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Background: This study aimed to confirm the relationship between asthma, respiratory syncytial virus 
(RSV) infection, and the gut environment by analyzing the alterations in the gut microbiota of RSV-infected 
asthmatic mice. 
Methods: Twenty-four male BALB/c mice were randomly separated into a control group (CON), 
ovalbumin (OVA) group, and an OVA + RSV group, (n=8 mice/group). At the end of experiments, 
we evaluated the RSV-infected asthma model using Wright-Giemsa staining, histopathology and 
immunoglobulin E (IgE) level using enzyme-linked immunosorbent assays (ELISA). Next, airway hyper-
responsiveness (AHR) was measured using Buxco’s modular and invasive system. Furthermore, IL cytokine 
expression were measured using ELISA. Moreover, feces were collected for 16S ribosome RNA (16S rRNA) 
sequencing and data analysis. 
Results: We observed that the total BAL fluid lung cells in the OVA + RSV group was significantly higher 
than other group. We revealed that the inflammatory infiltration, edema, and collagen hyperplasia were more 
severe in the OVA + RSV group. The AHR of RSV-infected mice was aggravated compared with the other 
groups, (P<0.05 and P<0.01). We observed a higher expression of IgE, interleukin (IL)-5, IL-13, IL-25, and 
IL-33 levels in mice from the OVA and OVA + RSV groups (P<0.05 and P<0.01). The associations between 
Prevotellaceae_UCG_001, which is positive, and IgE, IL-13, IL-33 (P<0.001), IL-5 (P<0.01), and IL-25 
(P<0.05) were highly significant. Lachnospiraceae_NK4A136_group is also positive and was significantly 
associated with IgE and IL-33. Helicobacter and Uncultured_Bacteroidales_bacteriumare_group, which are 
negative, were associated with IL-25 (P<0.05). 
Conclusions: Our results indicated that RSV-infected mice with asthma may have changes in the gut 
microbiota’s major components and may influence the mutual relationship between the core operational 
taxonomic units (OTUs) and IgE as well as inflammatory cytokines. 
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Introduction

Asthma is a chronic disease that affects children with 
variable expiratory airflow limitation. Some of its symptoms 
include wheezing, shortness of breath, chest tightness, and 
cough due to chronic airway inflammation (1). According 
to the Global Institute for Asthma (GINA) Committee and 
the International Study Asthma and Allergies in Childhood 
(ISAAC) Phase Three Study Group, 300 million people 
are affected with asthma worldwide, with 3.2% of cases in 
the Asia-Pacific region and 4.9% of children suffering from 
severe asthma worldwide (1,2). In China, the incidence, 
prevalence, and disability-adjusted life years (DALYs) of 
childhood asthma continue to rise (3,4).

Respiratory syncytial virus (RSV) is a negative-sense 
single-stranded RNA virus of the Paramyxoviridae family (5),  
and is the most common respiratory pathogen. RSV 
infection can promote airway obstruction and recurrent 
wheezing, leading to airway damage, which is a huge 
disease burden in infants and young children globally (6). 
Furthermore, asthma can also lead to more frequent and 
severe RSV infection (7). Asthma with RSV infection can 
release multiple mediators and cytokines that amplify the 
inflammatory response in asthmatic airway structural cells 
and participate in the structural changes in the airways. 
This leads to the induction of mucus hypersecretion, 
subepithelial fibrosis, and an increase in smooth muscles 
and blood vessels in the airway walls. Taken together, these 
changes result in airway inflammation, narrowing and 
airway hyper-responsiveness (AHR) (7-9).

The gut microbiota comprises bacteria that colonize 
the gastrointestinal tract (GIT) and represents 10 bacterial 
species in the human gut (10). Healthy gut flora can 
promote nutrient metabolism and mucosa growth, which 
is mainly related to the host’s overall health (11). Recent 
studies have found that a change in the quantity, type, and 
maturation of gut microbiota at 3 months of age is a crucial 
factor affecting the development of asthma and atopy in 
childhood (11-13). Notably, symptoms of digestive system 
diseases, such as vomiting, diarrhea, and abdominal pain 
have been observed in patients with corona virus disease 2019 
(COVID-19), the ongoing pandemic with a mortality rate of 
1.4% (14). These findings are consistent with the ‘gut-lung 
axis’ theory, which has linked changes in the gut microbiome 
with lung inflammation, as lung infection can disrupt 
the gut microbiota via the blood circulatory system (15).  
Although it is known from the literature that RSV infection 
in asthma patients impacts their gut microbiota, the 

imbalances in the types of their gut microbiota and the 
mechanism of airway inflammation regulation in RSV-
infected asthma patients is still unclear.

