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Background: This study aimed to build a radiomics model with deep learning (DL) and human auditing 
and examine its diagnostic value in differentiating between coronavirus disease 2019 (COVID-19) and 
community-acquired pneumonia (CAP).
Methods: Forty-three COVID-19 patients, whose diagnoses had been confirmed with reverse-transcriptase 
polymerase-chain-reaction (RT-PCR) tests, and 60 CAP patients, whose diagnoses had been confirmed with 
sputum cultures, were enrolled in this retrospective study. The candidate regions of interest (ROIs) on the 
computed tomography (CT) images of the 103 patients were determined using a DL-based segmentation 
model powered by transfer learning. These ROIs were manually audited and corrected by 3 radiologists 
(with an average of 12 years of experience; range 6–17 years) to check the segmentation acceptance for the 
radiomics analysis. ROI-derived radiomics features were subsequently extracted to build the classification 
model and processed using 4 different algorithms (L1 regularization, Lasso, Ridge, and Z test) and  
4 classifiers, including the logistic regression (LR), multi-layer perceptron (MLP), support vector machine 
(SVM), and extreme Gradient Boosting (XGboost). A receiver operating characteristic curve (ROC) analysis 
was conducted to evaluate the performance of the model.
Results: Quantitative CT measurements derived from human-audited segmentation results showed that 
COVID-19 patients had significantly decreased numbers of infected lobes compared to patients in the CAP 
group {median [interquartile range (IQR)]: 4 [3, 4] and 4 [4, 5]; P=0.031}. The infected percentage (%) of 
the whole lung was significantly more elevated in the CAP group [6.40 (2.77, 11.11)] than the COVID-19 
group [1.83 (0.65, 4.42); P<0.001], and the same trend applied to each lobe, except for the superior lobe of the 
right lung [1.81 (0.09, 5.28) for COVID-19 vs. 1.32 (0.14, 7.02) for CAP; P=0.649]. Additionally, the highest 
proportion of infected lesions were observed in the CT value range of (–470, –370) Hounsfield units (HU) in 
the COVID-19 group. Conversely, the CAP group had a value range of (30, 60) HU. Radiomic model using 
corrected ROIs exhibited the highest area under ROC (AUC) of 0.990 [95% confidence interval (CI): 0.962 
–1.000] using Lasso for feature selection and MLP for classification.
Conclusions: The proposed radiomics model based on human-audited segmentation made accurate 
differential diagnoses of COVID-19 and CAP. The quantification of CT measurements derived from DL 
could potentially be used as effective biomarkers in current clinical practice.
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Introduction

Since the coronavirus disease 2019 (COVID-19) outbreak 
started in late December 2019, researchers from all over the 
world have devoted great efforts to recognizing, characterizing, 
and treating the disease. COVID-19 was reported as a novel 
respiratory pandemic disease caused by a coronavirus, and 
to date, viral nucleic acid detection using real-time reverse-
transcriptase polymerase-chain-reaction (RT-PCR) remains 
the known standard of reference. However, chest computed 
tomography (CT) has proven its capacity to outperform RT-
PCR in the diagnosis and course monitoring of COVID-19 
(1,2). Abundant evidence has suggested that the characteristic 
features displayed on CT images reveal early signs of 
COVID-19. Typical CT signatures, including ground-glass 
opacity (GGO), bilateral or peripheral distributed lesions, 
septal thickening, and consolidation, also referred to as “crazy-
pavings” in the advanced stage (3,4), have been widely reported 
in the literature (5).

Advanced artificial intelligence (AI) techniques, such 
as deep learning (DL) and machine learning, have been 
actively involved in attempts to speed up clinical tasks for 
patients’ benefits (6,7). During this period, many AI studies 
have successfully performed COVID-19 detection and 
classification tasks (8), typically to differentiate between 
COVID-19 and other popular causes of pneumonia 
[including community-acquired pneumonia [CAP)] (7,9). 
However, the performance of these models has often 
suffered from variations and a lack of explanations due to 
the black-box nature of the DL.

