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Background

Alzheimer’s disease (AD) is one of the main causes of 
dementia in the senium and presenium, which is clinically 
characterized by memory loss, decreased intelligence and 
loss of fine motor skills. The brains of AD patients have 
obvious characteristics of atrophy, most notably in the 
temporal and parietal lobes (1). Early histopathological 
studies of AD in humans focused on the cerebrum, and the 
cerebellum was thought to be unrelated to AD. However, 
accumulating evidence has revealed several pathological 

changes in the cerebellum in early-onset AD (2,3). 
Moreover, sleep is also important to central nervous 

system physiology. Many studies have shown that sleep 
disorders are risk factors for AD. Notably, patients with 
AD exhibit an increased frequency of sleep disorders (4,5). 
General anesthesia is widely used in the clinical setting, and 
the loss of consciousness induced by general anesthetics is 
accompanied by a gradual decrease of the subject’s ability 
to perceive the external environment. Several studies have 
shown that anesthesia may be neurotoxic and cause various 
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long-term behavioral disorders, which have been reported 
to increase the risk of AD (6-8). 

We aimed to review and summarize information regarding 
the following three questions (Figure 1): (I) how does general 
anesthesia affect AD-related proteins? (II) how does general 
anesthesia affect AD by influencing cerebellar function? and 
(III) how does postoperative sleep disturbance after general 
anesthesia aggravate AD?

We present the paper in accordance with the Narrative 
Review reporting checklist (available at: http://dx.doi.
org/10.21037/apm-20-2597).

Effect of general anesthesia on AD-related 
proteins

Recent pre-clinical and clinical studies support the notion 
that general anesthetics have a notable impact on tau 
pathogenesis and amyloid-β (Aβ) peptide, which could 
contribute to the development of AD (9,10). Eckenhoff 
et al. proved that inhalation anesthetics isoflurane and 
halothane can enhance Aβ oligomerization and Aβ-induced 
cytotoxicity of rat pheochromocytoma cells in vitro (11). 
Xie et al. reported that treatment with 2% isoflurane for 
6 hours can induce caspase-3 activation, cell death, and 
accumulation of extracellular Aβ levels (12). However, 
desflurane is a new type of inhalation anesthetic, different 
from isoflurane and sevoflurane, it has no effect on the 
activation of caspase-3, the processing of Aβ precursor 
protein and the accumulation of Aβ in human glioma cells, 
and it does not induce learning and memory impairments 
in mice (13). Zhen et al. (14) showed that nitrous oxide 
does not cause apoptosis or Aβ accumulation in cells and 
neurons, as pointed out by desflurane. These findings 
indicate that compared with other commonly used 
inhalation anesthetics (such as isoflurane and sevoflurane), 
the effects of nitrous oxide and desflurane on Aβ protein 
have better characteristics (10).

A study showed that propofol did not affect Aβ precursor 
protein unlike the inhalation anesthetics isoflurane and 
sevoflurane. Propofol was also found to inhibit isoflurane-
induced Aβ42 oligomerization (15). Fodale et al. confirmed 
that smaller-sized agents like volatile anesthetics can 
promote Aβ oligomerization, while larger-sized intravenous 
agents cannot interact with Aβ protein and do not promote 
Aβ oligomerization (halothane > isoflurane > sevoflurane > 
propofol > thiopental > diazepam) (16).

Tau is a phosphoprotein, and its biological activity 
of stimulating microtubule assembly is regulated by 

phosphorylation. Run et al. demonstrated that the abnormal 
hyperphosphorylation and aggregation of tau were crucial 
to neurodegeneration in AD (17). Previous studies showed 
that sevoflurane anesthesia induced tau phosphorylation 
and cognitive impairment in 6-day-old neonatal mice 
(18,19). Compared with sevoflurane, propofol may improve 
postoperative Aβ-42 and tau protein levels in patients with 
hepatocellular carcinoma and ameliorate postoperative 
cognitive function (20).

Effect of cerebellar dysfunction after general 
anesthesia on AD

The cerebellum is a key part of distributed neural circuits, 
not only involved in motor functions, but also in autonomic 
nervous, limbic and cognitive behaviors. Motor cerebellar 
lesions can cause movement disorders, but cognitive and 
limbic cerebellar lesions in the posterior lobe can cause 
intellectual and emotional sensory disorders (cerebellar 
affective syndrome) (1). Purkinje cells (PC) are the only 
output neurons in the cerebellar cortex and are highly 
sensitive to anesthetics (21). Repeated anesthesia may cause 
PC degeneration, dendritic cell reduction and cerebellar 
degeneration (22). Several studies have suggested that 
cerebellar dysfunction contributes to the development 
of AD, including the loss of distal dendritic segments, 
decrease in the total number of dendritic spines, presence 
of ubiquitin-immunoreactive dystrophic neurites and 
spines, microglial proliferation of PCs, and significant 
cell volume loss. Aβ deposits in the cerebellum are also a 
frequent finding in early-onset AD, and they are located 
predominantly in the molecular layer of the cerebellar 
cortex; they are characterized by diffuse-type Aβ with only 
few amyloid fibrils and generally do not include senile 
plaques (23-25). 