In this study, we created an RSV-infected OVA 
challenged mice and studied an RSV-infected asthma mouse 
model. We subsequently tested the mice lung function, 
lung histopathology, and the expression of inflammation 
cytokines (IL-5, IL-13, IL-25, and IL-33) using ELISA and 
16S rRNA sequencing. Finally, we analyzed the relationship 
between immunoglobulin E (IgE), inflammatory cytokines, 
and gut microbiota.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/apm-20-2052).

Methods

Preparation of RSV

RSV was prepared according to the method described 
by Yan Sun (16). The RSV A2 strain (ATCC, USA) was 
inoculated into human laryngeal carcinoma cells (Hep-2 
cells), Shanghai Cell Bank, Chinese Academy of Sciences 
(CAS). After 3–5 days, RSV A2 caused the Hep-2 cells to 
fuse and form a “multinucleated giant cell” syncytium. For 
complete and detailed steps of this process, please refer 
to our previous work (17). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013)

RSV infected-asthmatic mice

Six-to-eight-week-old BALB/c male mice (Shanghai 
SLAC Laboratory Animal Co., Ltd.) were provided with a 
standard diet and maintained at 24±2 ℃, 46%±5% humidity 
in a light/dark cycle. After 5 days of acclimatization, 24 
mice were randomly divided into a control group (CON, 
n=8), an ovalbumin group (OVA, n=8), and an OVA + 
RSV group (n=8). The asthma model was sensitized via 
intraperitoneal injections (i.p.) of OVA (grade V, Sigma-
Aldrich, USA) (OVA 20 μg + AL [OH]3 2 mg, 0.2 mL) at 0, 
14, and 28 days. The OVA and OVA + RSV groups received 
consecutive RSV infections (1.0×106 PFU·mL−1, 50 μL) in 
the morning of days 28, 30, and 32, while the mice from the 
control group were administered phosphate buffer saline 
(PBS) (Figure 1A). For complete and detailed steps of this 
process, please refer to our previous work (17). After the 
last administration, all mice were anesthetized with sodium 

http://dx.doi.org/10.21037/apm-20-2052
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Figure 1 The manifestation of RSV-infected asthmatic mice. (A) Hep-2 cells formed ‘paving stones’ shapes, which adhered to the culture 
plates’ surface. The cells formed a ‘multinucleated giant cell’ syncytium after the infection with the RSV A2 strain. CON, control; RSV, 
respiratory syncytial virus. (B) Schematic of an experiment for RSV-infected asthma model. (C) Eosinophils in the bronchoalveolar lavage 
fluid shown using Wright-Giemsa staining. (D) RSV-infected increase in IgE level in serum was determined by ELISA; values are presented 
as mean ± standard deviation (SD) (n=3). ***, P<0.001 compared to the control group. (E) Inflammatory changes within lungs were measured 
by H&E staining (×200). PAS staining revealed that the OVA + RSV group exhibited goblet cell hyperplasia and the highest level of airway 
mucus secretion. VG staining also revealed that the OVA + RSV group peribronchial collagen deposition than the other groups. H&E, 
hematoxylin and eosin staining; PAS, periodic acid-Schiff staining; VG, Van Gieson staining. (C,D,E) CON, control; OVA, ovalbumin; 
OVA + RSV, respiratory syncytial virus + ovalbumin.
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pentobarbitone (2.5%). The bronchoalveolar lavage (BAL) 
fluid was collected for Wright-Giemsa stain, lung function 
was tested, and lung tissues were collected for examining 
inflammatory changes using haematoxylin and eosin (HE), 
periodic acid-Schiff (PAS), Van Gieson (VG) staining. 
The serum levels of interleukins (ILs) were analyzed using 
ELISA. Samples from the large intestines and feces were 
collected for 16S rRNA sequencing. Experiments were 
performed under a project license (No. 2016001) granted 
by the Institutional Animal Care and Use Committee 
of Shanghai Jiao Tong University, in compliance with 
the National Research Council criteria or institutional 
guidelines for the care and use of animals. 

