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Introduction

Antimicrobial resistance (AMR) is considered an important 
global challenge to human health. ESKAPE pathogens 
(Enterococcus faecium, Acinetobacter baumannii, Staphylococcus 
aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and 
Enterobacter spp.) are the leading cause of nosocomial infections 
worldwide (1,2). Before all, PA has been highlighted by 
the World Health Organization as an important pathogen 
connected with AMR (1,2). More than 50,000 nosocomial 
infections and 400 deaths related to PA are reported annually 

in the USA (3). Important characteristics that contribute to the 
PA pathogenicity are metabolic diversity, production of many 
virulence factors, biofilm formation, and AR (4). AR arises 
from the overuse of antibiotics during treatment (5). Several 
published studies on reducing antibiotic use or discovering 
new antimicrobials, such as the combination of antibiotics with 
non-antibiotics against clinical multidrug resistant (MDR) 
PA (6). PA not only has high intrinsic resistance but also can 
coexist with drugs as a biofilm to achieve adaptive AR (4). The 
formation of biofilms is mainly regulated by QS (7), QS is the 
principal administrative mechanism, which controls biofilm 
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formation, efflux pump, secretion system, movement and AR 
in a group density-dependent manner. It also regulates the 
production of various virulence portions, such as alginate, 
proteases, toxins, and siderophores (8). This article summarizes 
PA’s AR mechanism, basic knowledge about QS, and some 
non-antibiotic treatments against PA infections including 
QS inhibitors, non-quorum sensing inhibitor methods, and a 
combination of these 2 approaches. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at http://dx.doi.org/10.21037/apm-20-
2247).

Methods

PubMed searches were performed using the terms: 
“Pseudomonas aeruginosa”, “Pseudomonas aeruginosa and 
antibiotic resistance”, and “Pseudomonas aeruginosa and 
non-antibiotic” for all study designs. Search results were 
reviewed for relevance.

AR mechanism of PA

AR mechanism of PA is complex, and several factors 
are involved (9-12): first, changes in cell membrane 
permeability: (I) high expression efflux pumps on the cell 
membrane of PA that transport drugs to the outside of 
cells; (II) the loss or low expression of membrane pore-
forming proteins: the main drug-resistant mechanism of 
carbapenems is the loss or decrease of outer membrane 
pore-forming protein OprD2. Second, the production 
of inactivated enzymes or modified enzymes on PA, such 
lactamase and aminoglycosidase. Third, changes in PA drug 
targets. Changes in penicillin-binding proteins lead to the 
resistance of penicillin drugs, and DNA enzymes II and 
IV structure topology changes result in drug resistance to 
fluoroquinolone drugs. Finally, the formation of biofilms 
on PA. Bacteria can survive by using biofilms to escape the 
body’s immune system and antimicrobial agents that kill 
them. The AR mechanism of PA is complex (13).

Basic knowledge of QS of PA:

QS is negotiated by a solid, interconnected system consisting 
of the following 4 public systems: 2 LuxR/LuxI-type (LasR/
LasI and RhlR/RhlI), together with an orphan LuxR-type 
receptor (QscR), and the quinolone system PqsR. LasI 
catalyzes the production of the diffusible QS signal N-3-
oxododecanoyl homoserine lactone (3OC12-HSL), 3OC12-

