

# Risk factors for 30-day readmission in patients with ischemic stroke: a systematic review and meta-analysis

# Zhiqiang Deng<sup>1</sup><sup>^</sup>, Xiaoyan Wu<sup>1</sup>, Linxue Hu<sup>1</sup>, Ming Li<sup>2</sup>, Muke Zhou<sup>2</sup>, Lihong Zhao<sup>3</sup>, Rong Yang<sup>2</sup>

<sup>1</sup>Department of Neurology, West China College of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu, China; <sup>2</sup>Department of Neurology, West China Hospital of Sichuan University, Chengdu, China; <sup>3</sup>Department of Radiology, West China Hospital, Sichuan University, Chengdu, China;

*Contributions:* (I) Conception and design: R Yang, L Zhao, M Zhou; (II) Administrative support: R Yang, M Zhou; (III) Provision of study materials or patients: R Yang, L Zhao; (IV) Collection and assembly of data: Z Deng, X Wu, M Li; (V) Data analysis and interpretation: Z Deng, X Wu, L Hu; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Lihong Zhao. Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Email: zhaolihong184@163.com; Rong Yang. Department of Neurology, West China Hospital, Sichuan University, Chengdu, China. Email: hxyangrong2014@163.com.

**Background:** The aim of this study was to identify risk factors for 30-day readmission in ischemic stroke survivors, with an attempt to improve post-discharge care and lower the 30-day readmission rate.

**Methods:** Seven databases were searched from inception to April 30, 2021. Retrospective or prospective observational studies and interventional studies focusing on 30-day readmission risk factors in patients with ischemic stroke were included. Two authors independently screened the literature and evaluated the quality of the studies using the Newcastle-Ottawa scale (NOS). The pooled effect size was estimated using the odds ratio (OR), and the corresponding 95% confidence interval (CI) was calculated. The Cochrane Q ( $\chi^2$ ) and I<sup>2</sup> tests were used to assess heterogeneity among studies, and each risk factor was tested for its robustness using fixed- or random-effects models.

**Results:** A total of 17 retrospective observational studies from the United States (n=10), China (n=2), Republic of Korea (n=2), Norway (n=2), and Australia (n=1), comprising a total of 1,829,964 patients, were included. The 30-day readmission rates of ischemic stroke survivors ranged from 1.41% to 27.64%, with a mean value of 10.66%±6.87%. We finally identified 6 risk factors: history of stroke (OR, 1.33; 95% CI: 1.08–1.64; P=0.007), diabetes mellitus (OR, 1.15; 95% CI: 1.13–1.17; P<0.001), hypertension (OR, 1.10; 95% CI: 1.07–1.13; P<0.001), atrial fibrillation (OR, 1.26; 95% CI: 1.23–1.29; P<0.001), heart failure (OR, 1.59; 95% CI: 1.56–1.63; P<0.001), and age, among which age was determined by descriptive analysis. Four risk factors were ruled out: hyperlipidemia (OR, 1.01; 95% CI: 0.87–1.17; P=0.91), coronary artery disease (OR, 0.83; 95% CI: 0.73–0.96; P=0.009), smoking (OR, 0.97; 95% CI: 0.83–1.14; P=0.71), and gender (female, OR, 0.97; 95% CI: 0.96–0.98; P<0.001).

**Discussion:** The 30-day readmission rates of ischemic stroke survivors ranged from 1.41% to 27.64% and remained challenging. We found that stroke history, diabetes mellitus, hypertension, atrial fibrillation, heart failure, and advanced age were risk factors for 30-day readmission, whereas hyperlipidemia, coronary artery disease, smoking, and gender were not. All the studies included in this analysis were case-control studies, and thus causality cannot be inferred. Furthermore, recall bias may be present.

Keywords: Ischemic stroke; readmission; risk factors; meta-analysis

Submitted Sep 10, 2021. Accepted for publication Oct 22, 2021. doi: 10.21037/apm-21-2884 View this article at: https://dx.doi.org/10.21037/apm-21-2884

^ ORCID: 0000-0001-9527-364X.

# Introduction

According to a report on the global burden of stroke between 1990 and 2016 (1), stroke is the second leading cause of death worldwide, second only to ischemic heart disease, accounting for nearly 50 million deaths annually. Stroke is a major public health problem throughout the world due to its high prevalence, mortality, disability rate, and incidence of complications. Stroke has a long disease course, and the recovery period ranges from 2 weeks to 6 months after the onset of the disease, with the sequelae period even continuing beyond 6 months. These facts make out-of-hospital management of stroke particularly important. However, the 30-day readmission rates in stroke survivors remain high due to a variety of factors, including disease recurrence, infection, limb dysfunction, and falls. In 2018, a Chinese study involving 50,912 stroke survivors from 375 hospitals in 29 provinces in China showed that 28.8% of patients were readmitted within 30 days of discharge (2). In a 6-year population-based cohort study of approximately 2 million adult stroke survivors in the United States, 13.7% of patients with hemorrhagic stroke, 12.4% of patients with acute ischemic stroke, and 11.5% of patients with subarachnoid hemorrhage were readmitted within 30 days (3). The high readmission rate reduces the quality of life of patients, causes considerable harm to patients and their families, and increases the medical and economic burden. It is also important to investigate the 15- or 60-day readmission rates of patients with ischemic stroke, but the study of Bjerkreim et al. (4) showed that 30-day readmission significantly increased the risk of 1-year mortality in patients surviving 30 days after discharge. Furthermore, the frequency of 30-day readmissions after stroke has become an indicator for the quality of care, quality of immediate post-discharge care, and the presence of a chronically ill and vulnerable population (5). Frequent readmissions can also affect hospital development and patient reimbursement (6). Vahidy et al. reported that 12.9% of 30-day readmissions were preventable (7). Therefore, it is important to assess the risk factors for 30-day readmissions in ischemic stroke survivors and intervene accordingly.

Although many multicenter, retrospective, observational studies with large sample sizes have investigated the risk factors for 30-day readmission in patients with ischemic stroke in recent years, few prospective cohort studies, longitudinal studies, and randomized controlled trials (RCTs) have been published in this field. With diverse foci, these studies provide no definite conclusions and have not been properly summarized. No previous relevant metaanalyses (8-10) have specifically explored the stroke types and the timing of readmissions due to the limited number of the included articles and databases. Only a small number of risk factors have been identified, and many other risk factors warrant further investigation. Furthermore, these previous meta-analyses did not include several high-quality articles published in the past 5 years, and their conclusions need to be updated. The aim of this meta-analysis was therefore to identify the risk factors for 30-day readmission in ischemic stroke survivors, with an attempt to inform the out-of-hospital management of stroke and lower the 30-day readmission rate, thus benefiting more patients.

Whilst some researchers reported similar studies (9) in 2016, the highlight of our study is that we searched 3 Chinese databases, namely Wanfang data, China National Knowledge Infrastructure (CNKI), and Chinese Science and Technology Journal Database (VIP), and included excellent research in Chinese, rather than just research published in English, which previous similar institutes have not. We believe that research by Chinese scholars is essential to advance clinical work and scientific research. We have added 12 of the latest studies since 2016, and many of the studies are multicenter studies with large sample sizes, making the results more reliable. In addition, only 4 studies were included in previous studies to compare the differences between the experimental group and the control group, while 17 studies were included in our study, which is conducive to improving the persuasiveness of the results. Our study considered nearly 30 risk factors for 30-day readmission after ischemic stroke, and finally identified 6 risk factors after 4 risk factors were ruled out, with 5 possible risk factors requiring further investigations. We present the following article in accordance with the PRISMA reporting checklist (available at https://dx.doi. org/10.21037/apm-21-2884).

# Methods

# Literature search

Four English-language databases, including Web of Science (WOS), the National Library of Medicine (MEDLINE), Excerpta Medica Database (EMBASE), and the Cochrane Library, along with the 3 top Chinese-language databases, including Wanfang data, China National Knowledge Infrastructure (CNKI), and Chinese Science and Technology Journal Database (VIP), were searched from inception to April 30, 2021. Gray literature as well as the references of the relevant articles were also retrieved when possible. The search was conducted by using a combination of relevant subject headings and keywords including "stroke/ acute ischemic stroke/cerebral infarction/transient ischemic attack (TIA)/cerebral vascular accident" and "re\*hospital\*/ re\*admission\*".

#### Inclusion and exclusion criteria

The inclusion criteria were as follows: (I) the article was a retrospective or prospective observational study or interventional study; (II) the subjects were patients with radiologically (cranial computed tomography or magnetic resonance imaging) confirmed ischemic stroke or identified according to the International Classification of Diseases, regardless of stroke type, lesion location, disease course, or comorbidity; (III) participants were aged  $\geq 18$  years; and (IV) the study focused on risk factors for 30-day readmission in patients with ischemic stroke. The exclusion criteria were as follows: (I) studies that were not available in full text; (II) literature for which complete data were not available; (III) among repeated articles, the article had the least comprehensive data set; and (IV) review articles, case reports, and qualitative studies. Some of the articles on 30-day unplanned readmissions or that focused on 28- or 31-day readmissions were also included, as we believed they were equally valuable for our analysis. We also included some articles that examined patients with different stroke types and articles in which patients with ischemic stroke accounted for more than 70% of all the participants. However, similar articles not involving ischemic stroke survivors or with a low proportion of ischemic stroke survivors were excluded. A few articles that did not appear suitable for our analysis were still included if we could find or calculate the data we needed from these articles, though information from these articles was typically quite limited.

#### Data extraction and quality assessment

Two researchers (DZQ and WXY) independently screened the literature based on the inclusion and exclusion criteria. Using a predesigned table, these 2 researchers independently extracted data including: (I) first author, publication year, country, study type, and sample size; (II) basic characteristics of the study population including age, stroke type, readmission time, readmission type, and 30-day readmission rate; and (III) outcome indicators including risk factors for 30-day readmissions. These 2 investigators also independently assessed study quality using methods developed by the US Agency for Healthcare Research and Quality (AHRQ), while the Newcastle-Ottawa Scale was applied for observational studies. Study quality scores were defined as poor [0–3], fair [4–6], or good [7–9]. Discrepancies encountered during literature screening, data extraction, and quality assessment were discussed and resolved in consultation with a third author (YR), if necessary. Where data were not available or were unclear from the reports, we contacted the corresponding authors for further information.

# Data synthesis and statistical analysis

Review Manager version 5.3 (Cochrane Library) was used for outcome analysis. As all the included articles in the final analysis were retrospective observational studies, the pooled effect size was estimated using odds ratio (OR), and the 95% confidence interval (CI) was also calculated. A P value of <0.05 was considered statistically significant. Heterogeneity was assessed by the  $\chi^2$  test and I<sup>2</sup> value. If the heterogeneity of the study was acceptable (P>0.10 and  $I^2 < 50\%$ ), a fixed-effects model was applied, while the robustness of the test was validated using a random-effects model. If heterogeneity was present among the studies, the sources of heterogeneity were further analyzed. First, any possible errors that occurred during data extraction, recording, and input were checked for. Second, sensitivity analysis was performed to exclude studies that might have caused heterogeneity, which was followed by a reperforming of the meta-analysis to eliminate heterogeneity. If the heterogeneity was large (P $\leq$ 0.10 and I<sup>2</sup>>50% for outcome indicators) and the source of heterogeneity could not be determined, the meta-analysis could not be performed and only descriptive analysis was conducted. For missing or erroneous data in the original articles, we added them ourselves if they could be interpreted according to the main text. Otherwise, the corresponding authors of these articles were contacted for clarification via email. The search flowchart, basic information table, and quality evaluation table were created using Microsoft Word (Microsoft Corporation, Redmond, WA, USA), and the forest plots and inverted funnel plots were created using RevMan version 5.3. Publication bias was assessed using inverted funnel plots.

#### 11086

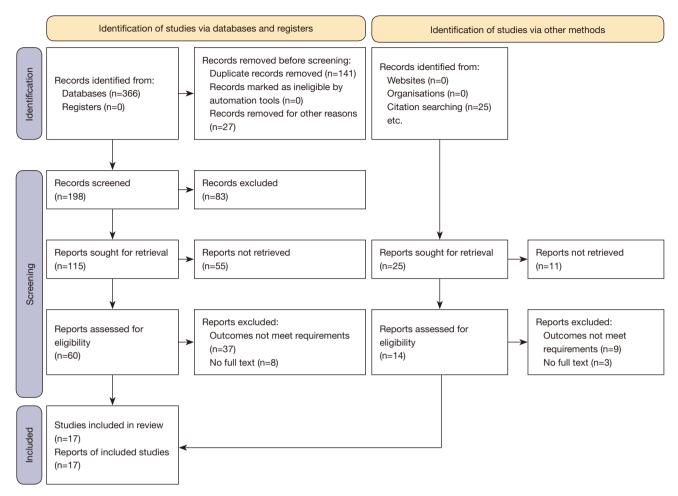



Figure 1 Flowchart of the review process.

# **Results**

# Results of literature search

A total of 366 articles were retrieved from the 7 databases, and 25 documents were found through other resources (*Figure 1*). Seventeen retrospective observational studies from the United States (n=10), China (n=2), Republic of Korea (n=2), Norway (n=2), and Australia (n=1), comprising a total of 1,829,964 patients, were entered into the final meta-analysis. In contrast, the number of prospective observational and interventional studies (e.g., RCTs) was small. In addition, these articles covered a wide range of topics that did not focus on a specific number of risk factors. The number of articles addressing the same risk factor was  $\leq 3$ , and many factors were only described in just a single article. Thus, they were not deemed suitable for metaanalysis or descriptive systematic evaluation. The 30-day readmission rates of ischemic stroke survivors ranged from 1.41% to 27.64%, with a mean value of 10.66% (SD 6.87%). The results varied among countries and regions, with the highest reported 30-day readmission rate from China and the lowest from the United States (*Table 1*).

# Quality evaluation

The included articles were of moderate quality (n=13) or high quality (n=4) (*Table 2*).

#### Statistical analysis

We screened about 30 of the most frequently mentioned risk factors in these 17 articles and finally identified 6 risk factors (*Figures 2-6*): history of stroke (OR, 1.33; 95% CI: 1.08–1.64; P=0.007), diabetes mellitus (OR, 1.15; 95%

 Table 1 Characteristics of the 17 selected studies

| Ctudioo                         | Country | Ctualia tuna                 | Readmission | Readmission | Readmi             | ission (N)          | Effective factors OD (05% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Invalid factors                                                                                                                                                    |
|---------------------------------|---------|------------------------------|-------------|-------------|--------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Studies                         | Country | Stroke type                  | time        | type        | Yes                | No                  | - Effective factors, OR (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Invalid factors                                                                                                                                                    |
| Qiu <i>et al.</i><br>2021       | China   | IS                           | 30 d        | All causes  | 504<br>(22.96%)    | 1,691<br>(77.04%)   | Age, 1.04 (1.03–1.05); NIHSS on admission, 1.03 (1.00–1.05); prior stroke, 1.36 (1.07–1.74); diabetes, 1.42 (1.15–1.74); indwelling urinary catheter, 1.53 (1.13–2.07); on non-neurology floor, 1.45 (1.10–1.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *Discharge destination (<br>home), 1.30 (1.02–1.65).<br>current smoking; curren<br>family history of stroke;<br>≥50%; thrombolytic the<br>discharge destination (h |
| Lekoubou<br><i>et al.</i> 2020  | USA     | IS (85%); HS<br>(15%)        | 30 d        | All causes  | 27,161<br>(11.76%) | 203,708<br>(88.24%) | Seizure, 1.20 (1.14–1.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                  |
| Lee <i>et al.</i><br>2019       | •       | IS (75.6%);<br>HS (24.4%)    | 30 d        | All causes  | 4,124<br>(9.22%)   | 40,605<br>(90.78%)  | Age: 18–44, 1; 45–65, 0.93 (0.81–1.07); 65-75, 1.03 (0.89–1.19); 75+, 1.03 (0.89–1.20); type of insurance: NHI, 1; medical aid, 1.16 (1.03–1.30); length of stay of the index admission: less than 7 days, 1; 7–14 days, 1.1 (1.01–1.19; More than 15 days, 1.34 (1.22–1.47); Hospital factors (stroke evaluation grade): first grade, 1; second grade, 1.13 (0.90–1.43); third grade, 1.66 (1.08–2.55); non-grading, 1.4 (1.00–1.95); hospital region: capital area, 1; metropolitan area, 1.21 (1.07–1.37); nonmetropolitan area, 1.26 (1.08–1.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |
| Wen <i>et al.</i><br>2019       | China   | IS                           | 31 d        | Unplanned   | 960<br>(27.64%)    | 2,513<br>(72.36%)   | Age: occupation (employees of enterprises and institutions, workers, farmers, unemployed, retirees, others); payment method of medical expenses (basic medical insurance for urban workers, basic medical insurance for urban residents, new rural cooperative medical care, public expense, self-financed, other social insurance, others); grade of hospital (grade 2, 3); High blood pressure: abnormal lipid metabolism; heart-related diseases; length of hospital stay; use of clinical pathways; application of surgery; discharge mode (medical discharge or transfer, nonmedical discharge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Female; marital status (r<br>(e.g. transfer)]; diabetes                                                                                                            |
| Bjerkreim<br><i>et al.</i> 2018 | Norway  | IS (89.60%);<br>TIA (10.40%) |             | Unplanned   | 200<br>(10.67%)    | 1,674<br>(89.33%)   | Age (years), mean $\pm$ SD, 1.02 (1.01–1.03); NIHSS score at discharge, median (IQR); BI score at discharge, median (IQR); stroke subtype (large artery atherosclerosis), 1.74 (1.20–2.51); stroke subtype (small vessel occlusion); stroke subtype (undetermined etiology); peripheral arterial disease, 1.58 (1.01–2.47); Angina pectoris; hypertension; risk factor burden; complications during the stroke hospitalization (urinary tract infection; urinary retention; pneumonia; enteral feeding, 1.86 (1.11–3.11); seizures; any complication; discharge destination (home; nursing home; other department)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *mRS score at discharg<br>(cardioembolism); stroke<br>myocardial infarction; at<br>thrombolysis); treatmen<br>(incontinence; stroke in<br>(Home nursing; Rehabili  |
| Boehme<br><i>et al.</i> 2018    | USA     | IS                           | 30 d        | All causes  | 48,125<br>(12.95%) | 323,462<br>(87.05%) | Urinary tract infection, 1.11 (1.06–1.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sepsis; pneumonia                                                                                                                                                  |
| Crispo <i>et al.</i><br>2018    | USA     | IS                           | 30 d        | All causes  | 6,205<br>(1.41%)   |                     | Age (< 40, 40–49, 50–59, 60–69, 70–79, 80–89, 90+), 1.12 (1.00–1.26); primary payer: private insurance; medicare, 1.33 (1.26–1.40); Medicaid, 1.41 (1.32–1.51); self-pay, 1.04 (0.93–1.16); no charge, 1.01 (0.72–1.41); median household income: $66,000+$ ; $51,000-665,999, 0.97$ (0.92–1.02); $40,000-550,999, 1.01$ (0.96–1.06); $1-339,999, 1.08$ (1.03–1.14); length of stay: 0–7 days; > 7 days, 1.38 (1.33–1.43); discharge disposition: routine; transfer: short-term hospital, 1.91 (1.70–2.14); transfer: other type of facility, 1.52 (1.45–1.59); home health care, 1.26 (1.20–1.32); against medical advice, 2.41 (2.08–2.79); discharged alive, destination unknown, 0.20 (0.11–0.38); comorbidities: 0–2; 3–4, 1.36 (1.30–1.43); 5–6, 1.78 (1.68–1.87); 7+, 2.20 (2.08–2.34); bed size of hospital: small; medium, 1.04 (0.98–1.11); large, 1.08 (1.02–1.15); control/ownership of hospital: government, non-federal (public); private, not-for-profit (voluntary), 1.04 (0.97–1.11); private, investor owned (proprietary), 1.20 (1.12–1.29); teaching status of hospital: Metropolitan teaching; Metropolitan nonteaching, 0.97 (0.93–1.01); Nonmetropolitan, 0.79 (0.73–0.85) | Sex                                                                                                                                                                |
| Khanevski<br><i>et al.</i> 2018 | Norway  | IS (89.01%);<br>TIA (10.99%) |             | All causes  | 33<br>(1.76%)      | 1,841<br>(98.24%)   | BI score, median (IQR); Index etiology (TOAST): large-artery atherosclerosis (LAA), 4.36 (2.01–9.47); Index etiology (TOAST): cardioembolism; Index etiology (TOAST): other determined, 9.72 (1.84–51.30); peripheral artery disease, 2.61 (1.03–6.60); treatment: carotid endarterectomy; length of index admission, median (IQR), 0.90 (0.82–0.99); discharged to other department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Age (years) mean ± SD;<br>Index etiology (TOAST):<br>diabetes; angina pector<br>current smoking; treatm<br>nursing; discharged to F                                |
| Allen <i>et al.</i><br>2017     | USA     | IS                           | 30 d        | All causes  | 57<br>(13.70%)     | 359<br>(86.30%)     | Coronary artery disease; diabetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not evaluated within 21<br>initial admission NIHSS;<br>employment status; insu                                                                                     |
|                                 |         |                              |             |             |                    | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |

Table 1 (continued)

on (rehabilitation), 0.81 (0.66–0.99). \*Discharge destination (Nursing 65). Females; males; BMI  $\geq$  24 kg/m<sup>2</sup>; length of stay; hypertension; rent drinking; hyperlipidemia; atrial fibrillation; coronary artery disease; ke; nasogastric tube feeding; reimbursement of medical insurance herapy; thrombectomy; thrombolytic therapy + thrombectomy; (home)

a emergency room; hospital type (general hospital, superior general

s (married, other); route of admission [emergency, outpatient, others es

rge, median (IQR), 0.99 (0.89–1.10); male sex; stroke subtype oke subtype (other determined etiology); prior stroke; diabetes; atrial fibrillation; prior/current smoking; treatment (intravenous ent (thrombectomy); complications during the stroke hospitalization in progression); length of stay, median (IQR); discharge destination pilitation department)

SD; sex (male); mRS score, median (IQR); NIHSS score, median (IQR); T): small vessel disease; Index etiology (TOAST): undetermined; toris; myocardial infarction; hypertension; atrial fibrillation; prior/ tment: IV thrombolysis; discharged to home; discharged to Home o Rehabilitation; discharged to Nursing home

21 days; smoking history; dyslipidemia; atrial fibrillation; hypertension; SS; Neurology consultation; gender; ethnicity; discharge disposition; nsurance type; IV tPA

11088

Table 1 (continued)

| Studies                        | Country              | Stroke type                         | Readmission | Readmission | Readmi             | ssion (N)          | - Effective factors, OR (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Invalid factors                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|----------------------|-------------------------------------|-------------|-------------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Studies                        | Country              | Stroke type                         | time        | type        | Yes                | No                 | - Ellective factors, On (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |
| Mittal <i>et al.</i><br>2017   | USA                  | IS                                  | 30 d        | unplanned   | 35<br>(6.90%)      | 472<br>(93.10%)    | Married at presentation, 0.47 (0.18–1.14); Educational level (high school graduation or higher), 0.43 (0.16–1.02); married at presentation; living arrangement (assisted living), 2.25 (0.63–7.11); hypertension, 4.72 (0.79–92.3); dementia, 2.55 (0.76–8.52); discharge disposition after index stroke (Nursing home), 0.29 (0.08–0.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Age in years (mean ± SD)<br>other); smoking (current s<br>hemorrhage; coronary ar<br>diabetes; intravenous thr<br>after index stroke (home;                                                                                                                                                                                                                         |
| Nouh <i>et al.</i><br>2017     | USA                  | IS (67%); HS<br>(22%); TIA<br>(11%) | 30 d        | All causes  | 134<br>(8.63%)     | 1,418<br>(91.37%)  | Age >75, 1.18 (0.77–1.81); residence in facility, 1.41 (0.75–2.68); prior stroke, 1.39 (0.91–2.12); diabetes mellitus, 1.26 (0.85–1.87); chronic heart failure, 1.63 (0.99–2.67); atrial fibrillation, 1.26 (0.80–1.99); admit to non-neurology service, 2.04 (1.28–3.27); on non-neurology floor, 1.10 (0.72–1.68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Male gender; living witho<br>depression; dementia; HS                                                                                                                                                                                                                                                                                                               |
| Vahidy <i>et al.</i><br>2017   | USA                  | IS                                  | 30 d        | All causes  |                    | -                  | Age: mean (SE), 1.01 (1.00–1.01); insurance: private, 0.70 (0.67–0.74); other, 0.62 (0.57–0.66); setting for patient county: "Fringe" Large metro, 0.92 (0.87–0.97); other (non-large Metro), 0.86 (0.82–0.90); median household income for patient ZIP code (quartile): \$38,000–47,999, 0.92 (0.87–0.96); \$48,000–63,999, 0.93 (0.89–0.98); $\geq$ \$64,000, 0.92 (0.87–0.97); Number of chronic conditions – mean (SE): 1.11 (1.10–1.11); Charlson Comorbidity Index: 1, 1.57 (1.46–1.68); 2, 3.63 (3.43–3.85); atrial fibrillation, 1.26 (1.21–1.31); hypertension, 1.09 (1.04–1.15); coagulopathy, 1.50 (1.35–1.64); congestive heart failure, 1.60 (1.53–1.68); valvular disorders, 1.19 (1.12–1.26); peripheral vascular disease, 1.37 (1.29–1.45); disorder of pulmonary circulation, 1.49 (1.36–1.63); chronic pulmonary disease, 1.34 (1.28–1.40); chronic blood loss, 2.18 (1.74–2.73); anemia, 1.66 (1.58–1.74); diabetes mellitus, 1.09 (1.05–1.13); diabetes with complications, 1.66 (1.56–1.76); liver disease, 1.63 (1.41–1.87); renal failure, 1.64 (1.58–1.72); fluid and electrolyte disorders, 1.45 (1.39–1.51); psychoses, 1.31 (1.20–1.43); depression, 1.15 (1.09–1.22); other neurological disorder, 1.84 (1.48–2.28); alcohol, 0.90 (0.82–0.99); all patient refined DRG severity of illness (loss of function): moderate, 1.48 (1.39–1.58); major, 2.35 (2.21–2.50); extreme: 3.24 (2.98–3.53); all patient refined DRG mortality (likelihood of dying): moderate, 1.56 (1.49–1.62); major, 2.35 (2.24–2.47); Extreme, 2.47 (2.30–2.66); IAT, 1.26 (1.03–1.55); length of stay: mean (SE), 1.03 (1.02–1.03); overall charges, 1.41 (1.38–1.45); disposition: other (SNF, Rehab etc.), 1.68 (1.61–1.75); home health, 1.40 (1.34–1.47) | Female; insurance: Media<br>tPA and/or IAT; admitted                                                                                                                                                                                                                                                                                                                |
| Han <i>et al.</i><br>2015      | Republic<br>of Korea | ICH<br>(19.71%); CI<br>(80.29%)     | 30 d        | All causes  | 1,782<br>(1.79%)   | 97,682<br>(98.21%) | Age: <64; 65+, 0.76 (0.65–0.89); type of health insurance: NHI; medical-aid, 1.14 (0.96–1.35); hospitalization year: 2010; 2011, 1.06 (0.85–1.32); 2012, 1.36 (1.10–1.68); 2013, 2.91 (2.37–3.58); length of stay, 1.01 (1.01–1.01); teaching status: teaching hospital; nonteaching hospital, 0.89 (0.68–1.16); hospital-level: percentage of specialists, 0.98 (0.90–1.06); percentage of rns, 0.89 (0.85–0.94); number of total doctors per bed, 1.00 (0.88–1.13); number of total nurses per bed, 0.98 (0.93–1.02); number of neurosurgeons, 0.86 (0.56–1.32); number of neurologists, 1.15 (0.70–1.90); number of beds, 0.98 (0.90–1.05); stroke patient admittance, 0.95 (0.92–0.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gender; Charlson Comor                                                                                                                                                                                                                                                                                                                                              |
| Kilkenny<br><i>et al.</i> 2013 | Australia            | IS (91.41%);<br>HS (8.59%)          | 28 d        | All causes  | 215<br>(6.46%)     | 3,113<br>(93.54%)  | Dependent before admission (mRS, 2–5), 1.87 (1.25–2.81); ischemic heart disease, 1.36 (0.92–2.02); incontinent <72-h admission, 1.19 (0.77–1.83); health system: rural hospital; no CT scan or MRI (<24 h), 1.78 (1.00–3.14); health outcomes: dependent at discharge (mrs, 3–5); any severe complication, 2.81 (1.55–5.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Median age; sex female;<br>diabetes mellitus; previou<br>score: 0, 3, 6); weak arm<br>score: 1, 2, 4, or 5); socia<br>alone (before admission);<br>median onset time to arri<br>implementation; neurolog<br>swallowing (<24 h); assessed by occ<br>(<24 h); any care in a stro<br>meeting within 7 d; clinic<br>management care plan o<br>discharged home; palliati |
| Lichtman<br><i>et al.</i> 2013 | USA                  | IS                                  | 30 d        | All causes  | 44,379<br>(14.41%) |                    | Age, y; mean $\pm$ SD, 1.02 (1.01–1.02); race; females, 1.14 (1.08–1.21); congestive heart failure, 2.29 (2.15–2.43); myocardial infarction, 1.54 (1.29–1.85); peripheral vascular disease, 1.14 (1.05–1.24); unstable angina, 1.49 (1.11–1.98); atherosclerosis, 1.15 (1.08–1.21); diabetes mellitus, 1.43 (1.35–1.51); cerebrovascular disease, 0.84 (0.79–0.90); protein-calorie malnutrition, 1.43 (1.23–1.67); renal failure, 2.31 (2.14–2.48); pneumonia, 1.28 (1.59–1.42); dementia, 1.10 (1.02–1.20); anemia, 1.43 (1.35–1.51); discharge disposition: home; home care; skilled nursing/intermediate care facility; rehabilitation; other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                   |

Table 1 (continued)

# Deng et al. Meta-analysis of risk factors for readmission of stroke

SD); sex; living arrangement (apartment/house; nursing home; ent smokers; past smokers; never smoked); previous IS; intracranial / artery disease; atrial fibrillation; heart failure; hyperlipidemia; thrombolysis; median length of stay (days); discharge disposition me; rehabilitation)

thout spouse; obese (BMI >30); high cholesterol; hypertension; HS

edicaid; ulcer; Alzheimer's disease; drug abuse; obesity; IV tPA; IV ed on a weekend

morbidity Index (0; 1; 2; 3+); hospital ownership (public; private)

Ale; Australian; atrial fibrillation; hypercholesterolemia; hypertension; vious stroke or TIA; stroke sub-type; impaired speech (SSS speech arm (SSS score: 0, 2, 4, or 5); unable to walk on admission (SSS gait bocial circumstances: married or with partner before admission; lived on); discharge delay because family unprepared; health system: arrival; median arrival to admission; stroke unit establishment/ blogist, principal treating doctor; discharge delay; documentation of essessed by physiotherapist (<48 h); assessed by speech pathologist boccupational therapist (<48 h); frequent neurological observations stroke unit during admission; admitted to intensive care unit; family nical pathway or management plan; aspirin given (<24 h), if IS; selfn on discharge; appropriate discharge strategy; health outcomes: liative care; median length of stay in days (Q1–Q3)

11089

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| Studies                     | Country | Stroke type                  | Readmission | Readmission | Readmi         | ission (N)      | - Effective factors, OR (95% CI)                                                                                        | Invalid factors                                                                                                                                    |
|-----------------------------|---------|------------------------------|-------------|-------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Studies                     | Country | Stroke type                  | time        | type        | Yes            | No              | - Ellective factors, On (95% CI)                                                                                        | Invalid factors                                                                                                                                    |
| Suri <i>et al.</i><br>2013  | USA     | IS                           | 30 d        | All causes  | 90<br>(8.84%)  | 928<br>(91.16%) | Age; diabetes mellitus; discharge disposition (home with health services; rehabilitation facility; short-term facility) | Sex; Race (White; African<br>past smoker; never smoke<br>stroke; moderate stroke; s<br>emergency department (<<br>administered; Neurology o        |
| Bhattacharya<br>et al. 2011 | a USA   | IS (77.34%);<br>TIA (22.66%) |             | All causes  | 22<br>(11.46%) | 170<br>(88.54%) | Congestive heart failure; coronary artery disease; NIHSS ≥10; discharge destination (home/acute rehabilitation)         | Mean age; male sex; race<br>Medicaid; private insurers<br>fibrillation; hyperlipidemia<br>atherosclerosis; cardioem<br>tPA; Intervention; Aspirin; |

The number of traditional cardiovascular risk factors was defined as the risk factor burden (0, 1, 2, or ≥3). These included hypertension, diabetes mellitus, smoking, angina pectoris, peripheral arterial disease, and prior myocardial infarction; NHI, National Health Insurance; RNs, registered nurses; TOAST, Trial of ORG 10 172 in Acute Stroke Treatment. Some of the missing data were not found in the original article. Attention should be paid to the interpretation of the OR value of each study as the grouping of each study is different, and the meaning of OR greater than 1 is different. Moreover, the meaningful indicators listed here are those with a P value less than 0.05, and each article includes those with an OR greater than 1 and those with an OR less than 1. The data of effective and invalid indicators were obtained from single factor analysis. For multivariate analysis of data, ineffective factors still uses the single factor analysis, but meaningful in the single factor, and it meaningless does mark\* in multivariate analysis, and the factors behind the enclosed corresponding multivariate analysis, but there was no statistically significant factor in multivariate analysis. IS, ischemic stroke; HS, hemorrhagic stroke; TIA, transient ischemic attack; ICH, intracerebral hemorrhage; CI, cerebral infarction; –, no information; –, standard deviation.

an American; other); insurance; smoking status (current smoker; oked); hypertension; hyperlipidemia; wake forest scale (mild e; severe stroke; unknown); hours from symptom onset to arrival in t (<1 h; 1-2 h; 2-3 h; >3 h); previous history of stroke; thrombolytics gy consulted

ace (African American; White; Hispanic; others); insurance (Medicare/ ers; uninsured); current smokers; cocaine; hypertension; atrial nia; previous stroke; diabetes; TOAST mechanisms (large artery embolic; small vessel disease; other unknown); treatments offered (iv in; Statin)

| studies       |
|---------------|
| selected      |
| assessment of |
| Quality       |
| Table 2       |

|                                                   |                                       | Selection                          |                          |                                                 | Comparability                                                                       |                                                                                        | Exposure                                                     |                          |                  |
|---------------------------------------------------|---------------------------------------|------------------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|------------------|
| Study                                             | Is the case<br>definition<br>adequate | Representativeness of<br>the cases | Selection of<br>controls | Selection of Definition of<br>controls controls | Comparability of<br>cases and controls<br>on the basis of the<br>design or analysis | Same method of<br>Ascertainment of ascertainment<br>exposure for cases and<br>controls | Same method of<br>ascertainment<br>for cases and<br>controls | Non-<br>response<br>rate | Quality<br>score |
| Qiu <i>et al.</i> 2021                            | b                                     | IJ                                 | q                        | Ø                                               | ŋ                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 9                |
| Lekoubou <i>et al.</i> 2020                       | q                                     | в                                  | q                        | Ø                                               | а                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 5                |
| Lee <i>et al.</i> 2019                            | q                                     | ъ                                  | q                        | Ø                                               | ab                                                                                  | ъ                                                                                      | ъ                                                            | q                        | 9                |
| Wen <i>et al.</i> 2019                            | q                                     | ъ                                  | q                        | Ø                                               | а                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 5                |
| Bjerkreim <i>et al.</i> 2018                      | Ø                                     | в                                  | q                        | Ø                                               | ab                                                                                  | ъ                                                                                      | ъ                                                            | q                        | 7                |
| Boehme <i>et al.</i> 2018                         | Ø                                     | ъ                                  | q                        | Ø                                               | ab                                                                                  | ъ                                                                                      | ъ                                                            | q                        | 7                |
| Crispo <i>et al.</i> 2018                         | q                                     | в                                  | q                        | Ø                                               | ab                                                                                  | ъ                                                                                      | ъ                                                            | q                        | 9                |
| Khanevski <i>et al.</i> 2018                      | Ø                                     | в                                  | q                        | Ø                                               | Ø                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 9                |
| Allen <i>et al.</i> 2017                          | q                                     | q                                  | q                        | Ø                                               | а                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 4                |
| Mittal <i>et al.</i> 2017                         | q                                     | в                                  | q                        | Ø                                               | а                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 5                |
| Nouh <i>et al.</i> 2017                           | q                                     | в                                  | q                        | Ø                                               | Ø                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 5                |
| Vahidy et al. 2017                                | Ø                                     | в                                  | q                        | Ø                                               | ab                                                                                  | ъ                                                                                      | ъ                                                            | q                        | 7                |
| Han <i>et al.</i> 2015                            | q                                     | в                                  | q                        | Ø                                               | Ø                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 5                |
| Kilkenny <i>et al.</i> 2013                       | Ø                                     | в                                  | q                        | Ø                                               | Ø                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 9                |
| Lichtman e <i>t al.</i> 2013                      | Ø                                     | в                                  | q                        | Ø                                               | ab                                                                                  | ъ                                                                                      | ъ                                                            | q                        | 7                |
| Suri <i>et al.</i> 2013                           | q                                     | в                                  | q                        | g                                               | ß                                                                                   | ъ                                                                                      | ъ                                                            | q                        | 5                |
| Bhattacharya <i>et al.</i> 2011                   | а                                     | q                                  | q                        | в                                               | а                                                                                   | а                                                                                      | а                                                            | q                        | 5                |
| a, b means the answer to the question is choice a | he question is                        | t choice a or b.                   |                          |                                                 |                                                                                     |                                                                                        |                                                              |                          |                  |

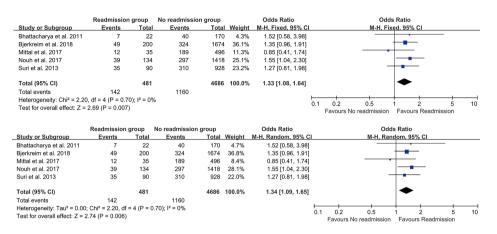



Figure 2 Influence of prior stroke on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

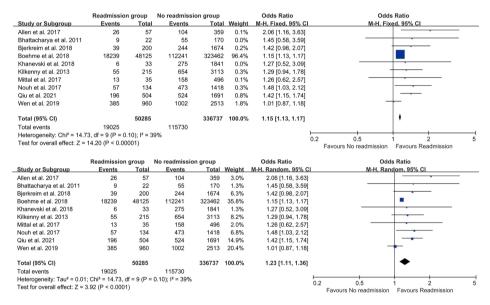



Figure 3 Influence of diabetes mellitus on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