 BAL fluid

After lung function assessment, the mice were sacrificed 
via administration of sodium pentobarbitone (2.5%) and 
cannulation of the trachea. Next, BAL obtained from the 
airway lamina was washed with 1.0 mL sterile PBS. Cell 
types were determined, and 100 mL fluid was deposited 
onto glass slides using cytospin for Wright-Giemsa 
staining. Differential cell counts were determined from  
200–600 leukocytes using standard hematological criteria. 
The BAL fluid supernatant was stored at −25 ℃.

Lung function of RSV infected-asthmatic mice

AHR was measured with Buxco’s modular and invasive 
system (Buxco Electronics Inc., NY, USA). Pulmonary 
airway resistance (RL) and dynamic lung compliance (Cdyn) 
were tested directly (as described previously) (17). The 
anesthetized mice were tracheostomized and intubated 
with a special cannula and then laid in the supine position 
inside a plethysmograph chamber. After a stable baseline 
airway pressure was achieved, the mice were successively 
administered aerosolized PBS. Subsequently, the values 
were recorded in response to increasing methacholine 
concentrations (3.125, 6.25, and 12.5 mg/mL) and were 
expressed as a percentage change from the baseline value.

Histology

Lung tissues from the mouse model were fixed in 4% 
buffered paraformaldehyde overnight, embedded in 
paraffin, and cut (Leica, Germany, RM2235) into 4 μm 
sections. HE, PAS, and VG staining were used to observe 
discrepancies in the lung tissue. The sections were then 

viewed under a light microscope using high magnification 
(400×) (Leica, Germany, BX42).

ELISA

The mice’s blood was collected after 2 h at 20–25 ℃ and 
then centrifuged for 30 min at 1,200 ×g/4 ℃ to isolate the 
serum. The levels of inflammatory factors (IgE, IL-5, IL-
13, IL-25, and IL-33) were analyzed using ELISA according 
to the manufacturer’s instructions (USCN Business Co., 
Ltd., China).

16S rRNA sequencing

Isolated genomic DNA from the fecal samples of RSV-
infected mice was polymerase chain reaction (PCR) 
amplified for the V3-V4 hypervariable regions of 
the bacterial 16S rRNA. The reaction was carried 
out in a 25 μL volume using universal primer pairs 
( 3 4 3 F :  5 ' - TA C G G R A G G C A G C A G - 3 ' ;  7 9 8 R : 
5'-AGGGTATCTAATCCT-3'). Both primers were 
connected with an Illumina sequencing adapter. The 
reaction conditions were as follow: 94 ℃ for 5 min; 26 
cycles at 94 ℃ for 30 s, 56 ℃ for 30 s, and 72 ℃ for 5 min.

The amplicons were purified with AMPure XP beads 
(Beckman Coulter, A63881, USA), visualized using gel 
electrophoresis, and amplified for the second round of 
PCR. Following amplicon purification using the AMPure 
XP beads, the final amplicon was quantified by Qubit 
dsDNA assay kit (Life Technologies, Q32854, USA). Equal 
quantities of purified amplicon were pooled for sequencing. 
Two paired-end read cycles of 300 bases each to sequence 
were performed on an Illumina Miseq (Illumina Inc., USA).

