lead to refractory biofilm resistance and immune damage 
(1-4). In other words, the bacterial biofilm is considered 
the key to biomaterial-related infections, although its 
mechanism of formation is still unclear (5). The discovery 
of mechanisms for the prevention and control of biofilm 
infection has become the primary research hotspot. In 
recent years, the study of biofilm infection from the 
perspective of fluid mechanical biology provided a new 
research direction. Numerous studies have been conducted 
on static planktonic bacteria. However, the materials for 
urinary tract implantation relating to the biofilm bacterial 
infection are exposed to a complex dynamic urinary flow 
environment. From the perspective of mechanical biology, 
organisms are affected by the mechanical environment 
since mechanical factors act on the entire body and 
organs’ biological processes, including positive functional 
adaptation reconstruction, negative structural damage, 
and disease occurrence. At present, a variety of successful 
bacterial biofilm models have been reported. As far as in 
vitro research is concerned, the design of experimental 
models that closely reflect actual  human bladder 
urodynamic conditions is key to studying the pathogenic 
mechanism of catheter-related bacterial biofilm infection, 
and a new anti-biofilm infection technology is required. 
However, previous studies’ bladder models differed in 
their ability to simulate human urinary flow effectively. In 
particular, the hydrodynamics status and standardization 
were inconsistent.

This review systematically evaluated the current 
research status and investigated the problems associated 
with in vitro dynamic bladder models for studying UTIs. 
We strongly believe that this research can provide a 
valuable reference for constructing in vitro models of 
UTIs. This study may also offer some insight into the 
mechanism and prevention of catheter-related complicated 
UTIs. We present the following article following the 
Narrative review checklist (available at http://dx.doi.
org/10.21037/apm-20-2061). 

Methods 

Research selection 

Inclusion and exclusion criteria
All previous studies that were based on an in vitro bladder 
model related to human UTI were included in this review. 
The selected research articles varied in the study’s model 
and design, and language preference was given to studies 
published in Chinese and English only. Studies with 
incomplete data, repeated publications, in vivo animal 
experiments and human studies, and those without a bladder 
model as the research topic were excluded from this study. 

Literature retrieval
The PubMed and SinoMed databases were electronically 
searched from the date of inception of the database to 
February 2020. The references of relevant studies were also 
searched. Free words were used for retrieval; for example,  
in vitro, ex vivo, bladder, and model.

Literature evaluation and analysis

Literature selection was conducted by reading the articles' 
titles and abstracts, and unrelated articles were excluded. 
Furthermore, the full texts of the articles were thoroughly 
checked to determine the relevance of the research. 
Inconsistencies were resolved by negotiation. At present, 
there is no authoritative quality evaluation tool for in vitro 
research (6-9), although some scholars suggest the OHAT 
risk-of-bias tool and Toxicological data reliability assessment 
tool (ToxRTool) (10-12). However, these methods are 
mainly used to evaluate the quality of animal research, and 
therefore, were unfit for the present research purpose. For 
this reason, a quality assessment of the included studies was 
not performed. The selected articles were classified and 
analyzed according to bibliometrics analysis, bladder model, 
model bacteria, infection medium, and carrier. 

Discussion

Basic characteristics of included studies

We obtained 1,850 articles (1,776 in English and 174 
in Chinese) and 22 references. Two reviewers (Guo-
Bing Xiong and Ai-Bo Liu) independently read the titles 
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and abstracts of the studies. In total, 120 articles [112 in 
English (including 22 references), two in Japanese, and six 
in Chinese] were included in the preliminary screening. 
Finally, 74 articles published in English, including 14 
articles obtained by searching the reference lists of relevant 
articles were included in this study. The basic characteristics 
of the 74 articles are summarized in https://cdn.amegroups.
cn/static/public/apm-20-2061-1.pdf. The selected 74 
studies were published between 1966 and 2020, and the 
decade distribution of studies as follow: 23 studies reported 
2011–2020 (13-35), 10 studies reported 2001–2010 (36-45), 
17 studies reported 1991–2000 (46-62), 10 studies reported 
1981–1990 (63-72), 13 studies reported 1971–1980 (73-85), 
only one study reported <1971 (86). 