Cerebellar dysfunction caused by general anesthesia is 
an important factor in promoting AD. General anesthetics 
may increase the synthesis and release of the presynaptic 
GABA transmitter in PC, which in turn increases the 
concentration of glutamate and reduces the excitability of 
PC (26). Propofol works by activating GABA-A receptors 
and blocking N-methyl-D-aspartate (NMDA) glutamate 
receptors (27) and it is a well-known cause of dyskinesias, 
which strongly highlights the mechanism underlying 
propofol damage of the cerebellum. Zhang et al. pointed out 
that the administration of propofol may affect information 
processing through the climbing fiber-PC pathway through 
NMDA receptors, which may be related to the propofol-
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Figure 1 General anesthetics, cerebellum malfunction and postoperative sleep disturbances in patients with Alzheimer’s disease (AD). Aβ, 
amyloid-beta; PC, Purkinje cell.
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induced dysfunction of the cerebellum, such as in movement 
disorders (28). Bergman glial cells with filamentous burls 
extend longer radial fibers in synchronization with the 

growth of PC dendrites during postpartum development, 
and contribute to the growth of cerebellar PC dendrites 
(29-31). In addition, Lütolf et al. reported that the 
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Notch signaling pathway is an important factor in the 
differentiation and maturation of Bergmann glial cells (32). 
However, even at low doses, propofol treatment reduces the 
levels of Notch1 and Jagged1, which promotes Bergmann 
glial cell reduction and Bergmann abnormal processes, 
further slowing down granule cell migration and weakening 
of cerebellar PC development (33). Fang et al. noted that 
the inhalation of sevoflurane seemed to inhibit sensory 
information transmission in the cerebellar cortex and had a 
partially dose-dependent effect, further delaying cerebellar 
motor function development (34). Moreover, inhaled 
anesthetics may also increase the level of small oligomers 
in the cerebellum (35), such as Aβ peptide aggregates, and 
impair learning and memory function in AD. 

Effect of postoperative sleep disturbances after 
general anesthesia on AD

General anesthesia is considered to be an independent risk 
factor for circadian rhythm disorders, which may change 
the sleep structure and quality of sleep after surgery (36). 
Patients usually experience circadian rhythm disturbances 
after surgery, such as sleep deprivation and sleep disorders, 
which are characterized by suppression of slow wave sleep 
and rapid eye movement sleep during the first three nights 
after surgery (37). In approximately 23% of patients, 
the decline in sleep quality may persist for 4 days after 
surgery. About 25% of patients reported experiencing sleep 
deprivation again 15 days after surgery, and 24% of them 
required medication to improve sleep (38). Long-term sleep 
disturbances may cause central nervous system disorders 
and memory impairment (39,40). AD is the most prevalent 
neurodegenerative disorder, and a widely held clinical view 
is that AD is associated with an increased frequency of sleep 
disturbances. Sleep disturbances might heighten the risk 
of AD by increasing Aβ burden (41), and sleep disturbance 
may also lead to increased systemic inflammation, which is 
strongly considered to contribute to the Aβ burden which 
drives AD pathogenesis (42,43).

The following are the potential mechanisms underlying 
the association between sleep disturbance and AD. First, 
slow-wave activity during non-rapid eye movement sleep 
causes decreased neuronal activity, thereby preventing 
the increase in extracellular Aβ levels and the formation 
of amyloid plaques (4). Extracellular Aβ levels are closely 
related to neuronal firing and frequent wakefulness (44). 
Therefore, postoperative sleep disturbance may lead 
to increased neuronal activity-dependent Aβ and tau 

release during awakening, leading to larger deposits of 
amyloid plaques and tau tangles. In addition, pathological 
proteins lead to uncoupling of lactate metabolism and 
neurometabolism in the sleep-wake cycle, leading to 
severe sleep disorders after surgery. Second, sleep has well-
documented effects on the immune system, in that sleep 
disturbances may modulate optimal immune function and 
certain cytokines or other immune modulators may enhance 
or suppress sleep. Therefore, it is conceivable that lack of 
sleep after surgery will fully change the immune function 
and affect the pathogenesis of AD (45). Third, short 
sleep duration after surgery may activate the cellular and 
molecular processes of inflammation, including increases in 
nuclear factor-κ-B signaling, which leads to inflammatory 
gene expression, the production of proinflammatory 
cytokines, and systemic inflammation with further increases 
of proinflammatory cytokines and C-reactive protein 
(46,47). The accumulation of Aβ peptide is crucial in the 
pathogenesis of AD, and this accumulation is partly driven 
by inflammation (48). Moreover, in humans, sleep is known 
to contribute to Aβ clearance from the brain; postoperative 
sleep disturbances may decrease the clearance of Aβ and 
contribute to the pathogenesis of AD (49).

Conclusions

This review not only highlighted the effect of general 
anesthetics on Aβ and tau in AD, but also summarized 
the effect of cerebellar dysfunction caused by general 
anesthesia on AD. Moreover, we discussed the mechanism 
underlying the effect of postoperative sleep disturbances on 
AD. Pathological changes in the cerebellum are related to 
early-onset AD. Further, sleep disturbances are frequent in 
AD and have significant impact on patients and caregivers. 
Further research is needed to clarify the contribution of 
general anesthesia to sleep impairment and cerebellar 
dysfunction. Identifying early cerebellar dysfunction after 
general anesthesia and developing new therapeutic measures 
that target postoperative sleep disturbances may have far-
reaching implications for AD.
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