Thus, in this study, we aimed to develop a conventional 
CT-based radiomics model that implemented DL and 
human auditing. By manually reviewing and editing the 
DL-based segmentation results, we extracted radiomics 
features that represented a better reflection of lesion 
characteristics, which in turn facilitated the differentiation 
between COVID-19 from CAP. We present the following 
article in accordance with the STROBE reporting checklist 
(available at https://dx.doi.org/10.21037/apm-20-2625).

Methods

The retrospective study was approved by the Institutional 
Review Board of the Affiliated Hospital of Nanjing 

University Medical School (No. 2019-100-01). Informed 
consent was waived due to the retrospective nature. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). 

Patients and datasets

We obtained CT images of 50 COVID-19 patients, comprising 
14 patients from the Affiliated Drum Tower Hospital of 
Nanjing University Medical School and 36 patients from the 
Second Affiliated Hospital of the Nanjing University of 
Chinese Medicine between January 25, 2020, and March 1,  
2020. Repeated swab tests confirmed positive diagnoses 
of COVID-19. 60 CAP patients were randomly selected 
from the participating hospitals for the same period. To be 
eligible to participate in the study, the patients had to meet 
the following inclusion criteria: (I) have confirmation of a 
pneumonia etiology based on swab tests for COVID-19 
patients and sputum cultures for CAP patients; (II) have 
decent quality CT scans; and (III) have positive CT findings 
of pneumonia. Conversely, patients were excluded from the 
study if they met any of the following exclusion criteria: 
(I) had an unconfirmed etiology of pneumonia; and/or (II) 
had no CT scans available or had negative CT findings of 
pneumonia. Detailed clinical information was available from 
patients at 1 participating hospital (n=34), including data on 
onset symptoms and laboratory results, such as white blood 
cell and lymphocyte counts.

CT protocols

The chest CT examinations were performed using 
scanners from several manufacturers with standard imaging 
protocols. Each volumetric chest CT was scanned at the 
end of inhalation. The scan ranged from the apex of the 
lung to the diaphragm. The scan parameters were as 
follows: 120 kVp, rotation time of 0.5 s, the pitch of 0.75, a 
slice-thickness range from the mediastinal window of 3 mm, 
and a lung window of 1.25 mm.

DL-based segmentation and human auditing

The DL-based segmentation algorithm was built in-house 
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on the InferScholar research platform by InferVision 
(https://www.infervision.com/, Beijing, China) to segment 
the infected pneumonia areas and generate quantitative 
measurements of segmented masks. The algorithm 
development and validation processes have been described 
previously in detail (10). Briefly, this algorithm was 
implemented with a U-net-like deep convolution neural 
network model and employed to segment regions of interest 
(ROIs), including lungs, lobes, and detected opacities. 
These automatic segmented ROIs were subsequently 
reviewed by 3 experienced radiologists who were blinded 
to the patients’ clinical status. Radiologists were asked to 
audit the DL-derived results independently, and adjust 
the segmented ROIs manually if necessary. This manual 
adjustment included enlarging or shrinking the ROIs 
based on the subjective evaluations by radiologists who 
had reached a consensus, removing obvious false positives, 
such as vascular artifacts, subpleural interstitial changes, 
and adding missed lesions (false negatives) by manual 
annotation with the hand tool implemented in the platform. 
Eventually, after human auditing, the delineated ROIs were 
processed into the algorithm analysis module to generate 
quantitative measurements, including the infected lobe 
numbers, the percentage of involved lesions’ volumes (of 
the whole lung and each lobe), and lesion percentages based 
on different CT attenuation values. Figure 1 depicts our 
proposed methodological framework for human-centered 
segmentation auditing derived from DL and radiomic 
model building.

Feature extraction and selection

For each CT series, 1,454 features, which could be 
subdivided into 7 classes by definition, were extracted 
from adjusted ROIs based on DL-based segmentation and 
human auditing. After dimension reduction, 7-dimensional 
features remained, including shape, texture, and first-
order statistics. The shape features calculated the largest 
three-dimensional diameter and surface area, and the 
texture features were defined as regular texture features, 
such as gray-level dependence matrix and (gray level size 
zone matrix. First-order statistics reflect the distribution 
of voxel intensities within a region. To reduce overfitting 
or solve multicollinearity issues, we considered 4 feature 
selection approaches, including L1 regularization, the least 
absolute shrinkage, and selection operator (LASSO), ridge 
regression, and the Z test (11). The feature extraction 
and selection process were implemented using Python 

3.6. Subsequently, the radiological features most closely 
associated with the determination of the 2 disease groups 
were obtained.