HSL connects to its analogous receptor, the transcription 
factor LasR, which can then activate the appearance of 
multiple genes, including lasI, rhlI and rhlR, analogously, RhlI 
catalyzes the generation of the diffusible beacon butyryl-
HSL (C4-HSL), which connects to the transcription factor 
RhlR, signal-bound RhlR stimulates the expression of 
RhlI and some genes, some of which continue to activate 
the LasR regulon (14-18). PqsR is unrelated to LuxR-type 
receptors, which is negotiated by the signal 2-heptyl-3-
hydroxy-4-quinolone (Pseudomonas quinolone signal, PQS) 
and its biosynthetic precursor 2-heptyl-4-quinolone (HHQ) 
(19,20). The environment makes PA more pathogenic, and 
this process is mainly controlled by these 4 systems (14,21). 
The characteristics of many PA virulence factors and distinct 
genes is principally regulated by 2 acyl-homoserine lactone 
(AHL) QS systems, LasI/LasR and RhlI/RhlR (8,20). LasR is 
central to the QS system (22). For example, LasR’s activation 
can cause a cascade of reactions to turn on several PA 
virulence factors by activating the RhlIR and PQS systems 
(14,15). LasR and RhlR are suppressed by QscR, which is 
stimulated through innate sign 3OC12-HSL (18,21). PqsR 
system and AHL systems interact with each other (22,23). The 
lasR gene encodes a QS regulator that is usually observed 
in clinical isolates with deleterious-function mutations (24). 
Interestingly, LasR-strains exhibites strong activity of the 
oxygen-sensitive transcription factor Anr in microoxic states. 
Mhr is an Anr-regulated microoxic hemerythrin that ties 
oxygen, both Anr and Mhr are crucial for the adaptation of 
microhypoxia, and certain genes hold unique advantages for 
LasR-strains in biofilms grown under normoxic conditions 
(22,25). The development of PA in chronic infections is 
partly due to its tendency to lose LasR function resulting 
in increased microoxygenation fitness (22,25). Studies 
show that PA LasR-strain has higher Anr activity, and the 
adaptive ability of Anr regulation was stronger in the micro-
oxygenation environment, ΔlasR mutations increase the 
adaptability in colony biofilms grown in micro-oxygenation 
or oxygen atmosphere, this progression relies on Anr and 
Anr-regulated Mhr (22,26). Surface assistance, which is 
essential for various group behaviors, favors more active QS 
responses (27). It was found that the QS main regulator LasR 
is upregulated during surface association, making surface-
associated cells more susceptible to the LasR ligand 3OC12-
HSL (27). QS resembles to be essential for PA adaptability. 
For example, the toxicity of QS-null mutants is reduced 
in acute animal infection models. This situation exercises 
stress on LasR mutant cells to recover at least a portion 
of their QS regulon by activating the RhlIR loop (22,23). 
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Giving this condition of C4-HSL make the RhlIR way free 
of LasR by a surprisingly simple genetic variation, which 
gives rise to the RhlI-RhlR system independent of LasR and 
then it can continue to grow without C4-HSL (23). The 
study found that if the lasR mutant is selected first, this will 
limit AR evolution (28). Conversely, if the drug-resistant 
mutation is selected, the lasR mutation may not be selected 
in the presence of antibiotics, highlighting the importance of 
chance and epistatic interactions in regulating the evolution 
of AR (28). The clinical separation rate of MDR PA is 
increasing, PA has a complex QS network, which plays a vital 
part in its ability to adapt to multiple environments (27). 
The prevalence of MDR PA has developed in the past few 
decades and is currently 15–30% in some western European 
countries (29). QS inhibitors are agents that destroy the QS 
system in bacterial cells, reduce the production of virulence 
factors, and inhibit virulence without disrupting bacterial 
growth; therefore, resistance to these agents is not expected 
to be produced or developed (8) (as shown in the Figure 1).

QS inhibitors

LasR antagonist V-06-018 

V-06-018 is a small abiotic particle found during high flux 
screening and is one of the most effective recognized LasR 
antagonists. The structure-activity relationship controlling 

LasR antagonism by V-06-018 has been reported. V-06-
018 is a comparatively effective LasR antagonist in both 
Escherichia coli and PA LasR reporter strains and has been 
confirmed to inhibit virulence-related genes and phenotypes 
in PA (8). At the same time, V-06-018 lacks lactone parts so 
it is not easily hydrolyzed or enzymatically decomposed by 
AHL lactonases. Biochemical experiments have investigated 
the antagonistic mechanism of V-06-018 and its analogs, the 
compound is the most effective antagonist of LasR known 
and is a powerful probe to characterize the mechanism of 
action of LuxR-type QS and can be used in general chemical 
and biological studies in the growing field of QS (8).

