

Procalcitonin in infectious diseases: a bibliometric analysis

Yajun Zhang^{1#}, Jinhui Zhang^{2#}, Li Zhao¹, Na Zhao¹, Ye Zhang¹, Jie Zhang³, Shuying Wang⁴

¹Department of Laboratory, Beijing Renhe Hospital, Beijing, China; ²Department of Laboratory, Laboratory of Changli People's Hospital, Changli, China; ³Laboratory of Peking University International Hospital, Beijing, China; ⁴PLA Medical College, Beijing, China

Contributions: (I) Conception and design: Y Zhang, J Zhang; (II) Administrative support: J Zhang; (III) Provision of study materials or patients: L Zhao, N Zhao; (IV) Collection and assembly of data: Y Zhang, S Wang; (V) Data analysis and interpretation: Y Zhang, J Zhang, S Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

"These authors contributed equally to this work.

Correspondence to: Jie Zhang. Laboratory of Peking University International Hospital, Beijing, China. Email: 2575797834@qq.com.

Background: Infectious disease is ubiquitous and can represent a major threat to human health. Procalcitonin (PCT) is mainly used to identify the severity of bacterial infections, which can be secondary to many non-bacterial infectious diseases. The purpose of this study was to evaluate current research in the field of infectious diseases and to suggest directions for further investigation.

Methods: The Science Citation Index Expanded (SCI-E) database in the Web of Science Core Collection (WOSCC) was used as the search data source. The search parameters including the search scope were limited to "infectious disease" and the search term was "procalcitonin". The time range of the target literature was 1900 to the final search date of this research (May 7, 2021), and the language was limited to English. The full records of the search results and cited references were exported in plain text format, and Citespace software was used to analyze the documents.

Results: A total of 996 related research documents were found, and the number increased significantly in 2020. The United States, Germany, and the United Kingdom were the main sources of research, and the main research institutions were Aarhus University Hospital and Harvard University. The main journals are publishing material were Clin Infect Dis, Lancet, and Crit Care Med. Analysis of key words showed that the most common current research topics were sepsis and biomarkers of disease monitoring.

Conclusions: Research on infectious disease and the role of PCT is increasing. The main research topics are sepsis and biomarkers for disease monitoring.

Keywords: Procalcitonin; infectious diseases; sepsis; biomarkers

Submitted May 17, 2021. Accepted for publication Jun 18, 2021. doi: 10.21037/apm-21-1607 View this article at: https://dx.doi.org/10.21037/apm-21-1607

Introduction

The 2020 COVID-19 pandemic has highlighted the major threat to human health imposed by infectious disease (1-3). Current clinical research on infectious diseases mainly focuses on three areas; the development of specific tests for diagnosis, especially modern molecular diagnostic techniques (4); the identification of co-infections, such as bacterial infections secondary to viral infections (5); and the monitoring of changes of disease during treatment and use of antibiotics (6). Procalcitonin (PCT) is a protein that consists of 116 amino acids and is the peptide precursor of calcitonin (6). PCT is used as a marker indicating the severity of bacterial infections, and increases significantly in the presence of sepsis and severe disease (7). As many bacterial infections can be secondary to non-bacterial infections, it is necessary to clarify the origin of infection in clinical practice so that appropriate antibiotic treatment can be applied and monitored. Many studies have observed the application of PCT in patients with infectious disease, and the 2020 COVID-19 outbreak has increased attention (8). Therefore, in addition to the research on PCT in common

8004

 Table 1 Literature type

Literature	Records	Percentage
Article	690	69.3
Review	111	11.1
Letter	97	9.7
Meeting abstract	55	5.5
Editorial material	37	3.7
Proceedings paper	29	2.9
Correction	5	0.5
Early access	5	0.5
Book chapter	1	0.1
Retraction	1	0.1

infections, we should also pay attention to the current research status of PCT in infectious diseases. Different from some meta-analyses about the PCT in infectious diseases, the purpose of this study was to analyze relevant literature in the field of infectious disease to provide a general view on this field and to understand current trends and propose topics for further studies.

Methods

Data source

We used the Science Citation Index Expanded (SCI-E) database in the Web of Science Core Collection (WOSCC) as the data source.