Bioinformatics

To detect and cut off ambiguous bases (N), paired-end reads 
were preprocessed using Trimmomatic v 0.35 software (18).  
Reads with a low quality score (below 20) were cut off 
using the trimming approach. Next, paired-end reads were 
assembled using the Fast Ligation-based Automatable Solid-
phase High-throughput (FLASH) v1.2.11 software (19).  
The assembly parameters were as follows: 10 bp of minimal 
overlapping, 200 bp of maximum overlapping, and 20% 
of maximum mismatch rate. Further denoising of the 
sequencing data was performed as follows: reads with 
ambiguous, homologous sequences, or those below 200 bp,  
were not considered. Seventy-five percent of bases above 
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Q20 were retained using Quantitative Insights into Microbial 
Ecology (QIIME) 1.8.0 software (http://qiime.org/) (20). 
The reads with chimera were subsequently detected and 
removed using UCHIME v 4.2.40 (21). Clean reads were 
subjected to primer sequence removal and clustering 
to generate operational taxonomic units (OTUs) using 
VSEARCH software (version 10.0.240, http://www.drive5.
com/usearch) with a 97% similarity cut off (22). Each 
OTU was selected using the QIIME package (http://qiime.
org/). All representative reads were annotated and blasted 
against the Silva database (Version 123) using a Ribosomal 
Database Project (RDP) classifier v 2.2 (confidence threshold 
was 70%) (23). The microbial diversity of fecal samples in 
RSV-infected mice was estimated using the alpha diversity, 
including the Chao1 (24) and Shannon indexes (25).  
The Bray Curtis distance matrix was generated using 
QIIME software, which also provides the Bray Curtis 
Principal Coordinates Analysis (PCoA) and phylogenetic 
tree (26) construction. The 16S rRNA sequencing and 
analysis were conducted by OE Biotech Co., Ltd. (Shanghai, 
China). 

Data availability

All bacterial sequencing data of 16S rRNA genes generated 
in this study were deposited in the National Center for 
Biotechnology Information (NCBI) Sequence Read Archive 
under the accession number PRJNA627257 (http://www.
ncbi.nlm.nih.gov/sra).

Statistical analysis 

All data were statistically analyzed and presented as mean ± 
standard deviation (SD) using GraphPad Inc., San Diego, 
CA, USA (GraphPad Prism V5, USA). The three groups 
were analyzed using one-way analysis of variance (ANOVA), 
and multiple comparisons were analyzed using t-tests. 
ELISA comparisons between two groups were analyzed 
using one-way ANOVA. A two-sided P<0.05 was considered 
statistically significant.

Results

RSV-inoculated and RSV-infected asthmatic mice 

After RSV-inoculated Hep-2 cells were infected with the 
RSV A2 strain, typical fusion lesions (syncytia formations) 
could be viewed under the microscope. This was fused 

into a ‘multinucleated giant cell’ syncytium (Figure 1B). 
Using Wright-Giemsa staining, we observed that the total 
BAL fluid lung cells showed that the control group (the 
PBS challenged group) had few eosinophils (Figure 1C). 
The number of eosinophils in the OVA group’s BAL fluid 
was significantly higher than that in the control group. In 
the OVA + RSV group, the total number of lung cells was 
significantly higher than that in the OVA-challenged and 
control groups. 

One of the important features of the allergic asthma 
model is the production of Ovalbumin-specific IgE upon 
induction. So, levels of IgE were measured in the serum of 
the control (137.57±4.92), OVA (236.45±11.34), and OVA 
+ RSV (257.37±6.79) groups. IgE levels in the serum of 
OVA challenged mice were significantly higher than in the 
control mice (P<0.05), and OVA + RSV group mice had 
significantly higher IgE levels than the OVA challenged 
group (P<0.01) (Figure 1D). 

To define the inflammatory changes in the established 
RSV-infected asthma model, pathological manifestation 
of the lung was evaluated by H&E staining. Compared 
with the control group mice, an obvious presence of 
inflammatory cells around the airways and vessels was 
observed in the OVA challenged group. The number of 
inflammatory cells presents around the airways of asthmatic 
mice infected with RSV dramatically increased compared 
with the other groups (Figure 1E). 

Our team also studied goblet cell hyperplasia and mucus 
hyperproduction by PAS staining and lung peribronchial 
collagen deposition using VG staining. The results 
showed that RSV-infected asthmatic mice developed 
significantly aggravated goblet cell hyperplasia and mucus 
hyperproduction and increased peribronchial collagen 
deposition than the other groups (Figure 1E).