Metallic oxide nanoparticles 

In recent years, advances in nanotechnology have led to an 
increase in their use in medicine, particularly in treating 
infectious diseases. Nanoparticles are transparent in the 
visible range and are semiconductors in nature, with great 
refractive index, large specific surface area and volume, 
high optical chemical steadiness and good environmental 
biocompatibility (30,31). These new traits make them 
excellent candidates for a variety of biomedical applications. 
Metallic oxide nanoparticles such as zinc oxide (ZnO) and 
silver oxide have a good inhibitory effect on drug-resistant 
strains. ZnO nanoparticles significantly downregulate QS 
regulatory genes’ corresponding expression, lasI, lasR, 

Figure 1 A simple schematic of the relationships between 4 systems and the relationships with the environment and antibiotic resistance.
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rhlI, rhlR, pqsA and pqsR and disrupt the QS circuit 
and therefore repressing the production of virulence 
factors. ZnO nanoparticles are promising QS inhibitors 
and antiviral compounds, which can be used as adjuvant 
drugs for PA infections such as burns and surgical wound 
infections (32). Also, Chitosan significantly reduced the QS-
dependent phenotype and QS regulatory gene expression 
and inhibits the production of protease and pyocyanin in 
a dose-dependent manner. The preparation of chitosan-
ZnO nanocomposite enhances the antibacterial activity of 
chitosan (33).

Drugs

Metformin, glyceryl trinitrate, and diclofenac sodium 
have been found to restrain QS in the PA PAO1 strain 
(34-36). The activity of bacteria is relevant to their ability 
to adhere to tissues and form biofilms. The bacterial 
movement is directed by the LasI/R and RhlI/R QS 
systems. Sitagliptin can significantly block PA’s ability to 
move, gather and convulse, and its movement is higher 
than that of metformin. To investigate the binding ability of 
sitagliptin to receptors LasR and rhlR, molecular docking 
studies were performed to attach sitagliptin to the active 
sites of LasR and rhlR. The high docking fraction indicated 
that sitagliptin has good antagonistic activity, making 
sitagliptin a promising antagonist that could interfere with 
the autoinducers’ binding to their receptors. In summary, 
sitagliptin is a novel anti-QS drug that can be used to 
prevent infections caused by drug-resistant PA in diabetic 
patients. In non-diabetic patients, it can be used locally 
to heal the wound and burn infections from burns caused 
by PA (37). Other drugs that inhibit the QS system of PA 
include ibuprofen and tea polyphenols (38,39), etc.

Aryl hydrocarbon receptor (AhR)

A model of host regulation by aryl hydrocarbon receptor 
(AhR) was studied, which relied heavily on PA’s qualitative 
and quantitative detection. QS molecules bind to AhR and 
regulate its activity (40). Alterations in the expression of 
self-inducible factors and QS regulatory genes affect the 
dynamics of the bacterial community and the response 
of the host during the process of infection. AhR is a 
conserved ligand-dependent transcription factor that 
directly recognizes PA phenazines and plays a vital role in 
infection control, which binds to phenazines, mediate their 
degradation and regulates several host genes’ expression 

including detoxifying enzymes, chemokines, and cytokines 
(40-42). Therefore, different QS molecules are related to 
the severity of infection. Because AhR can identify diverse 
levels of PA QS molecules (including Pyo or PQS) and 
distinguish strain-related diversity during disease, thereby 
regulating host responses subsequently. AhR functions as 
a host sensor to monitor several QS molecules and their 
expression forms during infection and disease, therefore, 
the host can adjust its protected defenses depending on the 
bacterial community’s degree and density and the threat of 
infection. By monitoring communication between bacteria, 
AhR can sense PA communities’ status during infection, 
enabling the host to mobilize the most suitable protection 
mechanisms according to the degree of danger (43).