The development of a personalized classification model

Four different classifiers, including the logistic regression 
(LR), multi-layer perceptron (MLP), support vector 
machine (SVM), and extreme Gradient Boosting (XGboost), 
were used to predict the COVID-19 response. The 
combination of 4-feature selection methods and 4 classifiers 
was investigated by conducting a 5-fold cross-validation, a 
standard validation technique (12). The feature selection 
methods were included in the cross-validation algorithm to 
contribute to the final model fit reflected in the performance 
metrics (13). The classification performances were thus 
evaluated using the receiver operating characteristic (ROC) 
and the area under the ROC curve (AUC).

Statistical analysis

The statistical analysis was performed using SPSS (version 
24.0, IBM Crop, NY, USA). Distribution normality was 
assessed using the Shapiro-Walk test. Continuous variables 
were expressed as mean [standard deviation [SD)] for 
normal distributed data and median [interquartile range 
[IQR)] for non-normal distributed data. Categorical 
variables were presented as frequencies (percentages, %). 
Patients’ demographic and clinical characteristics were 
assessed using the Chi-squared test (or Fisher’s exact test 
as appropriate). The quantitative measurements based on 
the segmentation results between the COVID-19 and CAP 
group were carried out using the Mann-Whitney test. A  
P value <0.05 was considered statistically significant.

Results

Patients population

A total of 50 COVID-19 patients were initially selected for 
this study; however, 4 patients were excluded due to ultra-
thin CT slice thickness (≤0.50 mm) with a super-resolution 
beyond the algorithm prediction range, and 3 patients were 
excluded due to poor segmentation quality as determined 
by the human-audited segmentation results. Ultimately, 
our dataset comprised 43 COVID-19 patients (mean age: 
41±15 years old, of whom 58.1% were male) and 60 CAP 
patients (mean age: 55±18 years old, of whom 63.3% were 
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Figure 1 Our proposed methodological framework for human-centered segmentation auditing derived from DL and radiomic model 
building. DCNN, deep convolutional neural network; ROI, regions of interest; COVID-19, coronavirus disease 2019; CAP, community 
acquired pneumonia; LR, logistic regression; MLP, multi-layer perceptron; SVM, support vector machine; XGboost, extreme gradient 
boosting.
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male). The most prevalent onset symptoms, such as fever 
and coughing, were found in both the COVID-19 and CAP 
groups (Table 1). All the enrolled COVID-19 patients were 
classified as moderate cases according to the Diagnosis and 
Treatment of Novel Coronavirus Pneumonia (trial version 
seven) published by the National Health Commission of the 
People’s Republic of China (14).

Quantitative CT measurements generated by DL-based 
segmentation and human auditing

After a deep examination of false positives and negatives of 
the AI-enabled segmentation results and the insufficiently 
segmented regions, final segmentation masks were 
confirmed by 3 experienced radiologists and human auditing 
(Figure 2). The quantitative CT measurements were 
obtained and are set out in Table 2. The results showed that 
the numbers of infected lobes were significantly lower in the 
COVID-19 group [median (IQR): 4 (3 to 4)] than the CAP 
group [4 (4 to 5)] (P=0.031) Concerning the percentage of 

lung involvement in the whole lung, that of the CAP group 
was significantly more elevated than that of the COVID-19 
group [median (IQR): 1.83% (0.65%, 4.42%) vs. 6.40% 
(2.77%, 11.11%); P<0.001]. Similarly, the percentage of 
lung involvement per lobe was significantly higher in the 
CAP group than the COVID-19 group, except for that of 
the right upper lobe [1.81 (0.09, 5.28) for the COVID-19 
group vs. 1.32 (0.14, 7.02) for the CAP group; P=0.649]. 