Model construction and analysis 

According to the human urinary bladder and urine flow, i.e., 
continuous urine secretion, one-way flow from the kidney, 
ureter, and bladder to the urethra, cyclical bladder urine 
storage, and intermittent urination, we summarized the 
key components of the models into four categories. These 
included the devices for bacterial culture medium storage 
and collection of waste liquid, the power devices for urinary 
flow transmission (gravity, pump, combined agitation, or 
rotation to the latter), bladder models (combined with 
infection carrier), and the input and output pathways of the 
culture medium. All of the equipment was assembled to 
simulate the human urinary bladder system.

Some of the selected literature established in vitro 
bladder models based on the same models or with some 
modifications [two bladder models (13,15) were modified 
from the model reported by Abbott et al. (21); eight 
bladder models (16,17,19,30,32,33,35,38) were modified 
from the model reported by Stickler et al. (49); two bladder 
models (32,39) were modified from the model reported by 
Gaonkar et al. (43); one bladder model (28) was modified 
from the model reported by Fu et al. (36); two bladder 
models (31,34) was modified from the model reported by 
Andersen et al. (37); one bladder model (45) was modified 
from the model reported by Stickler et al. (55); one 
bladder model (48) was modified from the model reported 
by Getliffe et al. (59); six bladder models (19,41,50-53)  
were modified from the model reported by Stickler  
et al. (58); one bladder model (62) was modified from the 
model reported by Stickler et al. (64); 11 bladder models 
(63,65-70,72,73,75,76) were modified from the model 
reported by Greenwood et al. (77); one bladder model (75) 

was modified from the model reported by Greenwood  
et al. (78); seven bladder models (79-85) were modified 
from the model reported by O’Grady et al. (86)]. Hence, 
among the 74 studies, a total of 44 in vitro bladder models 
were finally included.

Components of the model and its analysis

The power devices of urinary flow
Ten studies (14,22,39,42,43,50,51,53,56,74) used the culture 
medium's gravity, while the others applied peristaltic 
pumps to exert power for fluid transmission. Of these, 11 
studies (13,21-23,44,68,69,72,78,85,86) were combined 
with stirring or rotating instruments and were set to a 
certain flow rate (15 µL/min to 50 mL/min). Meanwhile, 18 
studies (13,15,16,21,23,24,30,53,57,60,61,68,69,70-73,75) 
established the parameters of residual urine and micturition 
to simulate the clinical physiology or pathological urination 
and urine retention, so that the urine flow modes of the 
models more closely reflected the unsteady flow stress 
conditions of human bladder urine environments. 

We have summarized the power apparatuses of urinary 
flow in the selected bladder models on human urinary flow’s 
anatomy and physiology, which were the key technologies 
used to construct the models. These involved the pump, 
fluid gravity, or incorporated stirring or rotating devices 
into the models to provide urine transmission and urination 
power. 

Bladder model
Only two studies (14,42) simulated the bladder using plastic 
bags, while the remaining studies used glass bottles or 
cylinders with a heterogeneous capacity of 200 to 700 mL. 
From a biomechanical standpoint, bladder tissue’s elemental 
mechanical properties include elasticity, viscoelasticity, and 
plastic deformations (87,88). As a soft biological shell, the 
human bladder is considered to be a viscoelastic material in 
biomechanics; the flow pattern of the urine in the bladder 
is neither a static model nor a simple laminar model, 
importantly the latter one which is often neglected in the 
past (89-92). Therefore, it has been suggested that the 
design of experimental simulated bladders models should be 
further improved based on existing technologies and crafts. 
In particular, under the premise of a lack of ideal materials 
for bladder stimulation, the hydrodynamic design of urinary 
flow should simulate the unsteady flow stress conditions 
(turbulent stress) as much as possible (93). Moreover, the 
bladder’s capacity should be standardized; either equal to 
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the physiological capacity of the human bladder or reduced 
according to a specific proportion so that it can work with 
the enhanced mechanical-biological features of the dynamic 
bladder urine environment. 