KS8 isolate

The KS8 isolate, a marine Pseudoalteromonas spp, produces 
QS inhibitors that are active against PA PAO1, the 
supernatant of which results in an obvious decrease in biofilm 
biomass and total viable counts of PA during the process of 
biofilm formation and eradication, the extract of which can 
also reduce PA biofilm. The efficacy of the combination 
of tobramycin and KS8-derived QS inhibitors in the 
treatment of PA PAO1 was studied in vitro to verify further 
QS inhibitors’ strategy combined with the sub-therapeutic 
concentration of traditional antibacterial drugs (44). For 
characterization and purification of QS inhibitors, the KS8 
isolate is still an ideal candidate and has clinical relevance (44).

Non-QS inhibitor methods

Antimicrobial photothermal therapy (PTT)

PTT uses nanomaterials that are activated by absorbing 
specific wavelengths of near-infrared (NIR) light in the 700–
1,100-nm range, with a sufficiently long tissue penetration 
depth (45). Conductive polymers such as polypyrrole 
(PPy) are widely used as contrast agents in optical 
coherence tomography because of their strong absorption 
of NIR light, which combines non-toxic compounds with 
appropriate wavelengths of light (46). As a nanomaterial, 
the carbon core-PPy shell nanostructure (C-PPy) is 
mainly responsible for its bactericide effect due to its light-
trapping properties, higher sterilization temperature and 
reactive oxygen species generation induction. Combining 
the characteristics of these 2 materials as C-PPy mixtures, 
composites, or complex structures may improve their 
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stability, biocompatibility, NIR absorbance, and/or PPT 
performance. Laser exposure to the C-PPy attached to 
the PA surface changes the permeability of the membrane. 
ROS also reacts with enzymes, proteins, lipids, and other 
cellular components in bacterial cells, resulting in cell 
death. Photoablation is a new minimally invasive and 
inexpensive antibacterial therapy without any excessive risk 
to normal cells (47). Other, 50–100 nm long gold nanorods 
presented on heteromultivalent and 3D display of 2 types 
of glycomimetic polymers can prevent the colonization 
of the bacteria and potential the formation of the biofilm 
by targeting LecA and LecB lectins on PA specifically, 
and they have shown the photothermal characteristics of 
killing pathogenic cells upon NIR light irradiation (48). 
Photodynamic therapy (PDT) of 5-aminolevulinic acid 
combined with ethylenediamine tetraacetic acid disodium 
salt (EDTA-2Na) has a bactericidal effect on PA in vitro 
and promotes wound healing in mice with PA-infected 
cutaneous ulcers (49).

Antimicrobial peptides (AMPs)

AMPs have the advantages of broad-spectrum activity, high 
efficiency at low concentration, strong targeting specificity, 
low drug resistance tendency, and synergistic effect with 
traditional antibiotics (50). They are a large class of naturally 
occurring antimicrobials that have been identified in plants 
and humans in the innate immune system of several species 
(51-55). Cationic AMPs (CAMPs) are highly effective in 
killing resistant bacterial strains (56). By destroying the 
integrity of nucleic acids, bacterial membranes, and proteins 
or inhibiting intracellular function, CAMPs can show direct 
activity against diverse cellular targets. Diverse groups of 
CAMPs are effective against bacteria (54,56,57). Cecropins 
and cecropin-derived CAMPs are antimicrobial peptides 
with bactericidal activity against wild-type and MDR 
bacteria (57,58). A synthetic CAMPs derived from cecropin 
D-like peptide from the Galleria mellonella called ∆M2 also 
have an antimicrobial effect on PA’s clinical strains (59). A 
new series of biphenylglyoxamide-based small molecular 
AMP mimics have been identified as potential leads to treat 
bacterial infections, synthesized from N-sulfonylation’s 
ring-opening reaction bearing a biphenyl backbone 
with a diamine (60). A Janus-type antimicrobial dressing 
consists of electrospun nanofiber membranes coupled with 
dissolvable microneedle arrays to enable effective delivery 
of a database-designed antimicrobial peptide to both inside 
and outside biofilms. This can also completely remove the 

PA dual-species biofilm in an ex vivo human skin infection 
model (61).