Retrieval method

A subject search strategy was used with the search term "procalcitonin", while at the same time, the search scope was limited to the term "infectious diseases". The time range of the search literature was 1900 to the final search date of this research (May 7th, 2021), and the language of publication was limited to English.

Analysis method

The full record of the search results and cited references was exported in plain text format, and Citespace software was used to analyze the annual publication status, country/ institution distribution, journal distribution, author distribution, and keywords of literature related to the application of procalcitonin in infectious diseases.

Statistical analysis

This is a descriptive study and all data were expressed as number and percentage. No statistical comparison was conducted.

Results

Basic results

The search results showed a total of 996 related research documents, of which 690 were original articles, 111 review articles, 97 letters to editors, 55 meeting abstracts, 37 editorial materials, 29 proceedings papers, five early access articles, five corrections, one book, and one retraction (*Tables 1,2, Figure 1*). The total citation frequency of these documents was 24,895 times, the h-index count was 73, and the average number of citations per item was 24.99 (*Figure 2*). Judging from the results of the annual distribution of the number of papers, the number of related papers published showed a clear increasing trend, especially in 2020 (*Figure 1*). The citation frequency of papers in this field also increased year-by-year (*Figure 2*).

Distribution of countries and institutions

We used CiteSpace V software to draw a national visualization map (*Figure 3*) and an institution visualization map (*Figure 4*), and the results show that the top five countries for the number of papers published were the United States, China, France, Spain, and Germany, and the top five countries in terms of centrality were the United States, Germany, the United Kingdom, France, and the Netherlands (*Tables 3* and 4). The top five research institutions publishing related papers were the University of Basel, Kantonsspital Aarau, Baylor College of Medicine, Aarhus University Hospital, and Harvard University. However, cooperation between institutions was rare, and the two institutions with the highest centrality were Aarhus University Hospital and Harvard University, each with a centrality score of only 0.03 (*Tables 5* and 6).

Authors

The author analysis results showed that the distribution of

Annals of Palliative Medicine, Vol 10, No 7 July 2021

Table 2 Annual distribution of related papers

Publication year	Records	Percentage (%)
2021	35	3.5
2020	107	10.7
2019	76	7.6
2018	74	7.4
2017	68	6.8
2016	70	7.0
2015	58	5.8
2014	64	6.4
2013	65	6.5
2012	56	5.6
2011	52	5.2
2010	43	4.3
2009	24	2.4
2008	33	3.3
2007	40	4.0
2006	20	2.0
2005	21	2.1
2004	21	2.1
2003	15	1.5
2002	9	0.9
2001	9	0.9
2000	11	1.1
1999	8	0.8
1998	8	0.8
1997	5	0.5
1996	2	0.2
1995	2	0.2

authors in this field was also relatively scattered. There were only two authors with more than 10 publications: Schuetz P and Mueller B, and only three with a centrality score of more than 0.01: Christcrain M, Beishuizen A, and Jong ED, suggesting that there is little cooperation between authors (*Tables 7, 8, Figure 5*). However, related papers are cited frequently, with those of six authors being cited more than 100 times: Schuetz P, Christ-Crain M, Assicot M, Simon L, Muller B, and Meisner M (*Table 9*). The cited authors were relatively concentrated, and there were three authors with a centrality score greater than 0.1: Bone RC, Becker KI, and Assicot M (*Table 10, Figure 6*). The co-citation analysis of the author's literature (*Figure 7*) shows significant chronology and centrality (*Figure 7*).

Distribution of journals

The literature in this study involved 74 journals, of which 17 had published more than 20 papers on this subject. These journals published a total of 739 articles, accounting for 74.2% of the total literature (*Table 11*). The journals cited more than 400 times include *Clin Infect Dis, Lancet*, and *Crit Care Med*, all of which are top authoritative journals in this field or comprehensive fields (*Table 12*). Journals with centrality greater than 0.05 were *Ann Intern Med, Clin Chem Lab Med, Am J Clin Pathol, Acta Paediatr*, and *Am J Med (Table 13*).