Infection carrier
E. coli and P. mirabilis were the main typical strains for 
infection research, with a suitable consistency and the 
clinical isolation strains of catheter-related to UTI. Such 
refractory infections are complicated by the unique ability 
of P. mirabilis to form crystalline biofilms based on their 
crystalline nature owing to ureolytic biomineralization, 
eventually leading to encrusted and blocked implanted 
biomedical devices. This is especially important for 
indwelling urethral catheters and ureteral stents during 
daily clinical practice (94,95).

Infection vectors
Sixty-seven studies reported the infection vectors, 
including infected urine (64), rubber (76), planktonic 
bacteria (21,77), polymer (42,46) with the former 
polyolefin copolymer, glass (23,31) with the former 
sponge simultaneously, polyurethane (19,20,44,45), latex 
(39,43,50,58,60), Foley catheter (22,47,48,53,56,59) 
with no statement of the specific materials, agar plates 
(13,15,57,62,65,68,70,71,73), and silicone (14,16-18,24-
30,32,33-38,40,41,49,51,52,54,55). The other eight studies 
(20,23,31,43-45,58,60) also reported some materials, while 
the remaining 17 studies (61,63,65,67,69,72,74,75,78-86) 
did not explicitly report infection vectors. 

At present, most of the urinary catheters and stents 
used in urological practice are made up of silica gel and 
polyurethane. Some differences existed in the included 
studies, and thus, it is suggested that future research should 
focus on these two kinds of medical biomaterials. It is 
particularly emphasized that the initial bacterial adhesion 
of bacterial biofilms is mediated by multiple factors, among 
which the properties of biomaterials participate in the entire 
biofilm formation process, especially the physicochemical 
mechanism. They are involved in early bacterial adhesion 
and in the late stages of what is called “surface-programmed” 
biofilm growth, which is another important research 
direction to pursue (96-98).

Infection media
The culture medium also played an important role. 
Twenty-five studies reported different culture mediums, 
such as tryptone liquid culture (36) and MHB culture 

medium (13-15,21 ,56 ,61 ,63 ,66-72,74 ,75 ,77-84) .  
M e a n w h i l e ,  1 7  s t u d i e s  r e p o r t e d  h u m a n  u r i n e 
(20,24,25,28,29,33,46,48,49,57,58,61,65,71-73,76), and the 
remaining 32 studies reported artificial urine. Undoubtedly, 
urine that could be used as a culture medium is the closest 
simulation of the human environment. Although studies 
have been carried out using an artificial urine formula, 
the standardized protocol for artificial urine or the urine 
of healthy volunteers, especially the latter’s homogeneity 
problem, remains to be further explored (99).

Research design and content analysis 

Forty-five studies were conducted to explore bacterial 
biofilm formation in bladder models, which corresponds 
with the current research focus. A total of 36 studies were 
performed with comparative experimental designs, mainly 
consisting of comparisons between various coatings of drugs 
or different materials, including between static and dynamic 
models in three studies (20,27,30), the comparative analysis 
of culture fluids in two studies (56,57), comparisons between 
multiple interventions in 21 studies (13,14,17-20,22, 
28-30,36,38,39,41,43,50,53-55,58,64), comparisons between 
infection vectors in eight studies (37,40,42,44,45,52,53,58), 
and comparisons between experimental temperature in one 
study (37).

There were two primary categories of interventions; 
antibiotics and drug coating. (I) Antibiotic interventions 
included the following: antibacterial phage (28,36), 
norfloxacin and nano silver ion (20), lavage antibacterial 
solution (14,22),  fosfomycin (13),  E .  co l i  lysates-
IAA (urease inhibitor)-all icin (17),  biodegradable 
aqueous polyurethane polymer with ciprofloxacin and  
streptomycin (19), single agent or double or triple 
combinations of 1% polygalacturonic acid, 0.4% octanoic 
acid and 0.3% hydrogen peroxide (22), connecting a 
9V direct current line containing silver (41), Jack Bean 
urease of acid bladder irrigation solution (20 mg urease 
plus 1 L urine), different bladder irrigators (Uro-
Tainer, Bladder Syringe, Optiflow, 1% hydrochloric  
acid) (48), bladder irrigation solution (0.9% normal saline, 
sulpir G, 1% mandelic acid) (59), various concentrations of 
urease inhibitor, acetohydroxamic acid or fluoroimide (51),  
drainage systems mono flo, S4, P4, pp2000n, and 
sustained-release device embedded silver ion (55), 4 mA 
Iontophoresis-gentamicin (57), and chlorhexidine (64). (II) 
Drug coatings included the following: silver coating (50),  
polytetrafluoroethylene silver nanocomposite coating (18),  
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ciprofloxacin coating (58), chlorhexidine-sulfadiazine 
silver/chlorhexidine-silver sulfadiazine-triclosan coating/
silver hydrogel-nitrofurazone coating (43), nitrofurazone/
triclosan impregnation (39), silver hydrogel/antimicrobial 
peptide coating (24), minocycline-rifampicin coating (29), 
and acylase coating of QS destructing enzyme (30), and 
triclosan (0% vs. 0.5%, 1%, 4%) coating/pure solvent-
hydrogel coating/hydrogel, and iodized or hydrogel plus 
polyhexamethylene biguanide (PHMB) coating (38). 