We also investigated the percentage of lung involvement 
in varying CT attenuation value ranges and observed that 
the highest proportion of lesions in the COVID-19 group 
were in the CT value of (–470, –370) HU, and of (30 to 
60) HU in the CAP group. Significant differences were 
observed between the 2 groups for all CT value ranges 
(P<0.05) except for the range of (–370, –270). As Table 3  
shows, we also investigated the intra-class correlation 
coefficient (ICC) statistics between the segmentation results 
(infected volume fractions) derived from DL alone and 
human auditing. The results showed that there was good 
consistency in the volume proportion of the total lung 

Table 1 Demographic and clinical information of COVID-19 and CAP groups

Characteristics COVID-19 group (n=43) CAP group (n=60) P value

Gender, n (%) n=4 n=60 0.59

Female 18 (41.9) 22 (36.7)

Male 25 (58.1) 38 (63.3)

Age (years), mean (SD) (n=103) 41.0 (15.5) 54.7 (17.8) <0.001*

Symptoms, n (%) n=14 n=30

Fever 7 (87.5) 12 (48.0) 0.098

Cough 4 (44.4) 13 (52.0) 1.000

Muscle ache 3 (33.3) 5 (20.0) 0.649

Lab test: WBC, n (%) n=8 n=25 0.01*

Increased (>9.5×109/L) 0 (0.0) 12 (48.0)

Normal (3.5–9.5×109/L) 6 (66.7) 12 (48.0)

Decreased (<3.5×109/L) 2 (22.2) 1 (4.0)

Lab test: lymphocytes, n (%) n=8 n=25 0.007*

Increased (>3.2×109/L) 1 (11.1) 1 (4.0)

Normal (1.1–3.2×109/L) 6 (66.7) 7 (28.0)

Decreased (<1.1×109/L) 1 (11.1) 17 (68.0)

Data were expressed as the number (percentage) of patients. Ages were reported as means (standard deviations). *, a statistically 
significant difference between groups. COVID-19, coronavirus disease 2019; CAP, community acquired pneumonia; WBC, white blood cell 
count.
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Figure 2 A comparison of the segmentation results derived from DL and human auditing. A CT slice from a representative COVID-19 
(A) and CAP (B) case overlaid with original segmented ROIs (yellow masks) derived from DL segmentation results (top), and manually 
corrected segmented masks (bottom). DL, deep learning; COVID-19, coronavirus disease 2019; CAP, community acquired pneumonia. 

Table 2 The infected lobes and distributions of the COVID-19 group and the CAP group

Descriptors COVID-19 group (n=43), median (IQR), % CAP group (n=60), median (IQR), % P value