Keywords reflect the research hotspots and frontiers in this field

CiteSpace V software was used to output the keyword cooccurrence map (*Figure 8*) and the top five keywords with frequency were procalcitonin, C-reactive protein, sepsis,

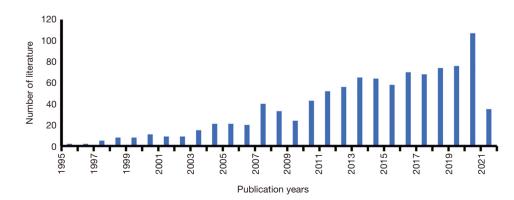


Figure 1 Trends in the number of annual papers published.

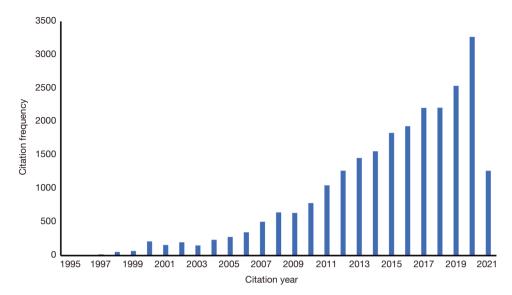


Figure 2 Trends in the frequency of citations of papers in this field each year.

Figure 3 Country visualization map. The knot and connection between countries are few, indicating that the cooperation between countries is rare.

biomarker, and infection (*Table 14*). The top five keywords for centrality were sepsis, c reactive protein, procalcitonin, biomarker, and pneumonia (*Table 15*), and using CiteSpace to perform Burst detection on keywords with high frequency showed high-frequency keywords obviously changed with time (*Figure 9*).

Discussion

PCT is widely used in clinical practice, especially in emergency and critical care medicine, to quickly identify the possibility of bacterial infection. Until February 2019, there were 17 guidelines on the application of PCT, of

Figure 4 Visual map of the organization. There are relatively few knot and connections between knots, suggesting that there is little cooperation between institutions.

Table 3 Top 10 countries for numbers of papers published		Table 4	
Rank	Country	y Frequency	
1	USA	192	1
2	China	131	2
3	France	94	3
4	Spain	83	4
5	Germany	77	5
6	Switzerland	69	6
7	Netherlands	62	7
8	Italy	59	8
9	Japan	45	9
10	England	44	10

. . . .

Table 4 Top	10 cour	tries for	centrality
LADIC + 100	TO COUL	iules ior	centranty

Rank	Country	Centrality
1	USA	0.23
2	Germany	0.20
3	England	0.20
4	France	0.17
5	Netherlands	0.16
6	Italy	0.13
7	Spain	0.10
8	Brazil	0.09
9	Egypt	0.09
10	Slovakia	0.09

which there were 12 recommending the use of PCT for the diagnosis or treatment of bacterial infections, one guideline holding this was not necessary, and four which held that there was insufficient evidence to recommend or not recommend its use (9). However, these studies mainly observed the application of PCT in infection in other fields of clinical medicine (10), and the range and depth of research into the role of PCT specifically in infectious disease is unclear. In response to this, we limited our search scope to the specific field "infectious diseases" and the

8008

Table 5 Top 10 institutions for number of papers published

Rank	Institutions	Frequency
1	University Basel	17
2	Kantonsspital Aarau	14
3	Baylor College of Medicine	11
4	Aarhus University Hospital	10
5	Harvard University	10
6	Erasmus MC	10
7	University Athens	10
8	Capital Medical University	9
9	CHU Nantes	9
10	Univ Rochester	9

Table 6 Top 10 institutions by centrality

Rank	Institutions	Centrality
1	Aarhus University Hospital	0.03
2	Harvard University	0.03
3	Univ Basel	0.01
4	Kantonsspital Aarau	0.01
5	Capital Medical University	0.01
6	Jena University Hospital	0.01
7	University Basel Hospital	0.01
8	Taiwan University Hospital	0.01
9	University Paris 06	0.01
10	Hannover Medical School	0.01

results showed that there is less study in this than in related fields. The total number of publications was only 996 (as of May 7, 2021, English literature), of which only 690 were original articles. This may be because some infectious diseases are easy to diagnose and have more reasonable indicators for monitoring (11,12), and there is no need for the use of PCT in diagnosis or to guide treatment. However, the substantial increase in related papers in 2020 suggests its increased use as an indicator of infectious disease is not in a small way related to the COVID-19 pandemic, on which more than 20 papers have been published (8,13).