From this, it is clear that there is obvious diversity in 
research. On the one hand, it implies that the problem of 
anti-infection, especially biofilm infection, is serious, and 
also suggests that the efficacy, safety, and cost of existing 
interventions should be summarized promptly to provide a 
reference for the future development of safe and effective 
coated medical implants with wide adaptability.

In total, only five studies reported a comparative 
experiment of in vitro bladder models (20,27,30,56,57), 
which are summarized in Table S1. Among these, Frant 
et al. (20) suggested that biofilm formation was more 
prevalent in the BioEncrustation dynamic bladder model 
and that more substances were observed in the urine scale. 
Meanwhile, Rasmussen et al. (56) suggested that bacterial 
infection increased, and retrograde infection was found 
to be more prevalent in the bladder model group without 
a urine meter. These two studies demonstrated the value 
of a dynamic bladder model for the mediation of bacterial 
infection. The small number of studies involving direct 
comparison experiments with different bladder models is 
a particular regret of the present study. However, we can 
summarize meaningful results from the different design 
techniques of urine transport pattern and force in existing 
bladder models.

Moreover, the principle of hydrodynamics is applied for 
a random movement of bladder urine flow. The intracavity 
indwelling catheter tip and water bag's characteristics are 
to create a unique stress environment of unsteady flow, i.e., 
turbulent shear stress, which can be formed in the body 
when the catheter is indwelled in the bladder. Therefore, 
the question arises about the formation of bacterial biofilm 
models simulating human bladder urine flow (100,101). 
There are complexities and difficulties in the construction 
of an in vitro bladder model. Despite the significant 
advancements that have been reported in numerous related 
articles regarding the 44 bladder models included in this 
study, the design and craft remain unclear and technical 
limitations still exist. Most published studies have only 
emphasized the simple movement of fluid by gravity or 

the unidirectional constant flow under the effect of an 
electric pump, etc. However, they have failed to consider 
the following situations comprehensively: the effect of the 
viscoelastic properties of the bladder, the consequence of 
the indwelling urinary catheter, the occurrence of urine 
retention phenomenon, as well as the volume of urine 
transformation, urination flow rate, residual urine, periodic 
gradual urine filling, and short-term micturition. In 
practice, the real state of human urinary flow is turbulent 
shear stress, as discussed above, yet this concept and its 
compound stress environment have not been fully simulated 
(89-93). The existing model design ideas are relatively 
simple, but the design technology and modules are not 
standardized (102). 

Henceforth, we aim to systematically review the main 
components and key construction technologies of the in 
vitro bladder models in existing studies and examine their 
defects to overcome difficulties in constructing in vitro 
bladder models and improve their performance for studying 
urinary biomaterial infection. This will help provide a 
worthwhile reference for bladder model construction that 
closely reflects the actual bladder urine flow conditions. The 
direct comparison of the bladder models was only reported 
in five studies; hence, more verification of the bladder model 
performance is needed. We can ensure the subsequent 
studies' authenticity only when the scientific feasibility and 
repeatability of the experimental model can be fully confirmed. 
This review could provide new research directions and 
translate basic research achievements into clinical practice.