Antibacterial peptide nanomaterial

Bifunctional antibacterial peptides consist of a membrane-
localizing peptide and a tandem peptide. To delay and 
prolong the release after lung delivery, the tandem peptide 
is loaded into porous silicon nanoparticles (pSiNPs). 
The membrane-localizing peptide must be accompanied 
by a synthetic bacterial toxin (a toxic peptide cargo) 
D[KLAKLAK]2, D[KLAKLAK]2 is independent of its 
stereochemistry and it was synthesized with D-amino acids 
to limit proteolytic degradation. It was called dKK, which has 
no activity against PA at the concentrations studied (62-64).  
Lactoferrin-dkk (lact-dkk) was found to be the best-
performing tandem peptide. It is known that lactoferrin 
peptide, KCFQWQRNMRKVRGPPVSCIKR, interacts 
with bacterial membranes (65). LACT-dKK kills bacteria at 
a submicromolar concentration (0.42×10−6 mol). The killing 
mediated by peptide series exceeded the expected additive 
reaction of 2 single peptide domains, indicating the synergistic 
effect between the 2 peptide domains in the tandem peptide 
structure. The best performing peptide was formulated into 
a biodegradable pSiNP nanoparticle, and after delivery to the 
lung in the mouse model of pulmonary infection, bacterial 
titers decreased significantly. Clinical isolates from human 
pulmonary infections are susceptible to peptide treatment, 
suggesting that the method could be applied to other PA 
strains (66).

Mucin glycans

A kind of slimy, watery mucus gel sets the first line of 
defense and simultaneously houses the trillions of microbes, 
and mucus gel was found in all wet epithelial cells in the 
body, the eyes, lungs, and gastrointestinal and urogenital 
tracts. In healthy mucus, microbes rarely cause infections. 
Studies have ascertained that exposure to mucus induces 
the downregulation of virulence genes included in QS, 
siderophore biosynthesis, toxin secretion, and the rapid 
decomposition of biofilm using a 3D laboratory model 
of natural mucus and PA. This phenotypic switch is 
triggered by mucins, polymers that are tightly attached 
to the O-chain-glycan to form a 3D scaffold within the 
mucus, which work at different scales to inhibit different 
toxic pathways, promote plankton lifestyle, reduce toxicity 
to human epithelial cells in vitro, and attenuate infection 
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in a porcine burn model. It was found that mucin-related 
glycans mediated the interaction with PA. Even at relatively 
low concentrations, bacterial phenotypes can be effectively 
regulated. Complex O-linked glycans are the main 
regulatory component of mucins. This regulatory function 
may depend on glycan’s complexity, as monosaccharides 
do not attenuate the virulence of PA, indicating that the 
complex arrangement and special stereochemistry of these 
sugar residues are crucial to their function as regulatory 
signals (67).

Cold atmospheric plasma (CAP)

CAP is a low-temperature ionized or partially ionized gas 
(approximately 20–40 ℃) that makes it suitable for use in 
living cells and tissues (68,69). Recent studies have shown 
that CAP’s antibacterial action is mainly the production of 
long- and short-lived active substances (ROS and reactive 
nitrogen species) (70-74). CAP treatment can be divided 
into direct treatment and activated-liquid treatment (71). 
Direct therapy is done using devices that directly touch cells 
or the body. CAP device-activated fluids, or cap-activated 
fluids, have strong therapeutic potential similar to the 
effects of direct CAP therapy (73). Studies found that CAP 
treatment increased intracellular ROS levels, which was 
even greater during direct treatment. Similar increases in 
intracellular ROS levels have also been reported in cancer 
cell lines after CAP treatment due to long-lived and short-
lived species’ production, particularly short-lived species. 
CAP treatments rapidly eliminate single-species and 
mixed-species biofilms and can lead to loss of membrane 
integrity and increased cell permeability. However, with 
the accelerated development of bacterial resistance, it 
is important to study CAP treatment’s effect on MDR 
bacteria. MDR PA strains isolated from hospitalized 
patients are more consistent with current and future clinical 
conditions. The results showed that CAP treatment was 
effective against strains resistant to multiple antibiotics, 
indicating its prospect in treating drug-resistant, Gram-
negative bacteria (75).