Our results show that most research in this field arises from several institutions in Europe and the United States, and while most researchers in the field also belong to these

Zhang et al. Procalcitonin in infectious diseases

Table 7 Top 10 authors and	number of papers published
----------------------------	----------------------------

Rank	Authors Frequency	
1	Schuetz P	22
2	Mueller B	13
3	Julianjimenez A	9
4	Bohuon C	7
5	Christcrain M	6
6	Beishuizen A	4
7	Prat C	4
8	Gendrel D	4
9	Musher Dm	4
10	Gilbert Dn	4

Table 8 Top 3 authors for centrality

Rank	Authors	Centrality
1	Christcrain M	0.02
2	Beishuizen A	0.01
3	Jong ED	0.01

There are only three authors with a centrality score of 0.01.

institutions, there appeared to be little collaboration in terms of authorship between them. This situation is no different in China, which produces many publications, with little evidence of international collaboration. One reason for this may be that there are currently few countries capable of carrying out relevant research in the field of infectious disease (14), which may in turn be due to the high costs in maintaining the strict quality control and biosafety measures required to operate an infectious disease research laboratory (15,16). Despite this, network collaboration is increasing, and has made it easier to carry out multi-center research on many common diseases, rare diseases, and infectious diseases (17). The implementation of networks connecting all parts of the world may also be more conducive to the prevention and control of infectious diseases in poor countries and regions which are unable to establish their own research facilities. In terms of journals, research results in this field are more likely to be published in more detailed professional journals, but high-quality research is more likely to be published in top comprehensive journals and critical care journals. This may be because these studies have more extensive reference value, or the diseases involved are

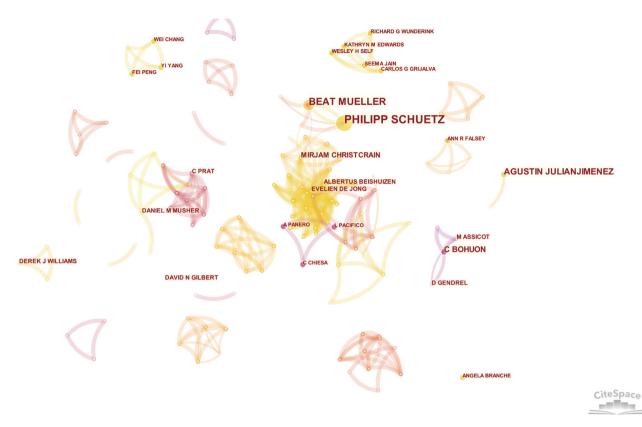


Figure 5 Author co-operation visualization map, which clearly shows that there are few connections between knots.

Rank Authors Frequency	Frequency		
1 Schuetz P 231			
2 Christ-Crain M 184			
3 Assicot M 148			
4 Simon L 144			
5 Muller B 116			
6 Meisner M 101			
7 Bouadma L 96			
8 [Anonymous] 94			
9 Bone RcC 94			
10 Gendrel D 90			

Table	9 Ton	10 auth	ors cited	lin	literature
Table	7 100	TO autu	iors chec		merature

"Anonymous" often refers to comments from journals.

more serious, and the disease covers more people.

In addition to the term procalcitonin, the most frequently used keywords mainly concerned biomarkers, severe illness, and sepsis, suggesting that many studies

Table 10 Top 10 co-cited authors of

	1	
Rank	Authors	Centrality
1	Bone RC	0.2
2	Becker KI	0.17
3	Assicot M	0.11
4	Meisner M	0.08
5	Giamarellos-Bourboulis EJ	0.07
6	Chiesa C	0.07
7	Dandona P	0.07
8	Gendrel D	0.07
9	Muller B	0.07
10	Simon L	0.07

are related to post-infection sepsis. Moreover, we have also seen significant changes in the use of keywords over time, suggesting that the focus of research is changing, with the current focus on critical illness-related research, especially sepsis (18,19). Regarding the use of PCT, most