CI: 1.13–1.17; P<0.001), hypertension (OR, 1.10; 95% CI: 1.07–1.13; P<0.001), atrial fibrillation (OR, 1.26; 95% CI: 1.23–1.29; P<0.001), heart failure (OR, 1.59; 95% CI: 1.56–1.63; P<0.001), and age, among which age was determined by descriptive analysis. Four risk factors were ruled out: hyperlipidemia (OR, 1.01; 95% CI: 0.87–1.17; P=0.91), coronary artery disease (OR, 0.83; 95% CI: 0.73–0.96; P=0.009), smoking (OR, 0.97; 95% CI: 0.83–1.14; P=0.71), and gender (female, OR, 0.97; 95% CI: 0.96–0.98; P<0.001; *Figures 7-10*). Five possible risk factors requiring further investigation included duration of hospitalization, treatment modality (thrombolysis and thrombectomy), discharge disposition (home, rehabilitation facility, nursing

home, home nursing, and others), health care payment model (Medicare, NHS, Medicaid, private insurance, and others), and etiology (atherosclerosis, cardiogenic cerebral embolism, small vessel disease, other definite causes, and other unknown causes). Intravenous thrombolysis (OR, 0.93; 95% CI: 0.91–0.96; P<0.001) and post-discharge rehabilitation (OR, 0.78; 95% CI: 0.65–0.93; P=0.007) were protective factors for 30-day readmissions in ischemic stroke survivors (*Figures 11-14*). Due to insufficient data reported in the studies, 17 factors could not be assessed, including epilepsy, peripheral arterial disease, deep vein thrombosis, dementia, infection, obesity, hospital region, ethnicity, renal failure, depression, admission to a non-neurological

#### Deng et al. Meta-analysis of risk factors for readmission of stroke

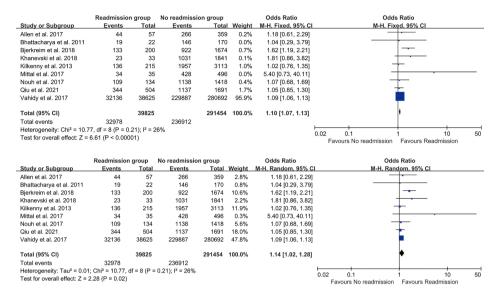



Figure 4 Influence of hypertension on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

|                                                                                                                                                                                                                                                                                                                                                | Readmissio                                                             | n group                                                                                                                                           | No readmiss                                                                    |                                                                                                                                             |                                                                       | Odds Ratio                                                                                                                                                                                                      | Odds Ratio                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                              | Events                                                                 | Total                                                                                                                                             | Events                                                                         | Tota                                                                                                                                        | Weight                                                                | M-H, Fixed, 95% CI                                                                                                                                                                                              | M-H, Fixed, 95% Cl                         |
| Allen et al. 2017                                                                                                                                                                                                                                                                                                                              | 17                                                                     | 57                                                                                                                                                | 71                                                                             | 359                                                                                                                                         | 0.1%                                                                  | 1.72 [0.92, 3.22]                                                                                                                                                                                               |                                            |
| Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                       | 1                                                                      | 22                                                                                                                                                | 24                                                                             | 170                                                                                                                                         | 0.0%                                                                  | 0.29 [0.04, 2.25]                                                                                                                                                                                               |                                            |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                          | 70                                                                     | 200                                                                                                                                               | 475                                                                            | 1674                                                                                                                                        | 0.6%                                                                  | 1.36 [1.00, 1.85]                                                                                                                                                                                               |                                            |
| Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                          | 8                                                                      | 33                                                                                                                                                | 318                                                                            | 1841                                                                                                                                        | 0.1%                                                                  | 1.53 [0.69, 3.43]                                                                                                                                                                                               |                                            |
| Kilkenny et al. 2013                                                                                                                                                                                                                                                                                                                           | 52                                                                     | 215                                                                                                                                               | 654                                                                            | 3113                                                                                                                                        | 0.6%                                                                  | 1.20 [0.87, 1.66]                                                                                                                                                                                               | + <del>-</del>                             |
| Mittal et al. 2017                                                                                                                                                                                                                                                                                                                             | 11                                                                     | 35                                                                                                                                                | 159                                                                            | 496                                                                                                                                         | 0.1%                                                                  | 0.97 [0.46, 2.03]                                                                                                                                                                                               |                                            |
| Nouh et al. 2017                                                                                                                                                                                                                                                                                                                               | 38                                                                     | 134                                                                                                                                               | 282                                                                            | 1418                                                                                                                                        | 0.3%                                                                  | 1.59 [1.07, 2.37]                                                                                                                                                                                               |                                            |
| Qiu et al. 2021                                                                                                                                                                                                                                                                                                                                | 89                                                                     | 504                                                                                                                                               | 244                                                                            | 1691                                                                                                                                        | 0.8%                                                                  | 1.27 [0.97, 1.66]                                                                                                                                                                                               | <u></u>                                    |
| Vahidy et al. 2017                                                                                                                                                                                                                                                                                                                             | 10352                                                                  | 38625                                                                                                                                             | 63156                                                                          | 280692                                                                                                                                      | 97.4%                                                                 | 1.26 [1.23, 1.29]                                                                                                                                                                                               |                                            |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                 |                                                                        | 39825                                                                                                                                             |                                                                                | 291454                                                                                                                                      | 100.0%                                                                | 1.26 [1.23, 1.29]                                                                                                                                                                                               | •                                          |
| Total events                                                                                                                                                                                                                                                                                                                                   | 10638                                                                  |                                                                                                                                                   | 65383                                                                          |                                                                                                                                             |                                                                       |                                                                                                                                                                                                                 |                                            |
| Heterogeneity: Chi <sup>2</sup> = 5.29                                                                                                                                                                                                                                                                                                         | 9, df = 8 (P = 0.7                                                     | 73); l <sup>2</sup> = 0%                                                                                                                          |                                                                                |                                                                                                                                             |                                                                       |                                                                                                                                                                                                                 |                                            |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                   | 19.13 (P < 0.00                                                        | 001)                                                                                                                                              |                                                                                |                                                                                                                                             |                                                                       |                                                                                                                                                                                                                 | 0.02 0.1 1 10 5                            |
|                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                   |                                                                                |                                                                                                                                             |                                                                       |                                                                                                                                                                                                                 | Favours No readmission Favours Readmission |
|                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                   |                                                                                |                                                                                                                                             |                                                                       |                                                                                                                                                                                                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                | Readmission                                                            |                                                                                                                                                   | No readmission                                                                 |                                                                                                                                             |                                                                       | Odds Ratio                                                                                                                                                                                                      | Odds Ratio                                 |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events                                                  | group<br>Total                                                                                                                                    | No readmissio<br>Events                                                        |                                                                                                                                             | Weight                                                                | Odds Ratio<br>M-H, Random, 95% C                                                                                                                                                                                |                                            |
|                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                                                                   |                                                                                |                                                                                                                                             | Weight<br>0.1%                                                        |                                                                                                                                                                                                                 |                                            |
| Allen et al. 2017                                                                                                                                                                                                                                                                                                                              | Events                                                                 | Total                                                                                                                                             | Events                                                                         | Total                                                                                                                                       |                                                                       | M-H, Random, 95% C                                                                                                                                                                                              |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                  | Events<br>17                                                           | Total<br>57                                                                                                                                       | Events<br>71                                                                   | <u>Total</u><br>359                                                                                                                         | 0.1%                                                                  | M-H. Random, 95% C<br>1.72 [0.92, 3.22]                                                                                                                                                                         |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018                                                                                                                                                                                                                                                                         | Events<br>17<br>1                                                      | <u>Total</u><br>57<br>22                                                                                                                          | Events<br>71<br>24                                                             | <u>Total</u><br>359<br>170                                                                                                                  | 0.1%<br>0.0%                                                          | M-H. Random, 95% C<br>1.72 [0.92, 3.22]<br>0.29 [0.04, 2.25]                                                                                                                                                    |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018                                                                                                                                                                                                                                                | Events<br>17<br>1<br>70                                                | Total<br>57<br>22<br>200                                                                                                                          | Events<br>71<br>24<br>475                                                      | <u>Total</u><br>359<br>170<br>1674                                                                                                          | 0.1%<br>0.0%<br>0.6%                                                  | M-H, Random, 95% C<br>1.72 [0.92, 3.22]<br>0.29 [0.04, 2.25]<br>1.36 [1.00, 1.85]                                                                                                                               |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018<br>Kilkenny et al. 2013                                                                                                                                                                                                                        | Events<br>17<br>1<br>70<br>8                                           | Total<br>57<br>22<br>200<br>33                                                                                                                    | Events<br>71<br>24<br>475<br>318                                               | <u>Total</u><br>359<br>170<br>1674<br>1841                                                                                                  | 0.1%<br>0.0%<br>0.6%<br>0.1%                                          | M-H, Random, 95% C<br>1.72 [0.92, 3.22]<br>0.29 [0.04, 2.25]<br>1.36 [1.00, 1.85]<br>1.53 [0.69, 3.43]                                                                                                          |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018<br>Kilkenny et al. 2013<br>Mittal et al. 2017                                                                                                                                                                                                  | Events<br>17<br>1<br>70<br>8<br>52                                     | Total<br>57<br>22<br>200<br>33<br>215                                                                                                             | Events<br>71<br>24<br>475<br>318<br>654                                        | Total<br>359<br>170<br>1674<br>1841<br>3113                                                                                                 | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%                                  | M-H. Random, 95% C<br>1.72 [0.92, 3.22]<br>0.29 [0.04, 2.25]<br>1.36 [1.00, 1.85]<br>1.53 [0.69, 3.43]<br>1.20 [0.87, 1.66]                                                                                     |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018<br>Kilkenny et al. 2013<br>Mittal et al. 2017<br>Nouh et al. 2017                                                                                                                                                                              | Events<br>17<br>1<br>70<br>8<br>52<br>11                               | Total<br>57<br>22<br>200<br>33<br>215<br>35                                                                                                       | Events<br>71<br>24<br>475<br>318<br>654<br>159                                 | Total<br>359<br>170<br>1674<br>1841<br>3113<br>496                                                                                          | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%<br>0.1%                          | M-H. Random, 95% C<br>1.72 [0.92, 3.22]<br>0.29 [0.04, 2.25]<br>1.36 [1.00, 1.85]<br>1.53 [0.69, 3.43]<br>1.20 [0.87, 1.66]<br>0.97 [0.46, 2.03]                                                                |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Kilkenny et al. 2018<br>Kilkenny et al. 2013<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Qiu et al. 2021                                                                                                                                                            | Events<br>17<br>1<br>70<br>8<br>52<br>11<br>38                         | Total<br>57<br>22<br>200<br>33<br>215<br>35<br>134                                                                                                | Events<br>71<br>24<br>475<br>318<br>654<br>159<br>282                          | Total<br>359<br>170<br>1674<br>1841<br>3113<br>496<br>1418                                                                                  | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%<br>0.1%<br>0.4%                  | M-H. Random, 95% C<br>1.72 [0.92, 3.22]<br>0.29 [0.04, 2.25]<br>1.36 [1.00, 1.85]<br>1.53 [0.69, 3.43]<br>1.20 [0.87, 1.66]<br>0.97 [0.46, 2.03]<br>1.59 [1.07, 2.37]                                           |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Kilkenny et al. 2018<br>Kilkenny et al. 2013<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Qiu et al. 2021<br>Vahidy et al. 2017                                                                                                                                      | Events<br>17<br>1<br>70<br>8<br>52<br>11<br>38<br>89                   | Total           57           22           200           33           215           35           134           504                                 | Events<br>71<br>24<br>475<br>318<br>654<br>159<br>282<br>282<br>244            | Total           359           170           1674           1841           3113           496           1418           1691                  | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%<br>0.1%<br>0.4%<br>0.8%<br>97.3% | M-H. Random, 95% C<br>1.72 (0.92, 3.22)<br>0.29 (0.04, 2.25)<br>1.36 (1.00, 1.85)<br>1.53 (0.66, 3.43)<br>1.20 (0.87, 1.66)<br>0.97 (0.46, 2.03)<br>1.59 (1.07, 2.37)<br>1.27 (0.97, 1.66)                      |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018<br>Kilkenny et al. 2013<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Qiu et al. 2021<br>Vahidy et al. 2017<br>Total (95% CI)                                                                                                                   | Events<br>17<br>1<br>70<br>8<br>52<br>11<br>38<br>89                   | Total           57           22           200           33           215           35           134           504           38625                 | Events<br>71<br>24<br>475<br>318<br>654<br>159<br>282<br>282<br>244            | Total           359           170           1674           1841           3113           496           1418           1691           280692 | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%<br>0.1%<br>0.4%<br>0.8%<br>97.3% | M-H. Random, 95% C<br>1.72 (0.92, 3.22)<br>0.29 (0.04, 2.25)<br>1.36 (1.00, 1.85)<br>1.53 (0.69, 3.43)<br>1.20 (0.87, 1.66)<br>0.97 (0.46, 2.03)<br>1.59 (1.07, 2.37]<br>1.27 (0.97, 1.66)<br>1.26 (1.23, 1.29) |                                            |
| Allen et al. 2017<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018<br>Kilkenny et al. 2013<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Qiu et al. 2021<br>Vahidy et al. 2017<br>Total (95% CI)<br>Total events                                                                                                   | Events<br>17<br>1<br>70<br>8<br>52<br>11<br>38<br>89<br>10352<br>10638 | Total           57           22           200           33           215           35           134           504           38625           39825 | Events<br>71<br>24<br>475<br>318<br>654<br>159<br>282<br>244<br>63156<br>65383 | Total           359           170           1674           1841           3113           496           1418           1691           280692 | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%<br>0.1%<br>0.4%<br>0.8%<br>97.3% | M-H. Random, 95% C<br>1.72 (0.92, 3.22)<br>0.29 (0.04, 2.25)<br>1.36 (1.00, 1.85)<br>1.53 (0.69, 3.43)<br>1.20 (0.87, 1.66)<br>0.97 (0.46, 2.03)<br>1.59 (1.07, 2.37]<br>1.27 (0.97, 1.66)<br>1.26 (1.23, 1.29) | M.H. Random. 35% Cl                        |
| Study or Subgroup           Allen et al. 2017           Bhattacharya et al. 2011           Bipdracimet al. 2018           Khanevski et al. 2018           Kihanevski et al. 2018           Mittal et al. 2017           Nouh et al. 2021           Vahidy et al. 2017           Total (95% CI)           Total (95% CI)           Total events | Events<br>17<br>1<br>70<br>8<br>52<br>11<br>38<br>89<br>10352<br>10638 | Total           57           22           200           33           215           35           134           504           38625           39825 | Events<br>71<br>24<br>475<br>318<br>654<br>159<br>282<br>244<br>63156<br>65383 | Total           359           170           1674           1841           3113           496           1418           1691           280692 | 0.1%<br>0.0%<br>0.6%<br>0.1%<br>0.5%<br>0.1%<br>0.4%<br>0.8%<br>97.3% | M-H. Random, 95% C<br>1.72 (0.92, 3.22)<br>0.29 (0.04, 2.25)<br>1.36 (1.00, 1.85)<br>1.53 (0.69, 3.43)<br>1.20 (0.87, 1.66)<br>0.97 (0.46, 2.03)<br>1.59 (1.07, 2.37]<br>1.27 (0.97, 1.66)<br>1.26 (1.23, 1.29) |                                            |

Figure 5 Influence of atrial fibrillation on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

department, admission to an emergency department, admission on weekends, alcohol consumption, marriage, admission to a teaching hospital, and hospital ownership. Sensitivity analysis was performed for all analysis results, and there was no significant heterogeneity. Heterogeneity might have arisen from differences in geography, sample size, and study population across studies.

#### **Publication bias**

Inverted funnel plots for assessing publication bias are shown in *Figures 15-27*. Except for diabetes mellitus (*Figure 16*), hyperlipidemia (*Figure 17*), and intravenous thrombolysis (*Figure 24*), which might have involved some publication bias, none of the other factors showed

|                                                                                                                                                         | Readmissio                                                                                              | n group                                                             | No readmissi                                          | on group                                        |                                        | Odds Ratio                                                                                                                  | Odds Ratio                                   |             |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------|----|
| Study or Subgroup                                                                                                                                       | Events                                                                                                  | Total                                                               | Events                                                | Total                                           | Weight                                 | M-H, Fixed, 95% CI                                                                                                          | M-H, Fixed, 95% C                            |             |    |
| Bhattacharya et al. 2011                                                                                                                                | 5                                                                                                       | 22                                                                  | 15                                                    | 170                                             | 0.0%                                   | 3.04 [0.98, 9.40]                                                                                                           |                                              |             |    |
| Boehme et al. 2018                                                                                                                                      | 3898                                                                                                    | 48125                                                               | 17143                                                 | 323462                                          | 36.7%                                  | 1.57 [1.52, 1.63]                                                                                                           |                                              |             |    |
| Mittal et al. 2017                                                                                                                                      | 10                                                                                                      | 35                                                                  | 123                                                   | 496                                             | 0.1%                                   | 1.21 [0.57, 2.60]                                                                                                           |                                              | -           |    |
| Nouh et al. 2017                                                                                                                                        | 29                                                                                                      | 134                                                                 | 156                                                   | 1418                                            | 0.2%                                   | 2.23 [1.43, 3.48]                                                                                                           | 2.9                                          |             |    |
| Vahidy et al. 2017                                                                                                                                      | 7300                                                                                                    | 38625                                                               | 35648                                                 | 280692                                          | 63.0%                                  | 1.60 [1.56, 1.65]                                                                                                           |                                              |             |    |
| Total (95% CI)                                                                                                                                          |                                                                                                         | 86941                                                               |                                                       | 606238                                          | 100.0%                                 | 1.59 [1.56, 1.63]                                                                                                           | +                                            |             |    |
| Total events                                                                                                                                            | 11242                                                                                                   |                                                                     | 53085                                                 |                                                 |                                        |                                                                                                                             |                                              |             |    |
| Heterogeneity: Chi <sup>2</sup> = 4.52                                                                                                                  | 2, df = 4 (P = 0.3                                                                                      | 84); l <sup>2</sup> = 12 <sup>4</sup>                               | %                                                     |                                                 |                                        |                                                                                                                             | 0.05 0.2 1                                   |             | 20 |
| Test for overall effect: Z =                                                                                                                            | 41.49 (P < 0.00                                                                                         | 001)                                                                |                                                       |                                                 |                                        |                                                                                                                             |                                              | 5           | 20 |
|                                                                                                                                                         |                                                                                                         |                                                                     |                                                       |                                                 |                                        |                                                                                                                             | Favours No readmission Favours               | Readmission |    |
|                                                                                                                                                         | ,                                                                                                       | ,                                                                   |                                                       |                                                 |                                        |                                                                                                                             |                                              | Readmission |    |
|                                                                                                                                                         | Readmissior                                                                                             | group                                                               | No readmissio                                         |                                                 |                                        | Odds Ratio                                                                                                                  | Odds Ratio                                   |             |    |
|                                                                                                                                                         | Readmission<br>Events                                                                                   | i group<br>Total                                                    | Events                                                | Total                                           |                                        | M-H, Random, 95% C                                                                                                          | Odds Ratio<br>I M-H, Random, 95%             |             |    |
| Bhattacharya et al. 2011                                                                                                                                | Readmission<br>Events<br>5                                                                              | group<br>Total<br>22                                                | Events<br>15                                          | <u>Total</u><br>170                             | 0.1%                                   | M-H. Random, 95% C<br>3.04 [0.98, 9.40]                                                                                     | Odds Ratio<br>I M-H. Random, 95%             |             |    |
| <u>Study or Subgroup</u><br>Bhattacharya et al. 2011<br>Boehme et al. 2018                                                                              | Readmission<br>Events<br>5<br>3898                                                                      | 1 group<br>Total<br>22<br>48125                                     | Events<br>15<br>17143                                 | <u>Total</u><br>170<br>323462                   | 0.1%<br>41.3%                          | M-H, Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]                                                                | Odds Ratio<br>I M-H, Random, 95%             |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017                                                                                    | Readmission<br>Events<br>5<br>3898<br>10                                                                | 1 group<br>Total<br>22<br>48125<br>35                               | Events<br>15<br>17143<br>123                          | Total<br>170<br>323462<br>496                   | 0.1%<br>41.3%<br>0.1%                  | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]                                           | Odds Ratio<br>M-H. Random, 95%               |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017<br>Nouh et al. 2017                                                                | Readmission<br>Events<br>5<br>3898<br>10<br>29                                                          | 1 group<br>Total<br>22<br>48125<br>35<br>134                        | Events<br>15<br>17143<br>123<br>156                   | Total<br>170<br>323462<br>496<br>1418           | 0.1%<br>41.3%<br>0.1%<br>0.4%          | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]<br>2.23 [1.43, 3.48]                      | Odds Ratio                                   |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017<br>Nouh et al. 2017                                                                | Readmission<br>Events<br>5<br>3898<br>10                                                                | 1 group<br>Total<br>22<br>48125<br>35                               | Events<br>15<br>17143<br>123                          | Total<br>170<br>323462<br>496                   | 0.1%<br>41.3%<br>0.1%                  | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]                                           | Odds Ratio                                   |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Vahidy et al. 2017                                          | Readmission<br>Events<br>5<br>3898<br>10<br>29                                                          | 1 group<br>Total<br>22<br>48125<br>35<br>134                        | Events<br>15<br>17143<br>123<br>156                   | Total<br>170<br>323462<br>496<br>1418<br>280692 | 0.1%<br>41.3%<br>0.1%<br>0.4%          | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]<br>2.23 [1.43, 3.48]                      | Odds Ratio<br>M-H. Random. 95%               |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017                                                                                    | Readmission<br>Events<br>5<br>3898<br>10<br>29                                                          | 1 group<br><u>Total</u><br>22<br>48125<br>35<br>134<br>38625        | Events<br>15<br>17143<br>123<br>156                   | Total<br>170<br>323462<br>496<br>1418<br>280692 | 0.1%<br>41.3%<br>0.1%<br>0.4%<br>58.2% | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]<br>2.23 [1.43, 3.48]<br>1.60 [1.56, 1.65] | Odds Ratio<br>M-H. Random. 95%               |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Vahidy et al. 2017<br>Total (95% CI)                        | Readmission<br><u>Events</u><br>5<br>3898<br>10<br>29<br>7300<br>11242                                  | r group<br>Total<br>22<br>48125<br>35<br>134<br>38625<br>86941      | Events<br>15<br>17143<br>123<br>156<br>35648<br>53085 | Total<br>170<br>323462<br>496<br>1418<br>280692 | 0.1%<br>41.3%<br>0.1%<br>0.4%<br>58.2% | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]<br>2.23 [1.43, 3.48]<br>1.60 [1.56, 1.65] | Odds Ratio                                   |             |    |
| Bhattacharya et al. 2011<br>Boehme et al. 2018<br>Mittal et al. 2017<br>Nouh et al. 2017<br>Vahidy et al. 2017<br><b>Total (95% CI)</b><br>Total events | Readmission<br><u>Events</u><br>5<br>3898<br>10<br>29<br>7300<br>11242<br>0; Chi <sup>2</sup> = 4.52, d | Total<br>22<br>48125<br>35<br>134<br>38625<br>86941<br>f = 4 (P = 0 | Events<br>15<br>17143<br>123<br>156<br>35648<br>53085 | Total<br>170<br>323462<br>496<br>1418<br>280692 | 0.1%<br>41.3%<br>0.1%<br>0.4%<br>58.2% | M-H. Random, 95% C<br>3.04 [0.98, 9.40]<br>1.57 [1.52, 1.63]<br>1.21 [0.57, 2.60]<br>2.23 [1.43, 3.48]<br>1.60 [1.56, 1.65] | Odds Ratio<br>M-H. Random, 95%<br>0.05 0.2 1 |             | 20 |