No. of infected lobes 4 (3 to 4) 4 (4 to 5) 0.031* 

Locations

The whole lung 1.83 (0.65, 4.42) 6.40 (2.77, 11.11) <0.001*

Superior lobe of right lung 1.81 (0.09, 5.28) 1.32 (0.14, 7.02) 0.649

Middle lobe of right lung 0.01 (0.00, 0.67) 0.16 (0.00, 6.44) 0.030*

Inferior lobe of right lung 1.77 (0.32, 7.10) 12.72 (1.77, 25.78) <0.001*

Superior lobe of left lung 0.25 (0.00, 1.65) 3.20 (0.25, 6.62) <0.001*

Superior lobe of left lung 1.17 (0.05, 7.39) 10.90 (1.94, 23.26) <0.001 *

CT value ranges

(–1,000, –570) HU 1.70 (0.40, 4.20) 2.18 (0.56, 5.71) 0.418

(–570, –470) HU 7.74 (1.61, 23.01) 3.63 (1.16, 10.05) 0.040*

(–470, –370) HU 9.35 (1.39, 22.72) 4.24 (1.30, 10.62) 0.040*

(–370, –270) HU 6.32 (1.05, 17.55) 4.64 (1.87, 11.63) 0.561

(–270, –170) HU 2.81 (0.86, 9.13) 6.22 (2.40, 11.26) 0.017*

(–170, –70) HU 1.57 (0.33, 3.81) 6.37 (2.52, 11.39) <0.001*

(–70, 30) HU 1.22 (0.15, 2.45) 7.16 (3.03, 12.86) <0.001*

(30, 60) HU 1.10 (0.10, 2.21) 8.10 (3.26, 13.36) <0.001*

(60, 1,000) HU 0.83 (0.09, 1.73) 7.61 (3.17, 13.91) <0.001*

Data were displayed as median [interquartile range (IQR)]. *, P<0.05 indicates statistical significance based on a Mann-Whitney test. 
COVID-19, coronavirus disease 2019; CAP, community acquired pneumonia; IQR, inter-quartile range; CT, computed tomography; HU, 
Hounsfield units.
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infection between the groups (Table 3).

Performance of CT radiomic model in differentiating 
between COVID-19 and CAP

Sixteen models were established in this study. For each 
model, the evaluation metrics were AUC, the area under 
the precision-recall curve (AU-PRC), sensitivity (SEN), 

specificity (SPEC), F1-score, and accuracy (ACC). Table 4  
summarizes the varying performance of each model for 
each classifier concerning the different feature selection 
methods. Among all the models, the Lasso regression 
yielded higher AUC values for all used classifiers. Notably, 
the MLP classifier obtained the highest AUC of 0.990 
[95% confidence interval (CI): 0.962–1.000]. The results 
indicated that combining the LASSO with the MLP 

Table 3 ICC statistics between segmentation results (infected volumes fractions) derived from DL and human auditing

Locations (DL vs. human auditing) COVID-19 group (n=43), ICC (95% CI) CAP group (n=60), ICC (95% CI)

The whole lung 0.908 (0.758, 0.958) 0.931 (0.887, 0.958)

Superior lobe of right lung 0.352 (0.054, 0.591) 0.266 (0.015, 0.486)

Middle lobe of right lung 0.491 (0.230, 0.687) 0.896 (0.832, 0.937)

Inferior lobe of right lung 0.610 (0.381, 0.769) 0.779 (0.656, 0.861)

Superior lobe of left lung 0.902 (0.823, 0.946) 0.858 (0.772, 0.913)

Superior lobe of left lung 0.935 (0.882, 0.964) 0.698 (0.541, 0.808)

COVID-19, coronavirus disease 2019; CAP, community acquired pneumonia; DL, deep learning; ICC, intra-class correlation coefficient; CI, 
confidence interval.

Table 4 Summary of AUC values for classifiers and feature selection methods with average predictive performance taken over the 5-fold validation

Feature selection Classifiers AUC AU-PRC SEN SPEC F1_Score ACC

L1 regularization LR 0.928 0.820 0.935 0.885 0.896 0.897 

MLP 0.948 0.804 0.935 0.869 0.887 0.888 

SVM 0.948 0.788 0.848 0.902 0.866 0.869 

XGboost 0.938 0.772 0.957 0.820 0.869 0.869 

LASSO LR 0.975 0.921 0.957 0.967 0.952 0.953 

MLP 0.990 0.942 0.957 0.984 0.962 0.963 

SVM 0.981 0.904 0.891 0.984 0.932 0.935 

XGboost 0.946 0.772 0.957 0.820 0.869 0.869 

RIDGE LR 0.949 0.836 0.935 0.902 0.905 0.907 

MLP 0.968 0.880 0.848 0.984 0.912 0.916 

SVM 0.962 0.817 0.870 0.918 0.885 0.888 

XGboost 0.938 0.808 0.913 0.885 0.886 0.888 

Z test LR 0.946 0.793 0.913 0.869 0.877 0.879 

MLP 0.961 0.769 0.870 0.869 0.857 0.860 

SVM 0.928 0.752 0.891 0.836 0.849 0.850 

XGboost 0.928 0.784 0.870 0.885 0.867 0.869 

LR, logistic regression; MLP, multi-layer perceptron; SVM, support vector machine; Xgboost, eXtreme gradient boosting; AUC, area under 
the receiver characteristic curve; AU-PRC, area under the precision-recall curve; SEN, sensitivity; SPEC, specificity; ACC, accuracy.
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classifiers resulted in the best-performing model with the 
highest ACC (96.3%), SEN (95.7%), SPEC (98.4%), and 
AU-PRC (0.942) (Figure 3).