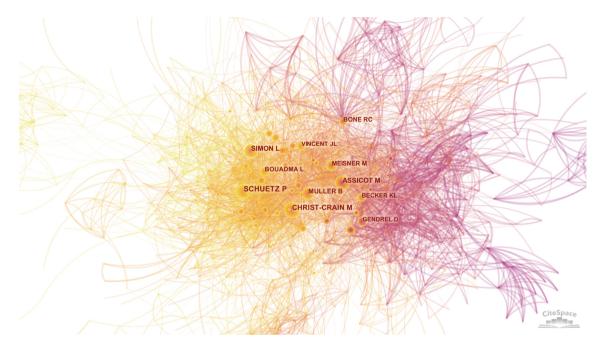
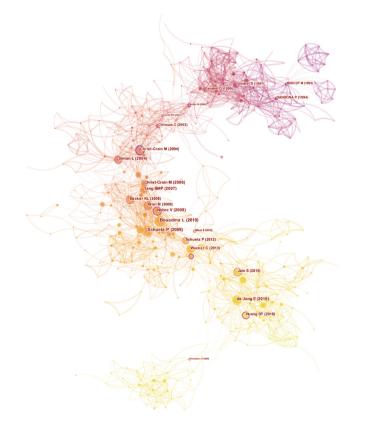
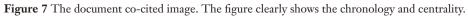




Figure 6 Author's co-cited visualization map.

Colormap Bur	stness Search Clusters
Labels	Layout Views
Keyword Term	Overlay Labels
By Degree	Show Frequency
hreshold	10 •
Font Size	15 4 11 +
lode Size	200 4
Node Labels —	
By Citation	Show Frequency
hreshold	32 (1)
Font Size	5 4
lode Size	154
Link Labels —	
Show Link	Labels 🔲 Show Link Strengths
Font Size	8
Cluster Labels	
Threshold	
Font Size	16 .
She	ow Cluster Labels Over Time
Max L	ength 30 (
Minimizing Over	laps

CiteSpace

Rank	Journals	Records	Percentage
1	BMC Infectious Diseases	90	9.0
2	Clinical Infectious Diseases	84	8.4
3	Infection	68	6.8
4	Pediatric Infectious Disease Journal	65	6.5
5	European Journal of Clinical Microbiology Infectious Diseases	59	5.9
6	Journal of Infection	54	5.4
7	International Journal of Infectious Diseases	41	4.1
8	International Journal of Antimicrobial Agents	38	3.8
9	Clinical Microbiology and Infection	30	3.0
10	Lancet Infectious Diseases	30	3.0
11	Scandinavian Journal of Infectious Diseases	30	3.0
12	Surgical Infections	30	3.0
13	Diagnostic Microbiology and Infectious Disease	27	2.7
14	Journal of Infection and Chemotherapy	27	2.7
15	Expert Review of Anti-Infective Therapy	24	2.4
16	Enfermedades Infecciosas Y Microbiologia Clinica	22	2.2
17	Current Opinion in Infectious Diseases	20	2.0

Table 12 Top 10 journals by citation frequency

Rank	Journals	Records
1	Clin Infect Dis	613
2	Lancet	457
3	Crit Care Med	453
4	Intens Care Med	388
5	New Engl J Med	376
6	Jama-J Am Med Assoc	346
7	Crit Care	335
8	Am J Resp Crit Care	304
9	Chest	291
10	Lancet Infect Dis	272

guidelines currently recommend that bacterial infections

are not supported when serum PCT <0.05 µg/L, while

serum PCT >2.00 µg/L suggests sepsis, and indicates

a serious condition. However, attention should be paid

to other clinical manifestations and indicators, and an

Rank	Journals	Centrality
1	Ann Intern Med	0.08
2	Clin Chem Lab Med	0.08
3	Am J Clin Pathol	0.08
4	Acta Paediatr	0.07
5	Am J Med	0.07
6	Brit Med J	0.05
7	Am J Trop Med Hyg	0.05
8	Brit J Anaesth	0.05
9	Clin Chem	0.04
10	Antimicrob Agents Ch	0.04