Figure 6 Influence of heart failure on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

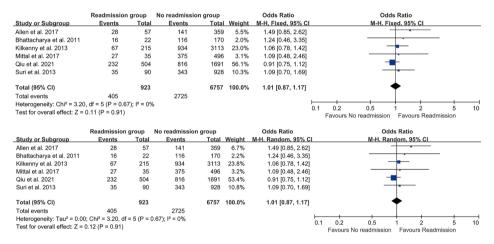



Figure 7 Influence of hyperlipidemia on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

|                                      | Readmissior                  | n group                 | No readmissio                | on group |        | Odds Ratio         | Odds Ratio                                                    |
|--------------------------------------|------------------------------|-------------------------|------------------------------|----------|--------|--------------------|---------------------------------------------------------------|
| Study or Subgroup                    | Events                       | Total                   | Events                       | Total    | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% Cl                                            |
| Khanevski et al. 2018                | 7                            | 33                      | 521                          | 1841     | 3.1%   | 0.68 [0.29, 1.58]  |                                                               |
| Mittal et al. 2017                   | 23                           | 35                      | 347                          | 496      | 3.4%   | 0.82 [0.40, 1.70]  |                                                               |
| Qiu et al. 2021                      | 87                           | 504                     | 343                          | 1691     | 28.0%  | 0.82 [0.63, 1.06]  |                                                               |
| Suri et al. 2013                     | 2                            | 90                      | 7                            | 928      | 0.3%   | 2.99 [0.61, 14.61] |                                                               |
| Wen et al. 2019                      | 249                          | 960                     | 740                          | 2513     | 65.2%  | 0.84 [0.71, 0.99]  |                                                               |
| Total (95% CI)                       |                              | 1622                    |                              | 7469     | 100.0% | 0.83 [0.73, 0.96]  | •                                                             |
| Total events                         | 368                          |                         | 1958                         |          |        |                    |                                                               |
| Heterogeneity: Chi <sup>2</sup> = 2. | .73, df = 4 (P =             | 0.60); I <sup>2</sup> = | 0%                           |          |        |                    |                                                               |
| Test for overall effect: Z           | = 2.62 (P = 0.0              | (90                     |                              |          |        |                    | 0.05 0.2 1 5 24<br>Favours No readmission Favours Readmission |
|                                      | Readmission                  | aroup                   | No readmission               | aroup    |        | Odds Ratio         | Odds Ratio                                                    |
| Study or Subgroup                    | Events                       | Total                   | Events                       |          | Weight | M-H, Random, 95% C | M-H, Random, 95% Cl                                           |
| Khanevski et al. 2018                | 7                            | 33                      | 521                          | 1841     | 2.6%   | 0.68 [0.29, 1.58]  |                                                               |
| Mittal et al. 2017                   | 23                           | 35                      | 347                          | 496      | 3.5%   | 0.82 [0.40, 1.70]  |                                                               |
| Qiu et al. 2021                      | 87                           | 504                     | 343                          | 1691     | 27.5%  | 0.82 [0.63, 1.06]  |                                                               |
| Suri et al. 2013                     | 2                            | 90                      | 7                            | 928      | 0.7%   | 2.99 [0.61, 14.61] |                                                               |
| Wen et al. 2019                      | 249                          | 960                     | 740                          | 2513     | 65.7%  | 0.84 [0.71, 0.99]  | -                                                             |
| Total (95% CI)                       |                              | 1622                    |                              | 7469     | 100.0% | 0.84 [0.73, 0.96]  | ◆                                                             |
| Total events                         | 368                          |                         | 1958                         |          |        |                    |                                                               |
| Heterogeneity: Tau <sup>2</sup> = 0. | 00; Chi <sup>2</sup> = 2.73, | df = 4 (P =             | = 0.60); l <sup>2</sup> = 0% |          |        |                    | 0.05 0.2 1 5 20                                               |
| Test for overall effect: Z           | = 2.57 (P = 0.01             | )                       |                              |          |        |                    | Favours No readmission Favours Readmission                    |
|                                      |                              |                         |                              |          |        |                    | Favous no reautilission Favous Reautilission                  |

Figure 8 Influence of coronary heart disease on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

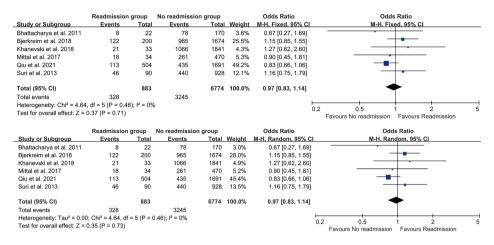



Figure 9 Influence of smoking on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

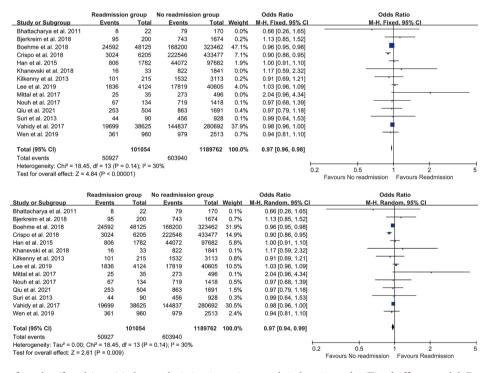



Figure 10 Influence of gender (female) on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

significant publication bias.

# Discussion

To our knowledge, this is the first systematic review and meta-analysis of risk factors for 30-day readmission in patients with ischemic stroke. Although several systematic reviews and meta-analyses (8-10) have investigated the risk factors for readmission in stroke survivors, our current study possesses the following distinct strengths: (I) all the literature (including Chinese-language literature, Englishlanguage literature, gray literature, and references to relevant articles) as of April 30, 2021 was searched, and thus high-quality articles in the past 5 years were included in the analysis; (II) a total of 7 electronic databases (including Chinese-language databases) were searched, which were

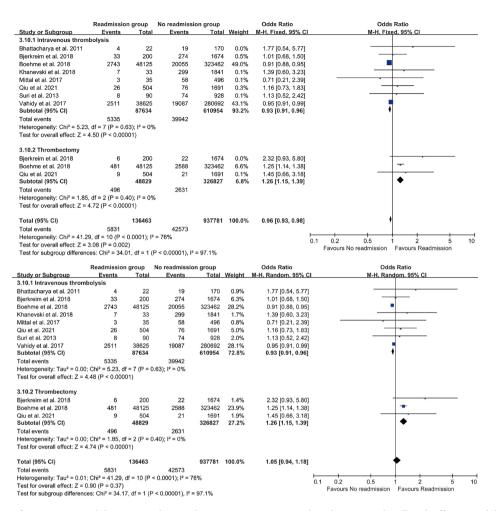



Figure 11 Influence of treatment modality on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

not examined in the previous meta-analyses; (III) only high-quality or moderate-quality studies were included for analysis, and some of these studies had large sample sizes, which increased the persuasiveness and scientific validity of our conclusions; and (IV) about 30 possible risk factors were considered, and detailed subgroup analyses were performed for some of the risk factors, with the results for some of these risk factors being reported for the first time.

Research on 30-day readmission in patients with ischemic stroke is a priority, and identifying the risk factors of readmissions is essential to implementing effective interventions and reducing the 30-day readmission rate. However, the exact risk factors remain controversial and have eluded exact study. The 30-day readmission rates of ischemic stroke survivors ranged from 1.41% to 27.64%, with a mean value of 10.66% (SD 6.87%). The results

varied across countries and regions, with the highest reported 30-day readmission rate from China (11) and the lowest from the United States (12), which is consistent with the results of previous systematic reviews and meta-analyses (2,4,7,13-27). Many risk factors can contribute to 30-day readmission in patients with ischemic stroke. We screened about 30 of the most frequently mentioned risk factors in these 17 articles and finally identified 6 risk factors: history of stroke, diabetes mellitus, hypertension, atrial fibrillation, heart failure, and age. Among these, age was determined by descriptive analysis. Four risk factors were excluded, including hyperlipidemia, coronary heart disease, smoking, and gender, while 5 possible risk factors require further investigation, including duration of hospitalization, treatment modality, discharge disposition, health care payment model, and etiology. Intravenous thrombolysis and