Discussion

In this study, we explored a methodological framework 

to differentiate between COVID-19 and CAP using 
conventional CT radiomics models that were implemented 
with DL and human audit ing.  The segmentation 
results  derived from the DL-based segmentation 
algorithms were manually corrected by experienced 
radiologists and eventually used to extract radiomics 
features for classification purposes. The quantitative CT 
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Figure 3 ROC curves of CT Radiomic models (over the 5-fold validations) for each classifier across the various feature selection methods in 
differentiating COVID-19 from CAP. COVID-19, coronavirus disease 2019; CAP, community acquired pneumonia; LR, logistic regression; 
MLP, multi-layer perceptron; SVM, support vector machine; Xgboost, eXtreme gradient boosting; TPR, true positive rate; FPR, false 
positive rate; AUC, area under the receiver operating characteristic curve; std.dev, standard deviation.
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measurements provided the quantitative volume fractions 
of lung involvement for the whole lung and each lobe and 
different CT attenuation ranges. Using this information, 
radiologists were able to evaluate the involvement of 
infected regions in both lungs. This information could 
also be used as effective biomarkers for monitoring illness 
progress and curative effects. 

Previous studies have employed subjective evaluations 
using a scoring system rated by radiologists to assess disease 
severity (15-17). However, this semi-quantitative approach 
often suffers from inaccuracy and inconsistency among 
different readers. Additionally, it is difficult to make findings 
based on visual interpretations of images alone due to the 
disease’s lack of specificity (18,19). As our results showed, 
patients in the CAP group had a significantly higher 
lung involvement percentage in both the whole lung and 
individual lobes (except for the right upper lobe) than those 
in the COVID-19 group. Conversely, their corresponding 
distributions across the HU spectrum differed significantly. 
A higher proportion of infected lesions were found in the 
low-density range (–570, –270) in the COVID-19 group 
than the CAP group, and lung involvement peaked at 
higher CT value ranges (–270, 60). As different CT values 
represented different types of lesions (20), the results 
suggest that a lower density of GGO was more common in 
the COVID group than the CAP group, which presented 
with lesions of higher density.

Conventional radiomics models were developed 
and evaluated concerning different feature selection 
algorithms and classif iers to identify COVID-19. 
Among the 16 different combinations, Lasso regression 
with MLP was the most predictive classifier with an 
AUC of 0.990 (95% CI: 0.962–1.000). This predictive 
accuracy was comparable to the DL models proposed 
by Li et al . (AUC =0.96 for COVID-19) and Song 
et al. (AUC =0.98 at the image level and 0.99 at the 
patient level) (7,21). Unlike the DL CAP algorithm, 
which requires a significant amount of labeled data for 
training and validation, our proposed model enabled 
binary classification using features derived from DL-
based segmentation masks reviewed by humans. The 
involvement of a human factor maximizes the success of 
developing algorithms powered by DL in radiology.

This study had several limitations. First, as it was a 
multi-center study, we could not obtain clinical information 
from all patients. Some laboratory data were missing, and 
thus, comparisons between the groups could not be made. 
Second, the study had several common limitations, such 

as small sample size and the lack of an external validation 
dataset. However, a methodological foundation was 
established for further analysis to achieve a larger-scale 
differential diagnosis of COVID-19 pneumonia. Finally, a 
prospective study using the proposed model is needed to 
address the clinical diagnostic value of the model.

Conclusions

In conclusion, we developed CT radiomics models 
implemented with human-centered DL-based algorithms to 
differentiate between COVID-19 and CAP. This framework 
could provide a methodological foundation for differential 
diagnoses and potentially reduce the clinical burden caused 
by the pandemic. Future work will extend this approach to 
a larger dataset to further refine this technology for diffuse 
pulmonary diseases, such as pulmonary alveolar proteinosis 
and interstitial pneumonia. Additionally, the fusion of 
radiomics features and local binary pattern-based edge-
texture features may be able to undertake the classification 
task with a limited dataset in medical imaging.
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