Combination therapy

Antimicrobial PDT (APDT) 

APDT is a medical treatment consisting of visible light 
and non-toxic photoactivable dyes or photosensitizers (PS) 
in the presence of oxygen. When PS absorbs photons of 

the right wavelength, it leads to cytotoxic ROS formation, 
which leads to cell death (76,77). Curcumin-induced APDT 
inhibits biofilm formation more effectively through ROS 
generation, especially type II photochemical reactions. 
The mechanism of biofilm inhibition is to suppress PA’s 
QS system to remove extracellular polymeric substances 
(EPS). EPS are an important component of biofilm, which 
provides the mechanical stability of biofilm against foreign 
inclusion. Curcumin is widely combined with the QS 
system of photoinhibition. Curcumin-mediated APDT may 
be a potential therapy for controlling the biofilm-mediated 
infection. Bacteria can also develop antibiotic resistance and 
the host immune system through the intercellular signaling 
particles produced by bacteria in biofilms. The utilization 
of PS is important for the effectiveness of APDT. Being 
an amphiphilic PS and photothermal agent, indocyanine 
green (ICG) is safe for human body and has a NIR (600–
950 nm) excitation wavelength, further promoting the 
photobiological effect of deep tissue to achieve bactericidal 
effect (78,79). A variety of micro-organisms causes burn 
wound infection, and the regulation of multiple colonization 
and virulence factors in intercellular communication and 
micro-organisms is regulated by the QS system. APDT is 
an effective treatment option for infected ulcers and can 
reduce antimicrobial use and resistance induction. As an 
anionic medium, ICG can effectively produce ROS required 
by APDT under NIR laser irradiation. ICG-APDT 
could downregulate the expression levels of abaI, agrA, 
and lasI. Amid the reduction of these gene expressions, 
biofilm formation is also disrupted. ICG-APDT effectively 
induces the production of lipid peroxidation, superoxide 
free radicals, and intracellular ROS in multispecies biofilm 
culture. Simultaneously, it significantly reduces the 
number of bacterial cells and the expression level of QS 
genes of major pathogens on burn wounds. APDT with 
ICG combined with antibacterial, anti-biofilm, and gene 
expression inhibitors effectively treat multispecies bacterial 
biofilms correlated with burn and wound infection (80,81).

Bacteriophage therapy 

Phages can destroy biofilm formation of PA by blocking 
QS activity and can provide a possible alternative method 
to reduce the colonization of the endotracheal tube surface 
by bacteria. Also, phages in combination with other 
compounds (such as nanoparticles, enzymes, and natural 
products) are more effective than using them alone (82,83).
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Discussion and summary 

AR mechanism of PA is complex, and it takes time and effort 
to explore new antibiotics, and the use of new antibiotics 
is easy to make PA resistant again (5,84). Therefore, PA’s 
non-antibiotic treatment is important, and it is speculated 
that there will be more and more non-antibiotic treatments 
in the future. The AR of PA is closely related to the QS 
system. There is a complicated and subtle relationship 
between diverse QS of PA, and it is a hierarchical and 
orderly relationship (85). The inhibition of QS is a bacterial 
communication model that relies on a chemical signal 
exchange and has been shown to reduce the virulence 
phenotype of various human pathogenic bacteria, and the 
use of QS inhibitors does not make the bacteria resistant. 
Therefore, as a prospective antimicrobial approach, QS 
inhibitors are of great concern.

Although various non-antibiotic treatments for PA have 
emerged, most are limited to in vitro or mouse tests. They 
are expected to be formally used in clinical trials, bringing 
new hope for the treatment of drug-resistant bacteria. 
Various therapeutic combinations are also expected to treat 
the resistance problem of PA.
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