Table 13 Top 10 journals cited by centrality

increase in serum PCT caused by local infection and noninfectious factors should be excluded. Dynamic serum PCT monitoring is very important for disease evaluation and prognostic judgment, especially in critically ill patients, and can guide the use of clinical antibacterial drugs. These

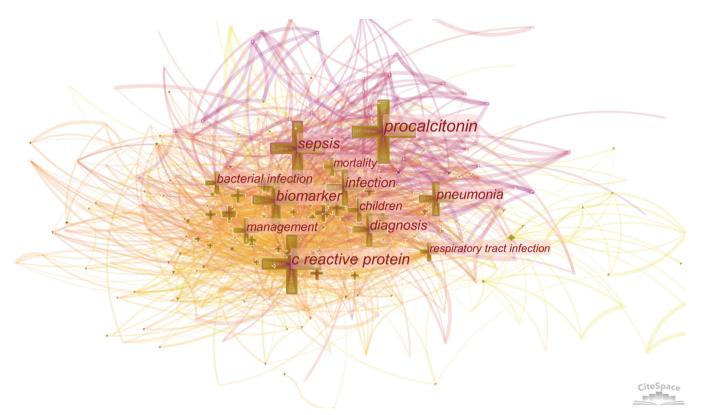


Figure 8 Keyword co-occurrence map. Note: The obvious synonyms were merged when making the keyword map. Such as: sepsis # septic shock, c reactive protein # c-reactive protein, and procalcitonin # serum procalcitonin.

Table 14 Top 10 keywords by frequency			
Rank	Key words	Frequency	
1	Procalcitonin	566	
2	C reactive protein	338	
3	Sepsis	295	
4	Biomarker	260	
5	Infection	182	
6	Pneumonia	178	
7	Diagnosis	158	
8	Management	96	
9	Children	93	
10	Bacterial infection	92	

Table 15 Top 10 keywords for centrality			
Rank	Key words	Centrality	
1	Sepsis	0.24	
2	C reactive protein	0.20	
3	Procalcitonin	0.18	
4	Biomarker	0.13	
5	Pneumonia	0.13	
6	COVID-19	0.09	
7	Infection	0.08	
8	Diagnosis	0.08	
9	Children	0.07	
10	Interleukin 6	0.06	

drugs are not used when serum PCT <0.25 µg/L excludes bacterial infection, and after treatment, when serum PCT is less than 0.50 µg/L or the peak reduction is \geq 80%, and if clinical manifestations indicate, discontinuing antibacterial drugs may be considered (20,21).

The chief limitation of this research is that the scope of the document search was limited to "infectious diseases", which may have produced inconsistencies in the Top 25 keywords with the strongest citation bursts

endotoxin 1995 3.72 1996 2004 serum 1995 3.44 1996 1997 interleukin 6 1995 5.16 1997 2009 c reactive protein 1995 4.65 1997 2005 sepsis 1995 7.17 1998 2003 tumor necrosis factor 1995 6.92 1999 2006 early diagnosis 1995 3.62 2000 2011 bacterial 1995 5.48 2001 2007	21
interleukin 6 1995 5.16 1997 2009 c reactive protein 1995 4.65 1997 2005 sepsis 1995 7.17 1998 2003 tumor necrosis factor 1995 6.92 1999 2006 early diagnosis 1995 3.62 2000 2011	
c reactive protein 1995 4.65 1997 2005 sepsis 1995 7.17 1998 2003 tumor necrosis factor 1995 6.92 1999 2006 early diagnosis 1995 3.62 2000 2011	
sepsis 1995 7.17 1998 2003 tumor necrosis factor 1995 6.92 1999 2006 early diagnosis 1995 3.62 2000 2011	
tumor necrosis factor 1995 6.92 1999 2006 early diagnosis 1995 3.62 2000 2011	
early diagnosis 1995 3.62 2000 2011	
hacterial 1995 5.48 2001 2007	
fever 1995 5.25 2001 2007	
cancer patient 1995 3.78 2005 2011	_
critically ill patient 1995 5.86 2007 2013	_
intensive care unit 1995 5.29 2008 2013	_
low risk 1995 3.34 2008 2012	
pneumonia 1995 5.96 2009 2011	
guidance 1995 5.27 2009 2011	
metaanalysis 1995 4.26 2012 2014	_
community-acquired pneumonia 1995 4.15 2013 2017	_
febrile neutropenia 1995 3.75 2014 2016	_
outcm 1995 3.66 2016 2021	
antibiotic stewardship 1995 4.19 2017 2019	
icu 1995 3.66 2017 2018	
impact 1995 3.49 2017 2019	
adult 1995 5.34 2018 2021	
neonatal sepsis 1995 3.67 2019 2021	
presepsin 1995 3.54 2019 2021	_