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n group N<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lo readmissi<br>Events                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           | Weight                                                                                                          | Odds Ratio<br>M-H. Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                      | Odds Ratio<br>M-H. Fixed, 95% Cl                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 3.11.1 Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | (1996)                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 134                                                                                                                                                                                                                                                                                                                             | 170                                                                                                                                                                                       | 0.1%                                                                                                            | 0.32 [0.13, 0.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| jerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 928                                                                                                                                                                                                                                                                                                                             | 1674                                                                                                                                                                                      | 0.6%                                                                                                            | 0.50 [0.37, 0.68]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| /ahidy et al. 2017<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38625<br>38847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 128838                                                                                                                                                                                                                                                                                                                          | 280692<br>282536                                                                                                                                                                          | 97.5%<br>98.2%                                                                                                  | 0.62 [0.61, 0.63]<br>0.62 [0.61, 0.63]                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>—</b>                                                                  |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129900                                                                                                                                                                                                                                                                                                                          | 202330                                                                                                                                                                                    | 30.2 /8                                                                                                         | 0.02 [0.01, 0.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>2</i>                                                                  |
| leterogeneity: Chi2 = 3.82,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | df = 2 (P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129900                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| est for overall effect: Z = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| 3.11.2 Rehabilitation depa<br>Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rtment<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141                                                                                                                                                                                                                                                                                                                             | 1674                                                                                                                                                                                      | 0.1%                                                                                                            | 0.57 [0.30, 1.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152                                                                                                                                                                                                                                                                                                                             | 1841                                                                                                                                                                                      | 0.0%                                                                                                            | 0.17 [0.01, 2.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ← · · · · · · · · · · · · · · · · · · ·                                   |
| Mittal et al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112                                                                                                                                                                                                                                                                                                                             | 472                                                                                                                                                                                       | 0.1%                                                                                                            | 1.29 [0.60, 2.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Diu et al. 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 722                                                                                                                                                                                                                                                                                                                             | 1691                                                                                                                                                                                      | 1.0%                                                                                                            | 0.81 [0.66, 0.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Suri et al. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 186                                                                                                                                                                                                                                                                                                                             | 928                                                                                                                                                                                       | 0.1%                                                                                                            | 0.73 [0.41, 1.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 | 6606                                                                                                                                                                                      | 1.3%                                                                                                            | 0.78 [0.65, 0.93]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ◆                                                                         |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1313                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| leterogeneity: Chi <sup>2</sup> = 3.80,<br>est for overall effect: Z = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| .11.3 Nursing home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                              | 170                                                                                                                                                                                       | 0.0%                                                                                                            | 3.59 [1.43, 9.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 376                                                                                                                                                                                                                                                                                                                             | 1674                                                                                                                                                                                      | 0.3%                                                                                                            | 1.82 [1.33, 2.49]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · ·                                                                 |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 | 1844                                                                                                                                                                                      | 0.3%                                                                                                            | 1.94 [1.45, 2.61]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                         |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 408                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| leterogeneity: Chi <sup>2</sup> = 1.88,<br>est for overall effect: Z = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| 3.11.4 Home nursing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166                                                                                                                                                                                                                                                                                                                             | 1674                                                                                                                                                                                      | 0.1%                                                                                                            | 1.48 [0.96, 2.27]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Chanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 193                                                                                                                                                                                                                                                                                                                             | 1841                                                                                                                                                                                      | 0.0%                                                                                                            | 0.55 [0.13, 2.32]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 | 3515                                                                                                                                                                                      | 0.2%                                                                                                            | 1.32 [0.88, 1.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 359                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| leterogeneity: Chi <sup>2</sup> = 1.69,<br>est for overall effect: Z = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9); I <sup>z</sup> = 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| .11.5 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47                                                                                                                                                                                                                                                                                                                              | 1674                                                                                                                                                                                      | 0.0%                                                                                                            | 3.01 [1.67, 5.42]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59                                                                                                                                                                                                                                                                                                                              | 1841                                                                                                                                                                                      | 0.0%                                                                                                            | 4.17 [1.42, 12.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                 | 3515                                                                                                                                                                                      | 0.1%                                                                                                            | 3.20 [1.91, 5.38]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                         |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| leterogeneity: Chi <sup>2</sup> = 0.27,<br>est for overall effect: Z = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 | 298016                                                                                                                                                                                    | 100.0%                                                                                                          | 0.63 [0.61, 0.64]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           | 100.070                                                                                                         | 0.00 [0.01, 0.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |
| Fotal (95% CI)<br>Fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 132086                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Total events<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Test for overall effect: Z = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0, df = 13 (P <<br>1.58 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : 0.00001); l <sup>2</sup><br>001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 90%                                                                                                                                                                                                                                                                                                                           | l² = 96.5%                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 0.2 1 5<br>Favours No readmission Favours Readmission                |
| Fotal events<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Fest for overall effect: Z = 4<br>Fest for subaroup difference<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0, df = 13 (P <<br>1.58 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.00001); l <sup>2</sup><br>1001)<br>60. df = 4 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 90%                                                                                                                                                                                                                                                                                                                           | on group                                                                                                                                                                                  | Weight                                                                                                          | Odds Ratio<br>M-H. Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours No readmission Favours Readmission Odds Ratio                     |
| Fotal events<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Foest for overall effect: Z = 4<br>Fest for subaroup difference<br>Study or Subgroup<br>3.11.1 Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113,<br>Readmission<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.00001); l <sup>2</sup><br>0001)<br>60. df = 4 (P<br>n group N<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 90%<br>< 0.00001).<br>o readmissio<br>Events                                                                                                                                                                                                                                                                                  | on group<br>Total                                                                                                                                                                         |                                                                                                                 | Odds Ratio<br>M-H. Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours No readmission Favours Readmission Odds Ratio                     |
| Fotal events<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Fest for overall effect: Z = 4<br>Fest for suboroup difference<br>Study or Subgroup<br>3.11.1 Home<br>Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113,<br>Readmission<br>Events<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.00001); l <sup>2</sup><br>001)<br>60. df = 4 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134                                                                                                                                                                                                                                                                           | on group                                                                                                                                                                                  | 5.6%                                                                                                            | Odds Ratio<br>M-H. Random, 95% C<br>0.32 [0.13, 0.81]                                                                                                                                                                                                                                                                                                                                                                                                                 | Favours No readmission Favours Readmission Odds Ratio                     |
| Fotal events<br>feterogeneity: Chi <sup>2</sup> = 127.8<br>Fest for overall effect: Z = 4<br>fest for suboroup difference<br><u>Study or Subgroup</u><br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113.<br>Readmission<br>Events<br>12<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.00001); l <sup>2</sup><br>0001)<br>60. df = 4 (P<br>Total<br>22<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928                                                                                                                                                                                                                                                                  | on group<br>Total<br>170<br>1674                                                                                                                                                          | 5.6%<br>9.9%                                                                                                    | Odds Ratio<br>M-H. Random. 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)                                                                                                                                                                                                                                                                                                                                                                                            | Favours No readmission Favours Readmission Odds Ratio                     |
| Fotal events<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Fest for overall effect: Z = 4<br>Fest for subaroup difference<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113,<br>Readmission<br>Events<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 0.00001); l <sup>2</sup><br>1001)<br>60. df = 4 (P<br>1 group N<br>Total<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134                                                                                                                                                                                                                                                                           | on group<br><u>Total</u><br>170                                                                                                                                                           | 5.6%                                                                                                            | Odds Ratio<br>M-H. Random, 95% C<br>0.32 [0.13, 0.81]                                                                                                                                                                                                                                                                                                                                                                                                                 | Favours No readmission Favours Readmission Odds Ratio                     |
| Total events<br>Total events<br>Test for overall effect: Z = 4<br>Fest for subaroup difference<br>Study or Subaroup<br>Study or Subaroup<br>Study or Subaroup<br>Shatascharya et al. 2011<br>Bjørkreim et al. 2018<br>Vahidy et al. 2017<br>Subotati (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0, df = 13 (P <<br>1.58 (P < 0.00<br>ss: Chi <sup>2</sup> = 113.<br>Readmission<br><u>Events</u><br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>200<br>360.25<br>38847<br>f = 2 (P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900                                                                                                                                                                                                                                              | on group<br>Total<br>170<br>1674<br>280692                                                                                                                                                | 5.6%<br>9.9%<br>10.8%                                                                                           | Odds Ratio<br>M-H. Random. 95% C<br>0.32 [0.13, 0.81]<br>0.50 [0.37, 0.68]<br>0.62 [0.61, 0.63]                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio                     |
| Total events<br>Total events<br>teletrogeneity: Chi <sup>2</sup> = 127.8<br>sets for overall effect: Z = 4<br>fest for subaroup difference<br>Study or Subgroup<br>Stutt, Home<br>Shattacharya et al. 2011<br>Sjerkreim et al. 2018<br>Vahidy et al. 2017<br>Subtotal (95% CI)<br>Total events<br>Teterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0, df = 13 (P <<br>1.58 (P < 0.00<br>as: Chi <sup>2</sup> = 113,<br><b>Readmission</b><br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>.09 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>200<br>360.25<br>38847<br>f = 2 (P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900                                                                                                                                                                                                                                              | on group<br>Total<br>170<br>1674<br>280692                                                                                                                                                | 5.6%<br>9.9%<br>10.8%                                                                                           | Odds Ratio<br>M-H. Random. 95% C<br>0.32 [0.13, 0.81]<br>0.50 [0.37, 0.68]<br>0.62 [0.61, 0.63]                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio                     |
| Total events<br>Total events<br>teterogeneity: Chi <sup>2</sup> = 127.8:<br>sets for overall effect: Z = 4<br>fest for subaroup difference<br>Study or Subaroup<br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Signreim et al. 2017<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5<br>3.11.2 Rehabilitation depa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, df = 13 (P <<br>1.58 (P < 0.00<br>ss: Chi <sup>2</sup> = 113.<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>.09 (P < 0.000<br>rtment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>2000<br>38625<br>38847<br>f = 2 (P = 0.1<br>01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 90%<br>< 0.00001).  <br>o readmissic<br><u>Events</u><br>134<br>928<br>128338<br>129900<br>5); I <sup>2</sup> = 48%                                                                                                                                                                                                           | 70 group<br>Total<br>170<br>1674<br>280692<br>282536                                                                                                                                      | 5.6%<br>9.9%<br>10.8%<br>26.3%                                                                                  | Odds Ratio<br><u>M-H, Random, 95% C</u><br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)                                                                                                                                                                                                                                                                                                                                           | Favours No readmission Favours Readmission Odds Ratio                     |
| Total events<br>Total events<br>Total events<br>Total effect: Z = 4<br>fest for varial effect: Z = 4<br>fest for subaroup difference<br>Study or Subaroup<br>Situth Y = 10<br>Situth or Subaroup<br>Subatacharya et al. 2011<br>Subatacharya et al. 2017<br>Subatacharya et al. 2018<br>Subatacharya et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113,<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>.09 (P < 0.000<br>rtment<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>200<br>38625<br>38847<br>f= 2 (P = 0.1<br>01)<br>22<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 90%<br>< 0.00001). 1<br>o readmissic<br>Events<br>134<br>928<br>12838<br>129900<br>5); I <sup>2</sup> = 48%                                                                                                                                                                                                                   | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674                                                                                                                               | 5.6%<br>9.9%<br>10.8%<br>26.3%                                                                                  | Odds Ratio<br>M.H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.55 (0.45, 0.70]<br>0.55 (0.45, 0.70]                                                                                                                                                                                                                                                                                                                             | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total events<br>telerogeneity: Chi <sup>2</sup> = 127.8:<br>sets for overall effect: Z = 4<br>fest for subaroup difference<br>Study or Subaroup<br>Study                                                                                                                                                                                                                                                                                                                                                                                                                               | 0, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113.<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>.09 (P < 0.000<br>rtment<br>10<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>200<br>38625<br>38847<br>f = 2 (P = 0.1<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 90%<br>< 0.000011. i<br>o readmissic<br>128038<br>129000<br>5); l <sup>2</sup> = 48%                                                                                                                                                                                                                                          | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841                                                                                                                       | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%                                                                  | Odds Ratio<br><u>M-H. Random. 95% C</u><br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71]                                                                                                                                                                                                                                                                            | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total avents<br>Test for overall effect: Z = 4<br>fest for subaroup difference<br>Study or Subaroup<br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Varkig et al. 2017<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5<br>3.11.2 Rehabilitation depa<br>gjørkreim et al. 2018<br>Knanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0, df = 13 (P <<br>1.58 (P < 0.00<br>es: Chi <sup>2</sup> = 113,<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>.09 (P < 0.000<br>rtment<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>200<br>38625<br>38847<br>f= 2 (P = 0.1<br>01)<br>22<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 90%<br>< 0.00001). 1<br>o readmissic<br>Events<br>134<br>928<br>12838<br>129900<br>5); I <sup>2</sup> = 48%                                                                                                                                                                                                                   | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674                                                                                                                               | 5.6%<br>9.9%<br>10.8%<br>26.3%                                                                                  | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>teletrogeneity: Chi <sup>2</sup> = 127.8<br>sets for overall effect: Z = 4<br>sets for overall effect: Z = 4<br>sets for overall effect: Z = 4<br>Study or Subgroup<br>1.11.1 Home<br>Shattacharya et al. 2011<br>Shattacharya et al. 2018<br>Shattacharya et al. 2018<br>Mittal et al. 2017<br>Mittal et al. 2017<br>Shatta et al. 2011<br>Shatta et al. 2012<br>Shatta et                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0, df = 13 (P < 1.58 (P < 0.00<br>as: Chi <sup>2</sup> = 113).<br>Readmissior<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>.09 (P < 0.000<br>rtment<br>10<br>0<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>200<br>360.cd f = 4 (P<br>Total<br>22<br>200<br>36625<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5);   <sup>2</sup> = 48%                                                                                                                                                                                                                  | 170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472                                                                                                                                    | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%                                                          | Odds Ratio<br>M.H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.66, 0.99)<br>0.81 (0.66, 0.99)                                                                                                                                                                                                                                         | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total events<br>Heterogeneity: Chi <sup>2</sup> = 127.8:<br>Fest for veral effect: Z = 4<br>Fest for subaroup difference<br>Study or Subaroup<br>Study or Subaroup<br>Statacharya et al. 2011<br>Subtata (187% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overal effect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjerkreim et al. 2018<br>Mittal et al. 2017<br>Aue et al. 2021<br>Sui et al. 2021<br>Sui et al. 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, df = 13 (P < 0.00<br>1.58 (P < 0.00<br>ss: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.82, d.<br>.09 (P < 0.000<br>rtment<br>10<br>0<br>10<br>189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br>200<br>38625<br>38645<br>4 (P = 0.1<br>22<br>200<br>38625<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 90%<br>< 0.00001).  <br>o readmissic<br>Evonts<br>134<br>928<br>128938<br>129900<br>5); I <sup>2</sup> = 48%<br>141<br>152<br>112<br>722                                                                                                                                                                                      | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691                                                                                                        | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%                                                 | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission<br>Odds Ratio                  |