Aggravation of AHR and IL cytokine expression in RSV-
infected asthmatic mice

The RSV-induced aggravation of AHR in the OVA-induced 
asthma model was also evaluated. We found that mild 
changes in RL and Cdyn were observed in the control group 
mice. However, there was a significant change in airway 
responsiveness in the OVA-exposed and OVA + RSV group 
mice, with an obvious increase in RL and decreased Cdyn 
compared with the control mice. The OVA + RSV group 
exhibited significantly aggravated airway responsiveness 
provoked by methacholine and decreased airway compliance 
compared with the OVA and control groups (P<0.05, 

http://qiime.org/
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
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P<0.01) (Figure 2A). RSV-infected asthmatic mice were 
found to increase the expression of IL cytokines, such as 
IL-5 (CON 19.01±1.49, OVA 21.66±2.24, OVA + RSV 
23.95±4.33); IL-13 (CON 23.03±1.31, OVA 25.80±1.22, 
OVA + RSV 29.24±1.78); IL-25 (CON 19.44±0.89, OVA 
22.32±1.78, OVA + RSV 23.83±2.60); and IL-33 (CON 
20.23±1.53, OVA 24.07±2.00, OVA + RSV 25.80±4.30). 
RSV-infected asthmatic mice could give rise to abnormal 
production of cytokines. As shown in Figure 2B, the serum 
IL levels were higher in the OVA group and highest in 
the OVA + RSV group, compared with the control group 
(P<0.05 and P<0.01, respectively).

The composition of the gut microbiome is altered after 
RSV-infection in asthmatic mice

The feces of mice were analyzed to investigate whether 
RSV-infection affects the gut microbiota of asthmatic mice. 

The gut microbiota was visualized using a flower plot and 
community bar plot created using the sequencing data. The 
flower plot suggested that asthma and RSV-infected asthma 
significantly altered the number of OTUs. There were 157 
core OTUs in the three groups, and the number of OTUs in 
the OVA + RSV group was significantly reduced (Figure 3A).  
From the community bar plot, it was possible to observe 
that there were differences among the three groups at the 
levels of phylum (Figure 3B), family (Figure 3C), and genus 
(Figure 3D).

Compared with the CON and OVA groups, the 
abundance of Bacteroidetes and Firmicutes were higher and 
lower, respectively, in the OVA + RSV group. In this result, 
the eight DNA samples extracted (CON groups) did not 
have good quality; thus, only seven samples were analyzed. 
From the OVA + RSV groups 1–4, the DNA extracted 
samples did not have good quality, so we could only analyze 
5–8 samples after eliminating the 1–4 data sets. In order to 

Figure 2 Effect on AHR and inflammatory factors in RSV-infected asthmatic mice. (A) RSV infections aggravated AHR to methacholine 
in OVA-challenged mice. Airway responsiveness to methacholine (3.125, 6.25, 12.5 mg/mL) was evaluated using a Buxco’s modular and 
invasive system. (A-1) Changes in RL. (A-2) Changes in Cdyn. The data are expressed as the mean ± standard error of mean (S.E.M.) *, 
P<0.05, **, P<0.01, versus the control group (n=3). (B) Inflammatory factor levels of mice serum were evaluated in the three groups using 
ELISA. Results are presented as mean ± SD values. Serum levels of inflammatory factors (IL-5, IL-13, IL-25, and IL-33) in the RSV+ OVA 
group were significantly higher than the control (*, P<0.05; **, P<0.01) and OVA (#, P<0.05) groups. CON, control; OVA, ovalbumin; OVA 
+ RSV, respiratory syncytial virus + ovalbumin.
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verify the quality of the reserved samples, we verified them 
twice. Compared with the CON group, the abundance 
of both Bacteroidetes and Firmicutes were lower in the 
OVA group, which may be due to the lower abundance of 
Bacteroidales_S24_7_group, Bacteroidaceae, Clostridiales_vad 
in BB60_group, and Lachnospiraceae. Significant differences 
were observed in the abundance of Prevotellaceae_UCG_001 
and Helicobacter. Compared with the control group, the 
abundance of both Bacteroidetes and Firmicutes were higher 
in the RSV group, which may be due to the growth of 

Prevotellaceae, Porphyromonadaceae, Bacteroidaceae, and 
Lachnospiraceae. The significant abundance differences 
were verified for Lachnospiraceae_NK4A136_group, 
Prevotellaceae_UCG_001, Alloprevotella, Desulfovibrio, 
Mucispirillum, and Alistipes. Compared with the OVA group, 
the abundance of both Bacteroidetes and Firmicutes were 
higher in the OVA + RSV group, which may be due to the 
growth of Bacteroidales_S24_7_group, Prevotellaceae, and 
Lachnospiraceae. Significant differences were verified for 
Prevotellaceae_UCG_001, Lachnospiraceae_NK4A136_group, 