There are some limitations in this study that should be 
noted. Firstly, the bladder models of the included studies 
were not standardized, some research details were unclear, 
the technical case-based designed schemes lacked a set of 
standards, and the evaluation indexes were multifarious. 
This made it difficult to compare the results of various 
studies and multiple bladder models, and thus, it could 
only be summarized and analyzed according to the existing 
data through simple quantitative and qualitative analysis. 
Secondly, the simulation and further verification of the real 
stress conditions and even the compound stresses of the 
bladder urine flow have not yet been reported. Importantly, 
the in vitro models lack the characterizations of bladder 
tissue architecture and the host stress responses, and 
therefore cannot provide a sufficient reference. Thirdly, a 
quantitative meta-analysis was not available due to the lack 
of homogeneity between the research data. Furthermore, 
quality evaluation of the in vitro research could not be 
performed. Lastly, literature retrieval was limited to articles 
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published in English and Chinese from the PubMed and 
SinoMed databases, respectively; thus, selection bias was 
difficult to avoid.

Conclusions

To our knowledge, this is the first systematic review of 
in vitro dynamic bladder models for studying UTIs. In 
conclusion, the existing research suggests that the in vitro 
bladder model can provide new ideas for exploring the 
pathogenic mechanisms, prevention, and control of bacterial 
biofilm infections related to bio-implants. Nevertheless, 
based on the principles  of  f luid and viscoelast ic 
biomechanics and mechanical biology, model designs should 
focus on simulating the complex stress environment of the 
actual bladder urine flow, combined with the construction 
of a bacterial biofilm generation carrier, culture medium, 
standardization of the bladder model, as well as verification 
of the scientific feasibility and repeatability of the model. 
At present, we are investigating the effect of in vitro 
urine turbulent shear stress of the bladder model on the 
formation of bacterial biofilm in the hope of obtaining some 
meaningful results (103).
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Table S1 Data of bladder model comparison

First author Year Model Outcome

Frant M (20) 2018 Encrustator® Model Only a small amount of crystal deposit (~0.057 mg/cm2) formed on the surface of 
the polyurethane catheter, and the main components were magnesium ion and 
phosphate; only a small amount of calcium, potassium, sodium and oxalate ion were 
detected.

BioEncrustation Model A significantly higher concentration of sediment (~0.37 mg/cm2) formed, which 
was mainly composed of sodium and oxalate ions. In addition, a large number of 
divalent cationic magnesium and calcium were detected. The surface phosphate ion 
concentration is comparable. 

Azevedo AS 
(27)

2017 Static model The growth curve of the dynamic model is similar to that of the two bacterial biofilm 
formed on the artificial urine silicone test piece in the previous study. Fish combined 
with CLSM to evaluate the spatial distribution of biofilm. Compared with the dynamic 
condition, the single species biofilm in the static condition has a higher thickness 
value

Dynamic laminar flow 
model

Single microbial biofilm showed that the number of culturable cells of botulinum toxin 
and scrub typhus increased significantly within 48 h (P < 0.05), in addition, the growth 
rate of scrub typhus was faster (0.4879 h-1) comparing with E. coli (0.2831 h-1), and 
the dynamic culture conditions had a negative impact on the cell concentration.

Ivanova K (30) 2015 Static model Foley catheter coated with acylase in the dynamic system has the same trend of 
inhibiting biofilm formation as that in the static system

Dynamic model Crystal violet and fluorescence image analysis showed that the formation of acylase 
coated bacterial biofilm was inhibited by 80% when Pseudomonas aeruginosa 
ATCC10145 was infected in a dynamic environment.

Rasmussen  
A (56)

1996 Bladder model with no 
urine flow meter

The bacteria were positive after three days of culture.

Bladder model with urine 
flow meter

There was no positive bacterial culture, and the retrograde bacterial infection was 
suppressed. Among them, Urometer 500 meter had no bacterial positive or retrograde 
infection after nine days of culture compared with the other two meters (P = 0.04)

Wong HY  
(57)

1995 Discharge valve opened 
per 4–6 h in the bladder 

model vs. continually

The results of bacterial growth did not change in either the intermittent filling, 
emptying of the drain valve set, or the continuous drainage simulating the Foley 
catheter drainage environment.
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