| Total events<br>Total events<br>teterogeneity: Chi <sup>2</sup> = 127.8:<br>test for overall effect: Z = 4<br>fest for subaroup difference<br>Study or Subaroup<br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Syntacharya et al. 2017<br>Subtotal (95% CI)<br>Total events<br>teterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjørkreim et al. 2017<br>Qiu et al. 2017<br>Qiu et al. 2021<br>Sui et al. 2017<br>Qiu et al. 2021<br>Sui et al. 2013<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, df = 13 (P < 0.00<br>s: Chi <sup>2</sup> = 113 (P < 0.00<br>s: Chi <sup>2</sup> = 113,<br>Readmission<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, 0.00<br>13415<br>Chi <sup>2</sup> = 3.82, 0.00<br>13415<br>Chi <sup>2</sup> = 3.82, 0.000<br>rtment<br>10<br>10<br>10<br>10<br>114<br>223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200001); l <sup>2</sup><br>60. df = 4 (P<br>o group N<br>Total<br>22<br>200<br>38625<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128038<br>129900<br>5; l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313                                                                                                                                                                       | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928                                                                                                 | 5.6%<br>9.9%<br>10.8%<br><b>26.3%</b><br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%                                  | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)                                                                                                                                                                                                                    | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total events<br>Total events<br>Total effect: Z = 4<br>Test for overall effect: Z = 4<br>Test for subaroup difference<br>Study or Subaroup<br>Stituth ore<br>Study or Subaroup<br>Shattacharya et al. 2011<br>Subattacharya et al. 2011<br>Subattacharya et al. 2017<br>Subatta events<br>Total events<br>Total events<br>Subatta et al. 2018<br>Subatta et al. 2018<br>Subatta et al. 2018<br>Subatta et al. 2018<br>Subatta et al. 2013<br>Subatta et al. 2018<br>Subatta et al. 2018<br>Sub                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, of f = 13 (P < 0.00<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br><b>Readmissior</b><br><u>Events</u><br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d, 0.09 (P < 0.000<br>rtment<br>10<br>0<br>10<br>10<br>12<br>22<br>Chi <sup>2</sup> = 3.80, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200001); l <sup>2</sup><br>60. df = 4 (P<br>o group N<br>Total<br>22<br>200<br>38625<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128038<br>129900<br>5; l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313                                                                                                                                                                       | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928                                                                                                 | 5.6%<br>9.9%<br>10.8%<br><b>26.3%</b><br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%                                  | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)                                                                                                                                                                                                                    | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total avents<br>Total avents<br>telerogeneity: Chi <sup>2</sup> = 127.8<br>sets for overall effect: Z = 4<br>fest for subbaroup difference<br>Study or Subgroup<br>3.11.1 Home<br>Bantacharya et al. 2011<br>Sjorkreim et al. 2018<br>Vahidy et al. 2017<br>Subtotal (95% CT)<br>Total avents<br>telerogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall offect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjorkreim et al. 2018<br>Wittal et al. 2017<br>Subtotal (95% CT)<br>Total avents<br>telerogeneity: Tau <sup>2</sup> = 0.00;<br>Total avents<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 2<br>3.11.3 Nursing home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0, df = 13 (P < 0.00<br>1.58 (P < 0.00<br>s: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.82, d.<br>Ch <sup>2</sup> = 3.80, d.<br>52 (P = 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>2000<br>38625<br>38647<br>f = 2 (P = 0.4<br>22<br>200<br>38625<br>3847<br>f = 2 (P = 0.1<br>01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128938<br>129900<br>5): l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>3): l <sup>2</sup> = 0%                                                                                                                                                     | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606                                                                                         | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%                                | Odds Ratio<br>M.H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.66, 0.99)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95)                                                                                                                                                                                                                    | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| rolal events<br>rolal events<br>leterogeneity: Chi <sup>2</sup> = 127.8<br>leterogeneity: Chi <sup>2</sup> = 24.8<br>leterogeneity: Z = 4<br>lest for varial effect: Z = 4<br>leterogeneity: Automotive<br>hattacharya et al. 2011<br>jerkreim et al. 2018<br>validy et al. 2017<br>Subtotal (95% CI)<br>fotal events<br>leterogeneity: Tau <sup>2</sup> = 0.02;<br>fest for overail effect: Z = 5<br>8.11.2 Rehabilitation depa<br>jerkreim et al. 2018<br>chanevski et al. 2018<br>chanevski et al. 2018<br>chanevski et al. 2018<br>chanevski et al. 2018<br>Subtotal (95% CI)<br>Fotal events<br>subtotal (95% CI)<br>Fotal events<br>leterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overail effect: Z = 2<br>8.11.3 Runsing home<br>hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, of = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0.9 (P < 0.00<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200001); l <sup>2</sup><br>60. df = 4 (P<br>a group N<br>Total<br>22<br>200<br>38642<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); I <sup>2</sup> = 48%<br>1411<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>1                                                                                                                                                      | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606                                                                                         | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%                                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.95)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]                                                                                                                                                                                                                    | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total events<br>telerogeneity: Chi <sup>2</sup> = 127.8<br>sets for overall effect: Z = 4<br>sets for overall effect: Z = 4<br>sets for overall effect: Z = 4<br>Shutacharya et al. 2011<br>Shutacharya et al. 2017<br>Shutacharya et al. 2018<br>Chanevski et al. 2018<br>Shutacharya et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, df = 13 (P < 0.00<br>1.58 (P < 0.00<br>s: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.82, d.<br>Ch <sup>2</sup> = 3.80, d.<br>52 (P = 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200001); I <sup>2</sup><br>60. df = 4 (P<br>9 group N<br>Total<br>22<br>200<br>38625<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128938<br>129900<br>5): l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>3): l <sup>2</sup> = 0%                                                                                                                                                     | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>6606                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%                | Odds Ratio<br><u>M:H. Random, 95% C</u><br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95)<br>3.59 [1.43, 9.05]<br>1.82 (1.33, 2.49)                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total events<br>teterogeneity: Chi <sup>2</sup> = 127.8:<br>teterogeneity: Chi <sup>2</sup> = 27.8:<br>test for overall effect: Z = 4<br>test for subaroup difference<br>Study or Subaroup<br>3.11.1 Home<br>Bantacharya et al. 2017<br>Subtotal (95% CI)<br>Total events<br>teterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjerkreim et al. 2018<br>Suntext al. 2017<br>Subtotal (95% CI)<br>Total events<br>test for overall effect: Z = 2<br>3.11.3 Nursing home<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>test for overall effect: Z = 2<br>3.11.3 Nursing home<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0, of = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0.9 (P < 0.00<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200001); l <sup>2</sup><br>60. df = 4 (P<br>a group N<br>Total<br>22<br>200<br>38642<br>38847<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); I <sup>2</sup> = 48%<br>1411<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>1                                                                                                                                                      | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606                                                                                         | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%                                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.95)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]                                                                                                                                                                                                                    | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total avents<br>Heterogeneity: Chi <sup>2</sup> = 127.8:<br>Fest for overall affect: Z = 4<br>Fest for subbaroup difference<br>Study or Subbaroup<br>3.11.1 Home<br>Bantascharya et al. 2017<br>Bantascharya et al. 2017<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjørkreim et al. 2018<br>Kinanevski et al. 2017<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 2<br>3.11.3 Nursing home<br>Bantascharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Heterogeneity: | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>12<br>77<br>77<br>13226<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0 (P < 0.000<br>rtment<br>10<br>0<br>79<br>79<br>Chi <sup>2</sup> = 1.88, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>01)<br>22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5): l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3): l <sup>2</sup> = 0%<br>32<br>376<br>408                                                                                                                       | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>6606                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%                | Odds Ratio<br><u>M:H. Random, 95% C</u><br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95)<br>3.59 [1.43, 9.05]<br>1.82 (1.33, 2.49)                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total avents<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Sets for overall effect: Z = 4<br>Fest for subborou difference<br>Study or Subgroup<br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Vahidy et al. 2017<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjerkreim et al. 2018<br>Mittal et al. 2017<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 2<br>3.11.3 Nursing home<br>Bhattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.01;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.01;<br>Test for overall effect: Z = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>12<br>77<br>77<br>13226<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0 (P < 0.000<br>rtment<br>10<br>0<br>79<br>79<br>Chi <sup>2</sup> = 1.88, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>01)<br>22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5): l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3): l <sup>2</sup> = 0%<br>32<br>376<br>408                                                                                                                       | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>6606                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%                | Odds Ratio<br><u>M:H. Random, 95% C</u><br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95)<br>3.59 [1.43, 9.05]<br>1.82 (1.33, 2.49)                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total avents<br>Total events<br>Total events<br>Study or Subaroup<br>Stift or subaroup difference<br>Study or Subaroup<br>Stift or subaroup difference<br>Study or Subaroup<br>Stift or Subaroup<br>Stift or Subaroup<br>Stattacharya et al. 2011<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Heterogeneity: Tau <sup>2</sup> = 0.11;                                                    | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>12<br>77<br>77<br>13226<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0 (P < 0.000<br>rtment<br>10<br>0<br>79<br>79<br>Chi <sup>2</sup> = 1.88, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>01)<br>22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>01)<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5): l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3): l <sup>2</sup> = 0%<br>32<br>376<br>408                                                                                                                       | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>6606                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%                | Odds Ratio<br><u>M:H. Random, 95% C</u><br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95)<br>3.59 [1.43, 9.05]<br>1.82 (1.33, 2.49)                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio M-H. Random, 95% Cl |
| Total events<br>Total avents<br>Total events<br>Total events<br>Study or Subaroup<br>Stift or subaroup difference<br>Study or Subaroup<br>Stift or subaroup difference<br>Study or Subaroup<br>Stift or Subaroup<br>Stift or Subaroup<br>Stattacharya et al. 2011<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 2<br>S.11.3 Rursing home<br>Bhattacharya et al. 2011<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Test for overall effect: Z = 2<br>S.11.4 Home nursing<br>Sjørkreim et al. 2018<br>Kanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0, of f = 13 (P < 0.00<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0.9 (P < 0.01)<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200001); I <sup>2</sup><br>60.0001); I <sup>2</sup><br>60. df = 4 (P<br>group N<br>Total<br>22<br>200<br>38625<br>38847<br>ff = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.4<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>238<br>24<br>201<br>201<br>201<br>202<br>203<br>203<br>204<br>205<br>205<br>205<br>205<br>205<br>205<br>205<br>205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); l <sup>2</sup> = 48%<br>1411<br>152<br>152<br>152<br>152<br>152<br>152<br>153<br>153<br>154<br>155<br>157<br>157<br>157<br>157<br>157<br>157<br>157                                                                                     | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>928<br>6606<br>170<br>1674<br>1844                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>33.3%                                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 [0.96, 2.27]<br>0.55 (0.13, 2.32]                                                                                                                                | Favours No readmission Favours Readmission                                |
| 'olal events<br>leaterogeneity: Chi <sup>2</sup> = 127.8<br>leaterogeneity: Chi <sup>2</sup> = 27.8<br>leaterogeneity: Chi <sup>2</sup> = 4<br>lest for varial effect: Z = 4<br>lest for varial effect: Z = 4<br>leaterogeneity: Tau <sup>2</sup> = 0.217<br>Subtotal (95% Cl)<br>Total events<br>leaterogeneity: Tau <sup>2</sup> = 0.02;<br>fest for overall effect: Z = 5<br>leaterogeneity: Tau <sup>2</sup> = 0.02;<br>fest for overall effect: Z = 5<br>leaterogeneity: Tau <sup>2</sup> = 0.02;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.02;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.01;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>leaterogeneity: Tau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>leaterogeneity: Cau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>leaterogeneity: Cau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>leaterogeneity: Cau <sup>2</sup> = 0.11;<br>leaterogeneity: Cau <sup>2</sup> = 0.11;<br>leaterogeneity: Cau <sup>2</sup> = 0.12;<br>leaterogeneity: Cau <sup>2</sup>                           | 0, off = 13 (P < 0.00<br>1.58 (P < 0.00<br>s: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.80, d<br>Ch <sup>2</sup> = 3.82, d<br>52 (P = 0.00)<br>79<br>Ch <sup>2</sup> = 1.88, d<br>.57 (P = 0.01)<br>28<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>22<br>200<br>38625<br>38647<br>f = 2 (P = 0.1<br>200<br>32<br>200<br>222<br>(f = 1 (P = 0.1<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>220<br>200<br>222<br>200<br>220<br>200<br>220<br>200<br>220<br>200<br>220<br>200<br>220<br>200<br>220<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20 | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128938<br>129900<br>5): l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>3): l <sup>2</sup> = 0%<br>32<br>376<br>408<br>7): l <sup>2</sup> = 47%<br>166<br>193                                                                                     | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>170<br>1674                                                                          | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%<br>15.4%               | Odds Ratio<br>M.H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 0.276)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>3.59 (1.43, 9.05)<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]                                                                                                                                                    | Favours No readmission Favours Readmission                                |
| otal events<br>leterogeneity: Chi <sup>2</sup> = 127.8<br>est for overall effect: Z = 4<br>est for subbrouo difference<br>study or Subgroup<br>1.11.1 Home<br>hattacharya et al. 2011<br>jerkreim et al. 2018<br>andicy et al. 2017<br>Subtotal (95% CI)<br>Total events<br>teterogeneity: Tau <sup>2</sup> = 0.02;<br>ferst for overall effect: Z = 5<br>1.11.2 Rehabilitation depa<br>jerkreim et al. 2018<br>thateatharya et al. 2018<br>thateatharya et al. 2018<br>thateatharya et al. 2018<br>bittotal (95% CI)<br>Total events<br>teterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 2<br>1.11.3 Nursing home<br>teterogeneity: Tau <sup>2</sup> = 0.01;<br>fest for overall effect: Z = 2<br>1.11.3 Nursing home<br>teterogeneity: Tau <sup>2</sup> = 0.01;<br>fest for overall effect: Z = 2<br>1.11.4 Nursing home<br>teterogeneity: Tau <sup>2</sup> = 0.11;<br>fest for overall effect: Z = 2<br>1.11.4 Home nursing<br>jerkreim et al. 2018<br>Ghanevski et al. 2018<br>Ghanevski et al. 2018<br>Ghanevski et al. 2018<br>Ghanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>22<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>33<br>22<br>201<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>23<br>201<br>201<br>200<br>33<br>201<br>200<br>33<br>201<br>200<br>33<br>201<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); I <sup>2</sup> = 48%<br>141<br>152<br>112<br>722<br>186<br>33; I <sup>2</sup> = 0%<br>32<br>376<br>408<br>7); I <sup>2</sup> = 47%<br>166<br>193<br>359                                                                                 | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>928<br>6606<br>170<br>1674<br>1844                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>33.3%                                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 [0.96, 2.27]<br>0.55 (0.13, 2.32]                                                                                                                                | Favours No readmission<br>Ddds Ratio<br>M.H. Random, 95% Cl<br>           |
| Total events<br>Total avents<br>teleterogeneity: Chi <sup>2</sup> = 127.8<br>teleterogeneity: Chi <sup>2</sup> = 27.8<br>teleterogeneity: Chi <sup>2</sup> = 4<br>test for varial elfact: Z = 4<br>test for subbrouw difference<br>Study or Subprouw<br>Shattacharya et al. 2011<br>Bjarkreim et al. 2018<br>Vahidy et al. 2017<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.02;<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.02;<br>Total events<br>Valtate et al. 2018<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 2<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.01;<br>Test for overall effect: Z = 2<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.11;<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.11;<br>Total events<br>teletrogeneity: CI)<br>Total events<br>teletrogeneity: CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.128<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.128<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.208<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.208<br>Subtotal (95% CI)<br>Total events<br>teletrogeneity: Tau <sup>2</sup> = 0.208<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.82, d<br>Ch <sup>2</sup> = 3.82, d<br>5.57 (P = 0.01)<br>28<br>2<br>Ch <sup>2</sup> = 1.88, d<br>5.77 (P = 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>22<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>33<br>22<br>201<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>23<br>201<br>201<br>200<br>33<br>201<br>200<br>33<br>201<br>200<br>33<br>201<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); I <sup>2</sup> = 48%<br>141<br>152<br>112<br>722<br>186<br>33; I <sup>2</sup> = 0%<br>32<br>376<br>408<br>7); I <sup>2</sup> = 47%<br>166<br>193<br>359                                                                                 | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>928<br>6606<br>170<br>1674<br>1844                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>33.3%                                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 [0.96, 2.27]<br>0.55 (0.13, 2.32]                                                                                                                                | Favours No readmission Favours Readmission                                |
| Fotal events<br>feterogeneity: Chi <sup>2</sup> = 127.8<br>fest for overall effect: Z = 4<br>Fest for subgroup difference<br>Study or Subgroup<br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Vahidy et al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.82, d<br>Ch <sup>2</sup> = 3.82, d<br>5.57 (P = 0.01)<br>28<br>2<br>Ch <sup>2</sup> = 1.88, d<br>5.77 (P = 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>22<br>200<br>33625<br>38847<br>f = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>33<br>22<br>201<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>22<br>200<br>33<br>23<br>201<br>201<br>200<br>33<br>201<br>200<br>33<br>201<br>200<br>33<br>201<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>33<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>30<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); I <sup>2</sup> = 48%<br>141<br>152<br>112<br>722<br>186<br>33; I <sup>2</sup> = 0%<br>32<br>376<br>408<br>7); I <sup>2</sup> = 47%<br>166<br>193<br>359                                                                                 | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>928<br>6606<br>170<br>1674<br>1844                                                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>33.3%                                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 [0.96, 2.27]<br>0.55 (0.13, 2.32]                                                                                                                                | Favours No readmission Favours Readmission                                |
| Total events<br>Total avents<br>Total avents<br>Total avents<br>Study or Subaroup diffect: Z = 4<br>Fest for varial effect: Z = 4<br>Fest for subaroup difference<br>Study or Subaroup difference<br>Study or Subaroup difference<br>Study or Subaroup difference<br>Subtotal (95% CI)<br>Total events<br>Hearbanding the Subaroup difference<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Hearcognenity: Tau <sup>2</sup> = 0.00;<br>Total events<br>Hearcognenity: Tau <sup>2</sup> = 0.11,<br>Total events<br>Hearcognenity: Tau <sup>2</sup> = 0.12,<br>Total events<br>Hearcognenity: Tau <sup>2</sup> = 0.218<br>Subtotal (95% CI)<br>Total events<br>Hearcognenity: Tau <sup>2</sup> = 0.2018<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI)<br>Total events<br>Hearcognenity: Tau <sup>2</sup> = 0.2018<br>Subtotal (95% CI)<br>Total events<br>Subtotal (95% CI                                                                                                                                                                                                                                                                                                                                        | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Ch <sup>2</sup> = 3.82, d<br>Ch <sup>2</sup> = 3.82, d<br>5.57 (P = 0.01)<br>28<br>2<br>Ch <sup>2</sup> = 1.88, d<br>5.77 (P = 0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200001); l <sup>2</sup><br>60.0001); l <sup>2</sup><br>60. df = 4 (P<br>group N<br>Total<br>22<br>2000<br>38625<br>38847<br>ff = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.1<br>200<br>33<br>35<br>ff = 1 (P = 0.1<br>200<br>33<br>ff = 1 (P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 90%<br>< 0.00001). i<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); l <sup>2</sup> = 48%<br>141<br>152<br>152<br>112<br>112<br>112<br>112<br>112<br>133<br>3); l <sup>2</sup> = 0%<br>32<br>376<br>408<br>7); l <sup>2</sup> = 47%<br>166<br>193<br>359<br>9); l <sup>2</sup> = 41%<br>47                 | n group<br>Total<br>170<br>1874<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>972<br>6606<br>170<br>1674<br>1844<br>1674<br>1844                                                  | 5.6%<br>9.9%<br>10.8%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%<br>15.4%                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27)<br>0.55 (0.13, 2.32)<br>1.15 (0.49, 2.69]<br>3.01 (1.67, 5.42)                                                                                      | Favours No readmission Favours Readmission                                |
| Total avents<br>Total avents<br>Heterogeneity: Chi <sup>2</sup> = 127.8<br>Sets for overall effect: Z = 4<br>Fest for subborou difference<br>Study or Subgroup<br>3.11.1 Home<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2017<br>Subtotal (95% CI)<br>Total avents<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Tots for overall effect: Z = 5<br>3.11.2 Rehabilitation depa<br>Bjerkreim et al. 2018<br>Khanavski et al. 2017<br>Subtotal (95% CI)<br>Total avents<br>Heterogeneity: Tau <sup>2</sup> = 0.02;<br>Test for overall effect: Z = 2<br>3.11.3 Nursing home<br>Bhattacharya et al. 2018<br>Subtotal (95% CI)<br>Total avents<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Test for overall effect: Z = 2<br>3.11.3 Nursing home<br>Bhattacharya et al. 2018<br>Subtotal (95% CI)<br>Total avents<br>Heterogeneity: Tau <sup>2</sup> = 0.11;<br>Test for overall effect: Z = 2<br>3.11.4 Home nursing<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018<br>Shotbetal (95% CI)<br>Total avents<br>Heterogeneity: Tau <sup>2</sup> = 0.20;<br>Test for overall effect: Z = 0<br>3.11.5 Other<br>Bjerkreim et al. 2018<br>Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, df = 13 (P < 0.00<br>1.58 (P < 0.00<br>sv: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>0 (P < 0.000<br>rtment<br>10<br>10<br>10<br>19<br>14<br>223<br>Chi <sup>2</sup> = 3.80, d<br>.52 (P = 0.01)<br>10<br>69<br>Chi <sup>2</sup> = 1.88, d<br>.57 (P = 0.01)<br>28<br>2<br>Chi <sup>2</sup> = 1.88, d<br>.57 (P = 0.01)<br>28<br>2<br>Chi <sup>2</sup> = 1.88, d<br>.57 (P = 0.01)<br>28<br>2<br>Chi <sup>2</sup> = 1.89, d<br>.57 (P = 0.01)<br>28<br>20<br>Chi <sup>2</sup> = 0.01)<br>28<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200001); P<br>60. df = 4 (P<br>9 group N<br>Total<br>22<br>200<br>38625<br>38847<br>f = 2 (P = 0.1<br>200<br>33<br>504<br>90<br>862<br>f = 4 (P = 0.4<br>22<br>200<br>23<br>1 (P = 0.1<br>200<br>33<br>1 (P = 0.1<br>200<br>1 (P = 0.                                                                                                                                                                                                                                           | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); l <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3); l <sup>2</sup> = 0%<br>32<br>376<br>408<br>7); l <sup>2</sup> = 47%<br>166<br>193<br>359<br>9); l <sup>2</sup> = 41%                                            | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>170<br>1674<br>1844                                                                  | 5.6%<br>9.9%<br>10.8%<br>7.3%<br>1.1%<br>6.6%<br>7.8%<br>33.3%<br>5.6%<br>9.0%<br>3.3%<br>12.3%<br>7.9%<br>4.8% | Odds Ratio<br>MH. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27)<br>0.55 (0.13, 2.32)<br>1.15 (0.49, 2.68]<br>3.01 [1.67, 5.42]<br>4.17 [1.42, 12.23]                       | Favours No readmission Favours Readmission                                |
| Total events           Total events           learengeneity: Chi <sup>2</sup> = 127.8           set for varial effect: Z = 4           set for subbaroup difference           Study or Subaroup difference           Study or Subaroup difference           Shattacharya et al. 2011           Bintacharya et al. 2011           Subotal (95% CI)           Total events           Heterogeneity: Tau <sup>2</sup> = 0.02;           Total events           Subotal (95% CI)           Total events           Subotal (95% CI)           Total events           Subotal (95% CI)           Total events           Heterogeneity: Tau <sup>2</sup> = 0.02;           Total events           Subotal (95% CI)           Total events           Heterogeneity: Tau <sup>2</sup> = 0.11;           Test for overall effect: Z = 2           3.11.4 Home nursing           Björkreim et al. 2018           Khanevski et al. 2018           Khanevard (95% CI)           Total events           Heterogeneity: Tau <sup>2</sup> = 0.21;           Total events           Heterogenenity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200001); l <sup>2</sup><br>60.0001); l <sup>2</sup><br>60. df = 4 (P<br>group N<br>Total<br>22<br>2000<br>38625<br>38847<br>ff = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.1<br>200<br>33<br>35<br>ff = 1 (P = 0.1<br>200<br>33<br>ff = 1 (P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 90%<br>< 0.00001).<br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); l <sup>2</sup> = 48%<br>141<br>152<br>112<br>722<br>186<br>3; l <sup>2</sup> = 0%<br>32<br>376<br>408<br>7; l <sup>2</sup> = 47%<br>166<br>193<br>359<br>9); l <sup>2</sup> = 41%<br>47<br>59                                           | n group<br>Total<br>170<br>1874<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>972<br>6606<br>170<br>1674<br>1844<br>1674<br>1844                                                  | 5.6%<br>9.9%<br>10.8%<br>7.3%<br>1.1%<br>6.6%<br>10.4%<br>7.8%<br>33.3%<br>5.6%<br>9.8%<br>15.4%                | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27)<br>0.55 (0.13, 2.32)<br>1.15 (0.49, 2.69]<br>3.01 (1.67, 5.42)                                                                                      | Favours No readmission Favours Readmission                                |
| Total events           Total events           Total events           Tess for overall effect: Z = 4           Study or Subgroup           3.11.1 Home           Bantacharya et al. 2011           Bjørkreim et al. 2018           Varidig et al. 2017           Subtotal (95% CI)           Total events           Total events           Subtotal (95% CI)           Total events           Folarogeneity: Tau <sup>2</sup> = 0.00;           Test for overall effect: Z = 2           3.1.1.2 Rehabilitation depa           Bjørkreim et al. 2013           Subtotal (95% CI)           Total events           Hotorogeneity: Tau <sup>2</sup> = 0.11;           Test for overall effect: Z = 2           3.1.4 Home nursing           Bjørkreim et al. 2018           Knanevski et al. 2018           Subtotal (95% CI)           Total events           Het                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200001); l <sup>2</sup><br>60.0001); l <sup>2</sup><br>60. df = 4 (P<br>group N<br>Total<br>22<br>200<br>38625<br>38847<br>ff = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.1<br>220<br>33<br>35<br>504<br>90<br>862<br>ff = 1 (P = 0.1<br>200<br>33<br>233<br>ff = 1 (P = 0.1<br>200<br>33<br>35<br>200<br>35<br>200<br>35<br>200<br>35<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5):   <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3):   <sup>2</sup> = 0%<br>32<br>376<br>7):   <sup>2</sup> = 47%<br>166<br>193<br>359<br>9):   <sup>2</sup> = 41%<br>47<br>59<br>106                              | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>170<br>1674<br>1844                                                                  | 5.6%<br>9.9%<br>10.8%<br>7.3%<br>1.1%<br>6.6%<br>7.8%<br>33.3%<br>5.6%<br>9.0%<br>3.3%<br>12.3%<br>7.9%<br>4.8% | Odds Ratio<br>MH. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27)<br>0.55 (0.13, 2.32)<br>1.15 (0.49, 2.68]<br>3.01 [1.67, 5.42]<br>4.17 [1.42, 12.23]                       | Favours No readmission Favours Readmission                                |
| Total events<br>Total events<br>letterogeneity: Chi <sup>2</sup> = 127.8<br>lettor overall effect: Z = 4<br>lettor subbrouw difference<br>lettor overall effect: Z = 4<br>lettor subbrouw difference<br>lettorowerall effect: Z = 0<br>lettorowerall effect: Z = 0<br>lettorowerall effect: Z = 5<br>lettorowerall effect: Z = 0<br>lettorowerall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, df = 13 (P - 4<br>1.58 (P < 0.00<br>sr: Ch <sup>2</sup> = 113;<br>Readmission<br>Events<br>12<br>77<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82, d<br>00 (P < 0.000<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200001); I <sup>2</sup><br>60.0001); I <sup>2</sup><br>60. df = 4 (P<br>group N<br>Total<br>22<br>200<br>38625<br>38847<br>ff = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.4<br>22<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.1<br>200<br>33<br>233<br>ff = 1 (P = 0.6<br>01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5):   <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3):   <sup>2</sup> = 0%<br>32<br>376<br>7):   <sup>2</sup> = 47%<br>166<br>193<br>359<br>9):   <sup>2</sup> = 41%<br>47<br>59<br>106                              | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>1472<br>1691<br>928<br>6606<br>170<br>1674<br>1844<br>1841<br>3515                                                 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>7.8%<br>33.3%<br>15.4%<br>9.0%<br>3.3%<br>12.3%       | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27]<br>0.55 (0.13, 2.32]<br>1.15 (0.49, 2.69]<br>3.01 (1.67, 5.42]<br>4.17 [1.42, 12.23]<br>3.24 (1.94, 5.43] | Favours No readmission Favours Readmission                                |
| Total events         Fordial events           Total events         Leterogeneity: Chi <sup>2</sup> = 127.8           Leterogeneity: Chi <sup>2</sup> = 127.8         Stor vorall effect: Z = 4           Ses for overall effect: Z = 4         Stor vorall effect: Z = 4           Statt or suboroup difference         Statt or vorall effect: Z = 4           Shattacharya et al. 2011         Stubtotal (95% CI)           Total events         Occ;           Statto or vorall effect: Z = 5         St.1.2           Statto or vorall effect: Z = 5         St.1.2           Statto avents         et al. 2017           Subtotal (95% CI)         Total events           Charcey events         et al. 2013           Subtotal (95% CI)         Total events           Total events         et al. 2018           Shattacharya et al. 2018         Subtotal (95% CI)           Total events         et al. 2018           Subtotal (95% CI)         Total events           Total events         et al. 2018           Subtotal (95% CI)         Total events           Subto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0, df = 13 (P < 1, 58 (P < 0,00<br>1.58 (P < 0,00<br>Str. Chi <sup>2</sup> = 113; Chi <sup>2</sup> = 13; Chi <sup>2</sup> = 13; Chi <sup>2</sup> = 13; Chi <sup>2</sup> = 13; Chi <sup>2</sup> = 3, 22; Chi <sup>2</sup> = 1, 28; Chi <sup>2</sup> = 1, 29; Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; d, 47; (P < 0, 0); Chi <sup>2</sup> = 0, 27; (P < 0, 0); Chi <sup>2</sup> = 0, 27; (P < | 200001); l <sup>2</sup><br>60.0001); l <sup>2</sup><br>60. df = 4 (P<br>group N<br>Total<br>22<br>200<br>38625<br>38847<br>ff = 2 (P = 0.1<br>200<br>33<br>35<br>504<br>90<br>862<br>ff = 4 (P = 0.1<br>220<br>33<br>35<br>504<br>90<br>862<br>ff = 1 (P = 0.1<br>200<br>33<br>233<br>ff = 1 (P = 0.1<br>200<br>33<br>35<br>200<br>35<br>200<br>35<br>200<br>35<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 90%<br>< 0.00001).  <br>o readmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5):   <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3):   <sup>2</sup> = 0%<br>32<br>376<br>408<br>7):   <sup>2</sup> = 47%<br>166<br>193<br>99:   <sup>2</sup> = 41%<br>47<br>59<br>0):   <sup>2</sup> = 0%          | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1691<br>928<br>6606<br>170<br>1674<br>1844                                                                  | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>7.8%<br>33.3%<br>15.4%<br>9.0%<br>3.3%<br>12.3%       | Odds Ratio<br>MH. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70]<br>0.57 (0.30, 1.11)<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76)<br>0.81 (0.66, 0.99)<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27)<br>0.55 (0.13, 2.32)<br>1.15 (0.49, 2.68]<br>3.01 [1.67, 5.42]<br>4.17 [1.42, 12.23]                       | Favours No readmission Favours Readmission                                |
| Total events<br>Total events<br>letterogeneity: Chi <sup>2</sup> = 127.8<br>lettor overall effect: Z = 4<br>lettor subbrouw difference<br>lettor overall effect: Z = 4<br>lettor subbrouw difference<br>lettorowerall effect: Z = 0<br>lettorowerall effect: Z = 0<br>lettorowerall effect: Z = 5<br>lettorowerall effect: Z = 0<br>lettorowerall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, off = 13 (P < 1, 28 (P < 0.00<br>1.58 (P < 0.00<br>s: Ch <sup>2</sup> = 113; Ch <sup>2</sup> = 3.82; display (P < 0.00<br>12377<br>13326<br>13415<br>Chi <sup>2</sup> = 3.82; display (P < 0.00<br>rtment<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>200<br>38625<br>38647<br>4 (P = 0.1<br>22<br>200<br>38627<br>4 = 2 (P = 0.1<br>200<br>33<br>365<br>504<br>90<br>862<br>f = 4 (P = 0.1<br>22<br>200<br>33<br>35<br>504<br>90<br>862<br>f = 1 (P = 0.1<br>200<br>33<br>1 (P = 0.1<br>200<br>33<br>233<br>1 (P = 0.6<br>201<br>200<br>33<br>233<br>1 (P = 0.6<br>200<br>33<br>233<br>1 (P = 0.6<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 90%<br>< 0.00001). i<br>oreadmissic<br>Events<br>134<br>928<br>128838<br>129900<br>5); i <sup>2</sup> = 48%<br>1411<br>152<br>112<br>722<br>186<br>1313<br>3); i <sup>2</sup> = 0%<br>32<br>376<br>193<br>9); i <sup>2</sup> = 47%<br>166<br>193<br>9); i <sup>2</sup> = 41%<br>47<br>59<br>00; i <sup>2</sup> = 0%<br>132086 | n group<br>Total<br>170<br>1674<br>280692<br>282536<br>1674<br>1841<br>472<br>1661<br>928<br>6606<br>1700<br>1674<br>1844<br>1844<br>1844<br>1674<br>1841<br>3515<br>1674<br>1841<br>3515 | 5.6%<br>9.9%<br>10.8%<br>26.3%<br>7.3%<br>1.1%<br>6.6%<br>7.8%<br>33.3%<br>15.4%<br>9.0%<br>3.3%<br>12.3%       | Odds Ratio<br>M:H. Random, 95% C<br>0.32 (0.13, 0.81)<br>0.50 (0.37, 0.68)<br>0.62 (0.61, 0.63)<br>0.56 (0.45, 0.70)<br>0.57 (0.30, 1.11]<br>0.17 (0.01, 2.71)<br>1.29 (0.60, 2.76]<br>0.81 (0.66, 0.95]<br>0.73 (0.41, 1.33)<br>0.79 (0.66, 0.95]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.82 (1.33, 2.49)<br>2.21 (1.21, 4.05]<br>1.48 (0.96, 2.27]<br>0.55 (0.13, 2.32]<br>1.15 (0.49, 2.69]<br>3.01 (1.67, 5.42]<br>4.17 [1.42, 12.23]<br>3.24 (1.94, 5.43] | Favours No readmission Favours Readmission                                |