Figure 3 The composition of the gut microbiota is altered in RSV-infected asthmatic mice. Flower plot (A) shows the number of OTUs 
of each sample and the number of common and unique OTUs of different samples. There were 157 core OTUs in the three groups. The 
number of OTUs in the RSV + OVA group was significantly reduced. Based on the results of relative abundance of statistical analysis, the 
community plot reflected the community structure of the different samples (groups) at the phylum (B), family (C), and genus (D) levels. 
CON, control; OVA + RSV, respiratory syncytial virus + ovalbumin.
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Alloprevotella, Desulfovibrio, Mucispirillum, and Alistipes.
The alpha exponential rarefaction curve of the Chao1 index 

(Figure 4A) and the Shannon index (Figure 4B) showed clear 
asymptotes, which indicated a near-complete sampling of the 
community. The box plots of the Chao1 index (Figure 4C)  
and the Shannon index (Figure 4D) exhibited significant 
differences among the three groups. Beta diversity statistics 
using the Principal Coordinate Analysis (PCoA) revealed 
significant differences in the cluster patterns of gut 
microbial communities (Figure 5A,B).

Changes in the gut microbiota in RSV infected asthmatic 
mice

Multivariate statistical analysis (ANOVA) screened the top 
10 genera with significant differences and high relative 

abundance: Bryobacter, Gemmatimonas, Helicobacter, 
Lactobacillus, Massilia, Nocardioides, Prevoteliaceae_UCG_001, 
Sphingomonas, and two uncultured bacteria (Figure 6A,B).

To identify the key biomarkers that are differentially 
displayed between the three groups, we performed a 
statistical analysis using linear discriminant analysis effect 
size (LEfSe) analysis with linear discriminant analysis (LDA) 
to characterize different species between the groups. 

We found that the taxonomic levels from kingdom 
to genus corresponded to the circles radiating from the 
inside out (Figure 7A). In the cladogram, the red, green, 
and blue nodes represented the microbial taxa that play an 
important role in the CON, OVA, and OVA + RSV groups, 
respectively.

In the LDA scores histogram, biomarkers with 
significant differences between groups were revealed, and 

Figure 4 Alpha rarefaction curve and Boxplot analysis. The alpha index rarefaction curve shows the differences in species abundance among 
samples and evaluates the rationality of sequencing quantity of samples. Boxplot analysis of alpha diversity using the Kruskal Wallis test 
reflected the dispersion degree of samples in the group and the inter-group index differences. The Chao1 index (A,C) reflected richness, and 
the Shannon (B,D) index considered the diversity. CON, control; OVA, ovalbumin; OVA + RSV, respiratory syncytial virus + ovalbumin.

C
ha

o1
Chao1

SamplelD SamplelD
CON.1
CON.2
CON.3
CON,4
CON.5
CON.6
CON.7
OVA.1
OVA.2
OVA.3
OVA.4
OVA.5
OVA.6
OVA.7
OVA.8
OVA.RSV.5
OVA.RSV.6
OVA.RSV.7
OVA.RSV.8

CON.1
CON.2
CON.3
CON,4
CON.5
CON.6
CON.7
OVA.1
OVA.2
OVA.3
OVA.4
OVA.5
OVA.6
OVA.7
OVA.8
OVA.RSV.5
OVA.RSV.6
OVA.RSV.7
OVA.RSV.8

C
ha

o1

CON

CON
OVA
OVA.RSV

CON
OVA
OVA.RSV

Group Group

CON
OVA

OVA

OVA
.R

SV

OVA
.R

SV

0                   5000              10000 0                   5000              10000
Sequences_per_sample