Figure 9 Top 25 keywords with the strongest citation bursts.

classification of publications, and some may be missed. The results also suggest that the classification of documents should be more accurate to avoid confusion and repetition, which will be conducive to accurate retrieval and results.

Acknowledgments

Funding: None.

Footnote

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://dx.doi.org/10.21037/apm-21-1607). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article

distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- 1. Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature 2008;451:990-3.
- Murray KA, Preston N, Allen T, et al. Global biogeography of human infectious diseases. Proc Natl Acad Sci U S A 2015;112:12746-51.
- 3. Bedford J, Enria D, Giesecke J, et al. COVID-19: towards controlling of a pandemic. Lancet 2020;395:1015-8.
- 4. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 2004;4:337-48.
- 5. Langford BJ, So M, Raybardhan S, et al. Bacterial co-

Zhang et al. Procalcitonin in infectious diseases

infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect 2020;26:1622-9.

- Stocker M, van Herk W, El Helou S, et al. Procalcitoninguided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns). Lancet 2017;390:871-81.
- Wirz Y, Meier MA, Bouadma L, et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care 2018;22:191.
- Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta 2020;505:190-1.
- 9. Tujula B, Hamalainen S, Kokki H, et al. Review of clinical practice guidelines on the use of procalcitonin in infections. Infect Dis (Lond) 2020;52:227-34.
- 10. Hamade B, Huang DT. Procalcitonin: Where Are We Now? Crit Care Clin 2020;36:23-40.
- Miller JM, Binnicker MJ, Campbell S, et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis 2018;67:813-6.
- 12. Mongan AE, Tuda JSB, Runtuwene LR. Portable sequencer in the fight against infectious disease. J Hum Genet 2020;65:35-40.
- Ahmed S, Jafri L, Hoodbhoy Z, et al. Prognostic Value of Serum Procalcitonin in COVID-19 Patients: A Systematic

Cite this article as: Zhang Y, Zhang J, Zhao L, Zhao N, Zhang Y, Zhang J, Wang S. Procalcitonin in infectious diseases: a bibliometric analysis. Ann Palliat Med 2021;10(7):8003-8014. doi: 10.21037/apm-21-1607

Review. Indian J Crit Care Med 2021;25:77-84.

- Roberts CC. Emerging infectious disease laboratory and diagnostic preparedness to accelerate vaccine development. Hum Vaccin Immunother 2019;15:2258-63.
- Head MG, Brown RJ, Clarke SC. Research investments for UK infectious disease research 1997-2013: A systematic analysis of awards to UK institutions alongside national burden of disease. J Infect 2018;76:11-9.
- Mercer A. Protection against severe infectious disease in the past. Pathog Glob Health 2021;115:151-67.
- Turner AK, Wages RK, Nadeau K, et al. The Infectious Disease Network (IDN): Development and Use for Evaluation of Potential Ebola Cases in Georgia. Disaster Med Public Health Prep 2018;12:765-71.
- Mierzchała-Pasierb M, Lipinska-Gediga M. Sepsis diagnosis and monitoring - procalcitonin as standard, but what next? Anaesthesiol Intensive Ther 2019;51:299-305.
- Jekarl DW, Lee S, Kim M, et al. Procalcitonin as a prognostic marker for sepsis based on SEPSIS-3. J Clin Lab Anal 2019;33:e22996.
- Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017;43:304-77.
- Lee CC, Kwa ALH, Apisarnthanarak A, et al. Procalcitonin (PCT)-guided antibiotic stewardship in Asia-Pacific countries: adaptation based on an expert consensus meeting. Clin Chem Lab Med 2020;58:1983-91.

(English Language Editor: J. Draper)

8014