Figure 12 Influence of discharge destination on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n group<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No readmiss<br>Events                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odds Ratio<br>M-H. Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Odds Ratio<br>M-H. Fixed, 95% Cl           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 3.12.1 Medicare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| Shattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                           | 170                                                                                                                                                                                                                                                                                               | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.63 [0.66, 4.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| loehme et al. 2018<br>Qiu et al. 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34891<br>356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48125<br>504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 218013<br>1153                                                                                                                                                                                                                                                                                                                                               | 323462<br>1691                                                                                                                                                                                                                                                                                    | 31.1%<br>0.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                                          |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1100                                                                                                                                                                                                                                                                                                                                                         | 325323                                                                                                                                                                                                                                                                                            | 31.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.27 [1.25, 1.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 <b>•</b>                                 |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 219246                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| leterogeneity: Chi <sup>2</sup> = 1.59,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | df = 2 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| est for overall effect: Z = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| .12.2 National health ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000                                                                                                                                                                                                                                                                                                                                                        | 07000                                                                                                                                                                                                                                                                                             | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| lan et al. 2015<br>.ee et al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1498<br>3768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1782<br>4124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13093<br>37741                                                                                                                                                                                                                                                                                                                                               | 97682<br>40605                                                                                                                                                                                                                                                                                    | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                          |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3//41                                                                                                                                                                                                                                                                                                                                                        | 138287                                                                                                                                                                                                                                                                                            | 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.49 [4.12, 4.88]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ▲                                          |
| Total events<br>Heterogeneity: Chi <sup>2</sup> = 1818<br>Test for overall effect: Z = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50834<br>* = 100%                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.04 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| 12.3 Medical aid<br>Boehme et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22642                                                                                                                                                                                                                                                                                                                                                        | 323462                                                                                                                                                                                                                                                                                            | 10.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.19 [1.15, 1.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                         |
| crispo et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38455                                                                                                                                                                                                                                                                                                                                                        | 433477                                                                                                                                                                                                                                                                                            | 2.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.17 [1.08, 1.27]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                          |
| ee et al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2864                                                                                                                                                                                                                                                                                                                                                         | 40605                                                                                                                                                                                                                                                                                             | 1.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25 [1.11, 1.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                          |
| ahidy et al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19087                                                                                                                                                                                                                                                                                                                                                        | 280692                                                                                                                                                                                                                                                                                            | 8.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.13 [1.08, 1.17]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              | 1078236                                                                                                                                                                                                                                                                                           | 22.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.17 [1.14, 1.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                          |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83048                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| leterogeneity: Chi <sup>2</sup> = 4.87,<br>est for overall effect: Z = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| .12.4 Private                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| Shattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                           | 170                                                                                                                                                                                                                                                                                               | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.41 [0.13, 1.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| oehme et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55312                                                                                                                                                                                                                                                                                                                                                        | 323462                                                                                                                                                                                                                                                                                            | 24.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.76 [0.74, 0.78]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| ahidy et al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47718                                                                                                                                                                                                                                                                                                                                                        | 280692                                                                                                                                                                                                                                                                                            | 20.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.75 [0.73, 0.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100000                                                                                                                                                                                                                                                                                                                                                       | 604324                                                                                                                                                                                                                                                                                            | 44.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.76 [0.74, 0.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 201-12 - 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103090                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| leterogeneity: Chi <sup>2</sup> = 1.94,<br>est for overall effect: Z = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or = 2 (P = 0.3<br>6.52 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56); 1* = 0%<br>0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| .12.5 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                           | 170                                                                                                                                                                                                                                                                                               | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.43 [0.49, 4.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| Suri et al. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 837                                                                                                                                                                                                                                                                                                                                                          | 928                                                                                                                                                                                                                                                                                               | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.52 [0.65, 3.58]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              | 1098                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.49 [0.76, 2.92]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 866                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| leterogeneity: Chi2 = 0.01,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| est for overall effect: Z = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .17 (P = 0.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 238520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              | 2147268                                                                                                                                                                                                                                                                                           | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.06 [1.05, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                          |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 457084                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| Heterogeneity: Chi <sup>2</sup> = 4220.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l <sup>2</sup> = 100%                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 0.2 0.5 1 2 5                          |
| fest for overall effect: Z = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Favours No readmission Favours Readmission |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| est for subdroub difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es: Chi <sup>2</sup> = 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.14. df = 4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P < 0.00001                                                                                                                                                                                                                                                                                                                                                  | . I² = 99.8%                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Readmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | group N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o readmissio                                                                                                                                                                                                                                                                                                                                                 | on group                                                                                                                                                                                                                                                                                          | Walaht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Odds Ratio                                 |
| tudy or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              | on group                                                                                                                                                                                                                                                                                          | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odds Ratio<br>M-H. Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Odds Ratio                                 |
| tudy or Subgroup<br>.12.1 Medicare<br>hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Readmission<br>Events<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | group N<br>Total<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o readmissio<br>Events<br>80                                                                                                                                                                                                                                                                                                                                 | on group<br>Total<br>170                                                                                                                                                                                                                                                                          | 4.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M-H. Random, 95% Cl<br>1.63 [0.66, 4.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Odds Ratio                                 |
| tudy or Subgroup<br>.12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | group N<br>Total<br>22<br>48125                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o readmissio<br>Events<br>80<br>218013                                                                                                                                                                                                                                                                                                                       | on group<br>Total<br>170<br>323462                                                                                                                                                                                                                                                                | 4.3%<br>8.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M-H. Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Odds Ratio                                 |
| tudy or Subgroup<br>.12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>tiu et al. 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Readmission<br>Events<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | group N<br>Total<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o readmissio<br>Events<br>80                                                                                                                                                                                                                                                                                                                                 | on group<br>Total<br>170                                                                                                                                                                                                                                                                          | 4.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M-H. Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Odds Ratio                                 |
| tudy or Subgroup<br>.12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Readmission<br>Events<br>13<br>34891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | group N<br>Total<br>22<br>48125<br>504                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o readmissio<br>Events<br>80<br>218013                                                                                                                                                                                                                                                                                                                       | on group<br>Total<br>170<br>323462<br>1691                                                                                                                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M-H. Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubtotal (95% Cl)<br>otal events<br>eterogeneiby: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>48125<br>504<br>48651<br>f = 2 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                | o readmissio<br>Events<br>80<br>218013<br>1153<br>219246                                                                                                                                                                                                                                                                                                     | on group<br>Total<br>170<br>323462<br>1691                                                                                                                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M-H. Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubtotal (95% Cl)<br>otal events<br>eterogeneiby: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>48125<br>504<br>48651<br>f = 2 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                | o readmissio<br>Events<br>80<br>218013<br>1153<br>219246                                                                                                                                                                                                                                                                                                     | on group<br>Total<br>170<br>323462<br>1691                                                                                                                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M-H. Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubototal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>48125<br>504<br>48651<br>5 2 (P = 0.4<br>001)                                                                                                                                                                                                                                                                                                                                                                                                                                          | o readmissio<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%                                                                                                                                                                                                                                                                          | 70 group<br>Total<br>170<br>323462<br>1691<br>325323                                                                                                                                                                                                                                              | 4.3%<br>8.5%<br>8.1%<br>20.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M.H. Random, <u>95% Ci</u><br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]<br>1.27 [1.25, 1.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>irance<br>1498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | group         N           Total         22           48125         504           48651         2           2         2           48651         2           2         2           1782         1782                                                                                                                                                                                                                                                                                           | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093                                                                                                                                                                                                                                                                 | 70000000000000000000000000000000000000                                                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 (0.66, 4.00)<br>1.28 [1.25, 1.30]<br>1.12 (0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]                                                                                                                                                                                                                                                                                                                                                                                                                                               | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubotal (95% CI)<br>total events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>set al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>48125<br>504<br>48651<br>2 = 2 (P = 0.4<br>001)<br>1782<br>4124                                                                                                                                                                                                                                                                                                                                                                                                                        | o readmissio<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%                                                                                                                                                                                                                                                                          | 70 group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]                                                                                                                                                                                                                                                                                                                                                                                                                          | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>total events<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>irance<br>1498<br>3768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | group         N           Total         22           48125         504           48651         2           2         2           48651         2           2         2           1782         1782                                                                                                                                                                                                                                                                                           | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741                                                                                                                                                                                                                                                        | 70000000000000000000000000000000000000                                                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 (0.66, 4.00)<br>1.28 [1.25, 1.30]<br>1.12 (0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]                                                                                                                                                                                                                                                                                                                                                                                                                                               | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>se et al. 2019<br>ubtotal (95% CI)<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>irance<br>1498<br>3768<br>5266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | roup N<br>Total<br>22<br>48125<br>504<br>48651<br>(= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906                                                                                                                                                                                                                                                                                                                                                                                              | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834                                                                                                                                                                                                                                               | 70000000000000000000000000000000000000                                                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]                                                                                                                                                                                                                                                                                                                                                                                                                          | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ui et al. 2021<br>ui et al. 2021<br>ui et al. 2021<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National Health insu<br>an et al. 2015<br>ue et al. 2019<br>ubtotal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>irance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | roup N<br>Total<br>22<br>48125<br>504<br>48651<br>(= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906                                                                                                                                                                                                                                                                                                                                                                                              | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834                                                                                                                                                                                                                                               | 70000000000000000000000000000000000000                                                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]                                                                                                                                                                                                                                                                                                                                                                                                                          | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>behme et al. 2018<br>iu et al. 2021<br>bubtotal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>ast for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>bubtotal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>sst for overall effect: Z = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>irance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | roup N<br>Total<br>22<br>48125<br>504<br>48651<br>(= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906                                                                                                                                                                                                                                                                                                                                                                                              | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834                                                                                                                                                                                                                                               | 70000000000000000000000000000000000000                                                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]                                                                                                                                                                                                                                                                                                                                                                                                                          | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattcharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00:<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2019<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>st for overall effect: Z = 0.<br>12.3 Medical ald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>irance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | roup N<br>Total<br>22<br>48125<br>504<br>48651<br>(= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906                                                                                                                                                                                                                                                                                                                                                                                              | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834                                                                                                                                                                                                                                               | 70000000000000000000000000000000000000                                                                                                                                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H. Random. 95% Ci<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]                                                                                                                                                                                                                                                                                                                                                                              | Odds Ratio                                 |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>bala events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>se et al. 2019<br>ubtotal (95% CI)<br>ubtotal (95% CI)<br>ubtotal (95% CI)<br>ala events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: Z = 0.<br>12.3 Medical ald<br>oohme et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34891<br>3556<br>35560<br>35560<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1.818, 94<br>88 (P = 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22<br>48125<br>504<br>48651<br>1= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4, df = 1 (P <                                                                                                                                                                                                                                                                                                                                                                                               | o readmissis<br><u>Events</u><br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup> :                                                                                                                                                                                                          | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477                                                                                                                                                                                     | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]                                                                                                                                                                                                                                                                                                                                                         | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>olal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 22<br>12.2 National health insu<br>an et al. 2015<br>au et al. 2019<br>ubtotal (95% CI)<br>olal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: 2 =<br>12.3 Medical aid<br>oehme et al. 2018<br>rispo et al. 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Readmission<br>Events<br>13<br>34991<br>35260<br>Chi <sup>2</sup> = 1,59, df<br>35260<br>Chi <sup>2</sup> = 1,59, df<br>3768<br>5266<br>Chi <sup>2</sup> = 1818,9;<br>88 (P = 0.38)<br>3946<br>636<br>356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | group         N           Total         22           48125         504           48651         48651           12 = 2 (P = 0.4         001)           1782         4124           4124         5906           4, df = 1 (P <                                                                                                                                                                                                                                                                 | o readmissik<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>32645<br>3264                                                                                                                                                                                         | 97682<br>40605<br>1323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605                                                                                                                                                                                    | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.5%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]                                                                                                                                                                                                                                                                                                                                    | Odds Ratio                                 |