Kruskal-Wallis P=3.97e –02 Kruskal-Wallis P=2.21e –02

Sequences_per_sample

2000

1500

1000

500

0

2100

1800

1500

1200

8

7

6

5

4

3

8.5

8.0

7.5

7.0

6.5

S
ha

nn
on

Shannon

S
ha

nn
on

A B

C D



5092 Wang et al. RSV-infection alter asthmatic mice gut microbiota

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(5):5084-5097 | http://dx.doi.org/10.21037/apm-20-2052

the score values represented the influence degree of the 
corresponding taxa. As shown in Figure 7B,C,D, there 
were 9, 9, and 6 differential bacterial taxa in CON, OVA, 
and OVA + RSV group, respectively, and 15 microbial 
taxa, namely Prevotellaceae_UCG_001, Prevotellaceae, 
Alphaproteobacteria ,  Campylobacterales ,  Helicobacter , 
Helicobacteraceae, Epsilonproteobacteria, Bacteroidales_S24_7_
group, Bacteroidetes, Bacteroidales, Bacteroidia, Actinbacteria, 
Proteobacteria, and Uncultured_Bacteroidales_bacterium. 
Prevotellaceae_UCG_001, Helicobacter, and Bacteroidales_
S24_7_group could serve as potential diagnostic and 
treatment biomarkers among the groups.

Alteration of gut microbiota was associated with the levels 
of IgE and ILs in RSV-infected asthmatic mice

To further verify the potential function of these core 
OTUs, we examined the reliability relationship between 
the core OTUs and IgE and cytokines (including IL-5, IL-
13, IL-25, and IL-33), and found that 15 microbial OTUs 
were significantly associated with the IgE and inflammatory 
cytokines. Prevotellaceae_UCG_001, which is positive, was 

the most significantly associated with IgE, IL-13, and IL-
33 (P<0.001), and was even more significantly associated 
with IL-5 (P<0.01) and IL-25 (P<0.05). Lachnospiraceae_
NK4A136_group is also positive, and was significantly 
associated with IgE (P<0.05) and IL-33 (P<0.01). 
Helicobacter and Uncultured_Bacteroidales_ bacterium, which 
are negative, have relevance and consistency with IL-25 
(P<0.05) (Figure 8).

Discussion 

Globally, asthma affects the health of an increasing number 
of people, which is expected to rise to 400 million by 2025. 
Approximately 250,000 asthma-related deaths are reported 
annually (26). RSV-related asthma is associated with worse 
aggravation, higher risk, intensive care, and mortality 
in some cases (27). Some studies have shown that RSV 
significantly alters gut microbiota diversity (28). In this 
study, an increase in Bacteroidetes and a decrease in Firmicutes 
phyla abundance have been observed in RSV-infected mice.

Gut microbiota plays an important role in nutrient 
metabolism, immunomodulation, drug metabolism, and 

Figure 5 Beta diversity (PCoA) of the three groups. The similarities and differences in species composition among different individuals 
or groups using PCoA with Bray Curtis. Results demonstrated that there were differences in the composition of the three groups. CON, 
control; OVA, ovalbumin; OVA + RSV, respiratory syncytial virus + ovalbumin. (A) Unweighted pair-group method with arithmetic means 
(UPGMA) hierarchical clustering graph. (B) Results showed that there were differences in the composition of the three groups. CON, 
control; OVA, ovalbumin; OVA + RSV, respiratory syncytial virus + ovalbumin.
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xenobiotic/antimicrobial protection (11). Bacteroidetes and 
Firmicutes comprise two major phyla of the normal human 
gut microbiota. Recent research suggests that an imbalance 
of the abundance and diversity in gut microbiota has a 
compact connection with airway microbiota and asthma 
alterations, especially in children (29,30). It is believed 
that the GIT and respiratory tract share the same mucosal 
immune system, which is one of the mechanisms of the gut-
lung axis (31). In this study, we focused on gut microbiota 
changes in RSV-infected asthma mice and characterized 
the abundance and diversity changes in the gut microbiota 

following RSV infection.
We discovered that OVA-challenged asthma led 

to a decrease in both the phylum of Bacteroidetes and 
Firmicutes. Both phyla exhibited an intense decrease after 
RSV infection, which even exceeded the normal group. 
According to the family and OTU levels, Prevotellaceae_
UCG_001, Lachnospiraceae_NK4A136_group, Alloprevotella, 
Desulfovibrio, Mucispirillum, and Alistipes brought out 
the growth of Bacteroidales_S24_7_group, Prevotellaceae, 
and Lachnospiraceae, which supported a Bacteroidetes and 
Firmicutes blast. The unknown regulation of RSV resulting 
in Bacteroidetes and Firmicutes propagation is noteworthy 
and constitutes a part of our next study.

RSV is commonly responsible for acute respiratory 
disease in children and adults, and RSV-infected asthmatic 
mice showed an enhanced serum level of IgE (32,33). 
Th2 cytokines, such as IL-5 and IL-13, play an important 
role in RSV-aggravated asthma (34-36). The high level 
of IL-5 recruits and activates eosinophil proliferation. An 
increase in IL-13 level induces AHR. RSV-infected asthma 
can also provoke epithelium-derived cytokines, such as 
IL-25, IL-33, leading to inflammation, which facilitates 
asthma development (37). IL-33 enhances AHR and airway 
inflammation by suppressing antiviral responses (38).  
Previous research suggested that viral infection induces 
airway hyper-reactivity via the IL-13-IL-33 axis pathway (39).

Gut microbiota impacts cytokines and fecal microbiota 
transplantation in gut microbiota-depleted model mice 
leads to a normalization of pulmonary bacterial counts (40).  
In this study, we performed a correlation analysis, which 
showed that ILs positively correlate with RSV infection 
with different major genus. Our results showed that 
Prevotellaceae_UCG_001, which is positive, was most 
significantly associated with IgE, IL-13, IL-33 (P<0.001), 
and even more significantly with IL-5 and IL-25. 
Lachnospiraceae_NK4A136_group, which is also positive, 
was significantly associated with IgE and IL-33 (P<0.01). 
Helicobacter and Uncultured_Bacteroidales_bacterium, which 
are negative, had relevance and consistency with IL-25 
(P<0.05). Prevotellaceae_UCG_001 and Lachnospiraceae_
NK4A136_group especially expressed a significant 
correlation with ILs, which suggested potential therapeutic 
targets for RSV-infected asthma following alteration of 
gut microbiota. Meanwhile, Prevotellaceae_UCG_001 and 
Lachnospiraceae_NK4A136_group were selected as potential 
therapeutic targets, as they presented significant differences 
following RSV infection. 

Figure 6 Multivariate statistical analysis (ANOVA) of significantly 
different genera. The top 10 different genera among the three 
groups were selected using multivariate statistical analysis 
(ANOVA). CON, control; OVA, ovalbumin; OVA + RSV 
respiratory syncytial virus + ovalbumin.
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Figure 7 Comparison of inter-group variance at relative abundance level using LEfSe analysis. (A) The taxonomic cladogram. The diameter 
of the circle represents the relative abundance in the cladogram. The species with no significant differences are uniformly colored in yellow, 
and the species with notable differences are colored using the following group’s biomarker. A significant value lower than 0.05 was used as a 
threshold for the LEfSe. (B,C,D) The histogram of LDA scores; CON, control; OVA, ovalbumin; OVA + RSV (respiratory syncytial virus + 
ovalbumin).

Some studies in humans and mice found that the 
immune responses that improve and ameliorate disease 
caused by viral infections have used various Lactobacilli as 
probiotics (41). It has been proposed that enriching the gut 
microbiota with Lactobacillus could protect against airway 
inflammation in RSV infection (42). This study found 
that a few gut microbiota in RSV-infected asthmatic mice, 
such as Prevotellaceae_UCG_001 and Lachnospiraceae_
NK4A136_group, could play an important role in airway 
inflammation caused by RSV-infected asthmatic mice. 

Although it enriches the lung-gut axis theory and 
provides some new clues, our research has certain 
limitations that should be noted. Since RSV-infected 
asthma in children is associated with a dysbiosis of the gut 
microbiota, which is marked by a general decline in beneficial 
potential microbiota, it can enrich potentially pathogenic 
taxa. These changes in the gut microbiota might disrupt the 
gut barrier integrity and enhance gut-lung inflammation. In 
future research, we will further explore the changes in the gut 
microbiota of RSV-infected asthma patients.
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Figure 8 Correlation analysis between interleukins and different genera. Correlation analysis between IgE, IL-5, IL-13, IL-25, and IL-
33 and the major genera. The analysis was conducted using Spearman’s test, and the maximum correlation coefficient was R2=0.8. Red 
represents a positive correlation, and blue signifies a negative correlation; the deeper the color, the better the correlation (*, P<0.05; **, 
P<0.01; ***, P<0.001).
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