| tudy or Subarroup<br>12.1 Modicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>total events<br>eterogeneity: Tau" = 0.00:<br>est for overall offect: Z = 22<br>12.2 National health insu<br>an et al. 2016<br>ubtotal (95% CI)<br>tal events<br>eterogeneity: Tau" = 7.02;<br>est for overall offect: Z = 0.<br>12.3 Modical aid<br>oehme et al. 2018<br>oe tal. 2018<br>oe tal. 2018<br>oe tal. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34891<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rrance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818,94<br>88 (P = 0.38)<br>3946<br>636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>48125<br>504<br>48651<br>(= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4, df = 1 (P <<br>48125<br>6205<br>4124<br>38625                                                                                                                                                                                                                                                                                                                                                             | o readmissile<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455                                                                                                                                                                                                | an group           Total           170           323462           1691           325323           97682           40605           138287           = 100%           323462           43477           40605           280692                                                                       | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.4%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]                                                                                                                                                                                                                                                                                                               | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Modicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>est for overall effect: 2 = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>otal events<br>et organeity: Tau" = 7.02;<br>est for overall effect: 2 on<br>12.3 Medical aid<br>oehme et al. 2018<br>rispo et al. 2018<br>est et al. 2017<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>p</sup> = 1,59, df<br>3768<br>5286<br>Chi <sup>p</sup> = 1818,9;<br>88 (P = 0.38)<br>3946<br>6356<br>2936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | group         N           Total         22           48125         504           48651         48651           12 = 2 (P = 0.4         001)           1782         4124           4124         5906           4, df = 1 (P <                                                                                                                                                                                                                                                                 | o readmissic<br>Events<br>80<br>218013<br>11013<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087                                                                                                                                                                               | 97682<br>40605<br>1323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605                                                                                                                                                                                    | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.5%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]                                                                                                                                                                                                                                                                                                                                    | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>behme et al. 2018<br>iu et al. 2021<br>Jubtotal (95% CI)<br>tal events<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>ast for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>bubtotal (95% CI)<br>tal events<br>tercogeneity: Tau <sup>2</sup> = 7.02;<br>ast for overall effect: Z = 0.<br>12.3 Medical aid<br>behme et al. 2018<br>terpo et al. 2018<br>terpo et al. 2018<br>ter et al. 2017<br>bubtotal (95% CI)<br>tal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Readmission<br>Events<br>13<br>34991<br>3556<br>35260<br>Chi <sup>2</sup> = 15.9, df<br>2.37 (P < 0.000<br>rrance<br>1498<br>37266<br>Chi <sup>2</sup> = 1818.9,<br>88 (P = 0.38)<br>3946<br>636<br>3566<br>2936<br>7874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>48125<br>504<br>48651<br>(= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4. df = 1 (P <<br>48125<br>6205<br>4124<br>38625<br>97079                                                                                                                                                                                                                                                                                                                                                    | o readmisside<br>Events<br>80<br>218013<br>1153<br>219246<br>55; I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048                                                                                                                                                                      | an group           Total           170           323462           1691           325323           97682           40605           138287           = 100%           323462           43477           40605           280692                                                                       | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.4%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]                                                                                                                                                                                                                                                                                                               | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>behme et al. 2018<br>iu et al. 2021<br>bubtotal (95% CI)<br>bale vents<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 22<br>12.2 National health insu<br>an et al. 2015<br>bubtotal (95% CI)<br>bale events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>st for overall effect: 2 = 0.<br>12.3 Medical aid<br>behme et al. 2018<br>rispo et al. 2018<br>ahidy et al. 2017<br>bubtotal (95% CI)<br>bal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, dl<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818,94<br>88 (P = 0.38)<br>3946<br>636<br>356<br>266<br>7874<br>Chi <sup>2</sup> = 4.87, dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>48125<br>5004<br>48651<br>1 = 2 (P = 0.4<br>5906<br>4, df = 1 (P <<br>48125<br>6205<br>4124<br>386620<br>4124<br>3866205<br>4124<br>387079<br>1 = 3 (P = 0.1                                                                                                                                                                                                                                                                                                                           | o readmisside<br>Events<br>80<br>218013<br>1153<br>219246<br>55; I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048                                                                                                                                                                      | an group           Total           170           323462           1691           325323           97682           40605           138287           = 100%           323462           43477           40605           280692                                                                       | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.4%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]                                                                                                                                                                                                                                                                                                               | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>ochme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>total events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: Z = 0.<br>12.3 Medical ald<br>oehme et al. 2018<br>arb/y et al. 2017<br>ubtotal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, dl<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818,94<br>88 (P = 0.38)<br>3946<br>636<br>356<br>266<br>7874<br>Chi <sup>2</sup> = 4.87, dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>48125<br>5004<br>48651<br>1 = 2 (P = 0.4<br>5906<br>4, df = 1 (P <<br>48125<br>6205<br>4124<br>386620<br>4124<br>3866205<br>4124<br>387079<br>1 = 3 (P = 0.1                                                                                                                                                                                                                                                                                                                           | o readmisside<br>Events<br>80<br>218013<br>1153<br>219246<br>55; I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048                                                                                                                                                                      | an group           Total           170           323462           1691           325323           97682           40605           138287           = 100%           323462           43477           40605           280692                                                                       | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.4%<br>8.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]                                                                                                                                                                                                                                                                                                               | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>13.12 Modical (\$5% CI)<br>12.2 National health insu-<br>net al. 2015<br>12.2 National health insu-<br>net al. 2015<br>12.3 Modical aid<br>0ehme et al. 2018<br>rispo et al. 2018<br>12.13 Modical aid<br>0ehme et al. 2018<br>aidy et al. 2017<br>12.13 Modical aid<br>0ehme et al. 2018<br>aidy et al. 2017<br>12.10 devents<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>12.4 Private<br>hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission           13           34991           356           35260           Chi" = 1.59, df           2.37 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22<br>48125<br>504<br>48651<br>1= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4. df = 1 (P <<br>48125<br>6205<br>4124<br>38625<br>97079<br>1= 3 (P = 0.1<br>21)<br>22                                                                                                                                                                                                                                                                                                                      | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%                                                                                                                                           | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>432477<br>40605<br>280692<br>1078236<br>1078236                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.5%<br>3.3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M.H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.17 [1.13, 1.21]<br>0.41 [0.13, 1.26]                                                                                                                                                                                                                                                                     | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Modicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: 2 = 0.01;<br>abitotal (95% CI)<br>otal autoral effect: 2 = 0.01;<br>est constantiate al. 2018<br>bitotal (95% CI)<br>tal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 8.<br>12.4 Private<br>hattacharya et al. 2011<br>ohme et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Readmission<br>Events<br>13<br>34891<br>356<br>35260<br>Chi <sup>p</sup> = 1,59, df<br>.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>p</sup> = 1818,9;<br>88 (P = 0.38)<br>3946<br>6356<br>29364<br>Chi <sup>p</sup> = 487, df<br>52 (P < 0.0000<br>4<br>6545                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>48125<br>5006<br>48651<br>1 = 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4. df = 1 (P <<br>48125<br>6205<br>4124<br>38625<br>97079<br>1 = 3 (P = 0.1<br>01)<br>22<br>48125                                                                                                                                                                                                                                                                                                          | o readmissic<br>Events<br>80<br>218013<br>119246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22542<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>60<br>55312                                                                                                                                    | n group<br>Total<br>170<br>323462<br>1325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605<br>280692<br>1078236<br>1770<br>323462                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.5%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.22 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.17 [1.13, 1.24]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]                                                                                                                                                                                                                                                | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.11 Modicare<br>12.12 Modical (\$5% CI)<br>12.2 National health insu<br>an ci al. 2015<br>12.2 National health insu<br>an ci al. 2015<br>12.2 Notional Health insu<br>an ci al. 2016<br>12.3 Modical aid<br>0 celme et al. 2018<br>cel cal. 2018<br>2018<br>2018<br>2019<br>2018<br>2019<br>2018<br>2019<br>2018<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>2019<br>201 | Readmission           13           34991           356           35260           Chi" = 1.59, df           2.37 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | group         N           Total         22           48125         504           504         48651           != 2 (P = 0.4         001)           1782         4124           4904         48125           6205         4124           38625         97079           != 3 (P = 0.1         01)           22         48125           38625         38625                                                                                                                                      | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%                                                                                                                                           | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>1078236<br>1078236<br>170<br>323462                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.27 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]                                                                                                                                                                                                                           | Odds Ratio<br>M-H. Random, 95% Cl          |
| tudy or Subgroup<br>12.1 Modicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>total events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: 2 = 0.<br>12.3 Medical aid<br>oehme et al. 2018<br>ahidy et al. 2017<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 8.<br>12.4 Private<br>hattacharya et al. 2018<br>ohme et al. 2018<br>ahidy et al. 2017<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 8.<br>12.4 Private<br>hattacharya et al. 2011<br>ohme et al. 2018<br>ahidy et al. 2017<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Readmission<br>Events<br>13<br>34891<br>356<br>Chi <sup>2</sup> = 1.59, dl<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818,94<br>88 (P = 0.38)<br>3946<br>636<br>636<br>356<br>2936<br>7874<br>Chi <sup>2</sup> = 4.87, dl<br>52 (P < 0.0000<br>4<br>6545<br>5137                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>48125<br>5006<br>48651<br>1 = 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4. df = 1 (P <<br>48125<br>6205<br>4124<br>38625<br>97079<br>1 = 3 (P = 0.1<br>01)<br>22<br>48125                                                                                                                                                                                                                                                                                                          | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>83048<br>83048<br>60<br>55312<br>47718                                                                                                                             | n group<br>Total<br>170<br>323462<br>1325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605<br>280692<br>1078236<br>1770<br>323462                                                                                                                                            | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.5%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.22 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.17 [1.13, 1.24]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]                                                                                                                                                                                                                                                | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>oehme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>total events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>se et al. 2015<br>ubtotal (95% CI)<br>total events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: Z = 0.<br><b>12.3 Medical aid</b><br>oehme et al. 2018<br>rispo et al. 2018<br>rispo et al. 2018<br>rispo et al. 2018<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 8.<br><b>12.4 Private</b><br>hattacharya et al. 2011<br>oehme et al. 2017<br>ubtotal (95% CI)<br>total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Readmission<br>Events<br>13<br>34991<br>3556<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rrance<br>1498<br>3768<br>Chi <sup>2</sup> = 1818.94<br>88 (P = 0.38)<br>3946<br>636<br>3566<br>2836<br>7874<br>Chi <sup>2</sup> = 4.87, df<br>52 (P < 0.000<br>4<br>6545<br>5137<br>11686                                                                                                                                                                                                                                                                                                                                                                                                                                  | group         N           Total         22           48125         504           504         48651           != 2 (P = 0.4         001)           1782         4124           4125         5006           4014         5906           4124         38625           97079         1           1= 3 (P = 0.1           01)         22           48125         866772                                                                                                                           | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>55312<br>47718<br>103090                                                                                                               | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>1078236<br>1078236<br>170<br>323462                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.27 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]                                                                                                                                                                                                                           | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>cohme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>olal events<br>tetorogeneity: Tau" = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>olal events<br>tetorogeneity: Tau" = 7.02;<br>est for overall effect: Z = 0.<br>12.3 Medical aid<br>cehme et al. 2018<br>rispo et al. 2018<br>addy et al. 2017<br>ubtotal (95% CI)<br>olal events<br>tetorogeneity: Tau" = 0.00;<br>est for overall effect: Z = 8,<br>12.4 Private<br>hattacharya et al. 2011<br>oehme et al. 2018<br>addy et al. 2017<br>ubtotal (95% CI)<br>olal events<br>tetorogeneity: Tau" = 0.00;<br>est or overall effect: Z = 8,<br>12.4 Private<br>hattacharya et al. 2011<br>oehme et al. 2018<br>addy et al. 2017<br>ubtotal (95% CI)<br>otal events<br>tetorogeneity: Tau" = 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Readmission<br>Events<br>13<br>34991<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, dl<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818.9, 88<br>(P = 0.38)<br>3946<br>636<br>636<br>636<br>356<br>2936<br>7874<br>Chi <sup>2</sup> = 4.87, dl<br>52 (P < 0.0000<br>4<br>6545<br>5137<br>11686<br>Ch <sup>2</sup> = 1.94, dl                                                                                                                                                                                                                                                                                                                                                                                | group         N           Total         22           48125         504           48651         1           1= 2 (P = 0.4         001)           1782         4124           5906         6205           4124         36625           36025         31625           386772         386275           12 (P = 0.3         2                                                                                                                                                                     | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>55312<br>47718<br>103090                                                                                                               | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>1078236<br>1078236<br>170<br>323462                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.27 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]                                                                                                                                                                                                                           | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>cohme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>teterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>otal events<br>teterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: Z = 0.<br>12.3 Medical aid<br>oehme et al. 2018<br>arbity et al. 2017<br>ubtotal (95% CI)<br>otal events<br>eet et al. 2018<br>arbity et al. 2017<br>ubtotal (95% CI)<br>otal events<br>et erogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 8.<br>12.4 Private<br>hattacharya et al. 2017<br>ubtotal (95% CI)<br>otal events<br>et erogeneity: Tau <sup>2</sup> = 0.01;<br>est for overall effect: Z = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Readmission<br>Events<br>13<br>34991<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, dl<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 1818.9;<br>88 (P = 0.38)<br>3946<br>636<br>636<br>636<br>356<br>2936<br>7874<br>Chi <sup>2</sup> = 4.87, dl<br>52 (P < 0.0000<br>4<br>6545<br>5137<br>11686<br>Ch <sup>2</sup> = 1.94, dl                                                                                                                                                                                                                                                                                                                                                                                | group         N           Total         22           48125         504           48651         1           1= 2 (P = 0.4         001)           1782         4124           5906         6205           4124         36625           36025         31625           386772         386275           12 (P = 0.3         2                                                                                                                                                                     | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>55312<br>47718<br>103090                                                                                                               | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>1078236<br>1078236<br>170<br>323462                                                                                                                                                        | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H, Random, 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.09, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.17]<br>1.27 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]                                                                                                                                                                                                                           | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Modicare<br>hattacharya et al. 2011<br>cehme et al. 2018<br>iui et al. 2021<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: Z = 0.00;<br>rispo et al. 2018<br>rispo et al. 2018<br>rispo et al. 2018<br>abidy at al. 2017<br>ubtotal (95% CI)<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 8.<br>12.4 Private<br>hattacharya et al. 2011<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 8.<br>12.4 Private<br>hattacharya et al. 2011<br>otal events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 26.<br>12.5 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34896<br>35260<br>Chi <sup>p</sup> = 1,59, df<br>357<br>266<br>5266<br>Chi <sup>p</sup> = 1818,9;<br>88 (P = 0,38)<br>3946<br>6356<br>2936<br>356<br>2936<br>356<br>2936<br>2937<br>74<br>Chi <sup>p</sup> = 4,87, df<br>52 (P < 0,000<br>4<br>6545<br>5137<br>11686<br>Chi <sup>p</sup> = 1,94, df<br>5,52 (P < 0,000                                                                                                                                                                                                                                                                                                                                                                                  | group         N           Total         22           48125         504           48651         1           12 2 (P = 0.4         001)           1782         4124           5906         4124           5906         4124           5906         4124           38625         97079           13 (P = 0.1         01)           22         48125           38625         38625           38625         38625           3001)         22                                                      | o readmissic<br>Events<br>80<br>218013<br>113013<br>113033<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>83048<br>83048<br>83048<br>19087<br>83048<br>19087<br>83048<br>19087<br>83048<br>19087<br>83048<br>19087<br>83048<br>103090<br>8); I <sup>2</sup> = 0% | progroup           Total           170           323462           325323           97682           40605           138287           = 100%           323462           433477           40605           280692           1078236           1770           323462           280692           604324 | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.5%<br>8.4%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>20.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>M.H. Random. 95% Cl</li> <li>1.63 [0.66, 4.00]</li> <li>1.28 [1.25, 1.30]</li> <li>1.12 [0.30, 1.39]</li> <li>1.27 [1.25, 1.30]</li> <li>34.08 [29.98, 38.74]</li> <li>0.80 [0.72, 0.90]</li> <li>5.23 [0.13, 206.14]</li> <li>1.19 [1.15, 1.23]</li> <li>1.17 [1.08, 1.27]</li> <li>1.25 [1.11, 1.40]</li> <li>1.13 [1.08, 1.17]</li> <li>1.17 [1.13, 1.21]</li> <li>0.41 [0.13, 1.26]</li> <li>0.76 [0.74, 0.77]</li> <li>0.76 [0.74, 0.77]</li> </ul>                                                                                                             | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>cohme et al. 2018<br>iu et al. 2021<br>ubtotal (95% CI)<br>otal events<br>teterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>ubtotal (95% CI)<br>otal events<br>teterogeneity: Tau <sup>2</sup> = 7.02;<br>est for overall effect: Z = 0.<br>12.3 Medical aid<br>oehme et al. 2018<br>arbity et al. 2017<br>ubtotal (95% CI)<br>otal events<br>eet et al. 2018<br>arbity et al. 2017<br>ubtotal (95% CI)<br>otal events<br>et erogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: Z = 8.<br>12.4 Private<br>hattacharya et al. 2017<br>ubtotal (95% CI)<br>otal events<br>et erogeneity: Tau <sup>2</sup> = 0.01;<br>est for overall effect: Z = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Readmission<br>Events<br>13<br>34991<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 18182,<br>88 (P = 0.38)<br>3946<br>636<br>636<br>636<br>636<br>356<br>2936<br>7874<br>Chi <sup>2</sup> = 4.87, df<br>5137<br>11886<br>Chi <sup>2</sup> = 1.94, df<br>3.52 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                     | group         N           Total         22           48125         504           48651         1           1= 2 (P = 0.4         001)           1782         4124           4906         4. df = 1 (P <                                                                                                                                                                                                                                                                                      | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup> -<br>22642<br>28645<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>60<br>55312<br>47718<br>103090<br>8); I <sup>2</sup> = 0%                                                                            | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605<br>2323462<br>1078236<br>170<br>323462<br>204324<br>170                                                                                                                    | 4.3%<br>8.5%<br>8.1%<br>8.3%<br>8.4%<br>16.7%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>8.5% | <ul> <li>M.H. Random. 95% Cl</li> <li>1.63 [0.66, 4.00]</li> <li>1.28 [1.25, 1.30]</li> <li>1.12 [0.09, 1.39]</li> <li>1.27 [1.25, 1.30]</li> <li>34.08 [29.98, 38.74]</li> <li>0.80 [0.72, 0.90]</li> <li>5.23 [0.13, 206.14]</li> <li>1.19 [1.15, 1.23]</li> <li>1.17 [1.08, 1.27]</li> <li>1.25 [1.11, 1.40]</li> <li>1.13 [1.08, 1.27]</li> <li>1.25 [1.11, 1.40]</li> <li>1.17 [1.08, 1.27]</li> <li>1.26 [1.11, 1.40]</li> <li>1.17 [1.08, 1.27]</li> <li>0.41 [0.13, 1.26]</li> <li>0.76 [0.74, 0.77]</li> <li>0.76 [0.74, 0.77]</li> <li>1.43 [0.49, 4.19]</li> </ul> | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Modicare<br>12.1 Modicare<br>12.1 Modicare<br>12.1 Modicare<br>12.2 Modicare<br>12.2 Modicare<br>14.2 National health insu-<br>tor overall effect: Z = 22<br>12.2 National health insu-<br>net al. 2015<br>ubtotal (95% CI)<br>12.3 Modical ald<br>0ehme et al. 2018<br>inspo et al. 2018<br>12.3 Modical ald<br>0ehme et al. 2018<br>and/y et al. 2017<br>ubtotal (95% CI)<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                    | Readmission<br>Events<br>13<br>34896<br>35260<br>Chi <sup>p</sup> = 1,59, df<br>357<br>266<br>5266<br>Chi <sup>p</sup> = 1818,9;<br>88 (P = 0,38)<br>3946<br>6356<br>2936<br>356<br>2936<br>356<br>2936<br>2937<br>74<br>Chi <sup>p</sup> = 4,87, df<br>52 (P < 0,000<br>4<br>6545<br>5137<br>11686<br>Chi <sup>p</sup> = 1,94, df<br>5,52 (P < 0,000                                                                                                                                                                                                                                                                                                                                                                                  | group         N           Total         22           48125         504           48651         1           12 2 (P = 0.4         001)           1782         4124           5906         4124           5906         4124           5906         4124           38625         97079           13 (P = 0.1         01)           22         48125           38625         38625           38625         38625           3001)         22                                                      | o readmissic<br>Events<br>80<br>218013<br>113013<br>113033<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>83048<br>83048<br>83048<br>83048<br>19087<br>83048<br>19087<br>83048<br>19087<br>83048<br>19087<br>83048<br>19087<br>83048<br>103090<br>8); I <sup>2</sup> = 0% | progroup           Total           170           323462           325323           97682           40605           138287           = 100%           323462           433477           40605           280692           1078236           1770           323462           280692           604324 | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.5%<br>8.4%<br>8.5%<br>8.5%<br>8.5%<br>8.5%<br>20.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>M.H. Random. 95% Cl</li> <li>1.63 [0.66, 4.00]</li> <li>1.28 [1.25, 1.30]</li> <li>1.12 [0.30, 1.39]</li> <li>1.27 [1.25, 1.30]</li> <li>34.08 [29.98, 38.74]</li> <li>0.80 [0.72, 0.90]</li> <li>5.23 [0.13, 206.14]</li> <li>1.19 [1.15, 1.23]</li> <li>1.17 [1.08, 1.27]</li> <li>1.25 [1.11, 1.40]</li> <li>1.13 [1.08, 1.17]</li> <li>1.17 [1.13, 1.21]</li> <li>0.41 [0.13, 1.26]</li> <li>0.76 [0.74, 0.77]</li> <li>0.76 [0.74, 0.77]</li> </ul>                                                                                                             | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattacharya et al. 2011<br>behme et al. 2018<br>iu et al. 2021<br>bubtotal (95% CI)<br>bale events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>est for overall effect: 2 = 22<br>12.2 National health insu<br>an et al. 2015<br>bubtotal (95% CI)<br>bale events<br>eterogeneity: Tau <sup>2</sup> = 7.02;<br>st for overall effect: 2 = 0.01;<br>bubtotal (95% CI)<br>bubtotal (95% CI)<br>bubtotal<br>con con con con con                                                                                                                                                                                                                                                                                                                                                                                            | Readmission<br>Events<br>13<br>34991<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>5266<br>Chi <sup>2</sup> = 18182,<br>88 (P = 0.38)<br>3946<br>636<br>636<br>636<br>636<br>356<br>2936<br>7874<br>Chi <sup>2</sup> = 4.87, df<br>5137<br>11886<br>Chi <sup>2</sup> = 1.94, df<br>3.52 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                     | 22<br>48125<br>5006<br>48651<br>= 2 (P = 0.4<br>001)<br>1782<br>4124<br>5906<br>4, df = 1 (P <<br>48125<br>5205<br>4124<br>38625<br>4124<br>38625<br>4124<br>38625<br>86772<br>= 2 (P = 0.1<br>01)<br>22<br>48125<br>38677<br>2<br>= 2 (P = 0.3<br>001)                                                                                                                                                                                                                                      | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup> -<br>22642<br>28645<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>60<br>55312<br>47718<br>103090<br>8); I <sup>2</sup> = 0%                                                                            | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605<br>280692<br>1078236<br>1770<br>323462<br>280692<br>604324                                                                                                                 | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>8.5%<br>8.5%<br>20.4%<br>3.6%<br>4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.3 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.3 [1.08, 1.27]<br>1.47 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]<br>0.76 [0.74, 0.77]<br>1.52 [0.45, 3.58]                                                                                                                                                              | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup.<br>12.1 Medicare<br>12.1 Medicare<br>12.1 Medicare<br>12.1 Medicare<br>12.1 Medicare<br>12.1 Medicare<br>12.1 Medicare<br>12.2 Mational health insu<br>an etal. 2015<br>ast for overall effect: Z = 22<br>12.2 National health insu<br>an etal. 2015<br>ast for overall effect: Z = 0.0<br>12.3 Medical ald<br>before overall effect: Z = 0.0<br>12.3 Medical ald<br>behne et al. 2018<br>behne et al. 2018<br>behne et al. 2018<br>behne et al. 2018<br>behne et al. 2018<br>beto et al. 2018<br>bit overall effect: Z = 8.<br>12.4 Private<br>12.4 Private<br>12.5 Other<br>batto al. 2011<br>art et al. 2013<br>bitotal (95% CI)<br>tal events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>bit overall effect: Z = 26<br>12.5 Other<br>bitotal (95% CI)<br>tal events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>bitotal (95% CI)<br>bitotal (95%                                                                                                                                                                                                                                                                                                                                  | Readmission           Events           13           3491           356           35260           Chi? = 159, dl           2.37 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | group         N           Total         22           48125         504           48651         1           1= 2 (P = 0.4         001)           1782         4124           5906         505           448125         56205           34625         36625           36625         36625           36772         1           22         (P = 0.3)           3001)         22           90         112                                                                                         | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>88; I <sup>2</sup> = 38%<br>60<br>55312<br>47718<br>103090<br>8); I <sup>2</sup> = 0%<br>29<br>837<br>866                                                                   | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605<br>280692<br>1078236<br>1770<br>323462<br>280692<br>604324                                                                                                                 | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>8.4%<br>8.4%<br>8.5%<br>8.5%<br>8.5%<br>20.4%<br>3.6%<br>4.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.3 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.3 [1.08, 1.27]<br>1.47 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]<br>0.76 [0.74, 0.77]<br>1.52 [0.45, 3.58]                                                                                                                                                              | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup.<br>12.1 Medicare<br>hattacharya et al. 2011<br>behme et al. 2018<br>iu et al. 2021<br>stal events<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>ast for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>betotal (95% CI)<br>tal events<br>tercogeneity: Tau <sup>2</sup> = 7.02;<br>ast for overall effect: Z = 0.<br>12.3 Medical aid<br>behme et al. 2018<br>betoregeneity: Tau <sup>2</sup> = 0.01;<br>behme et al. 2018<br>behme et al. 2018<br>betore dal. 2018<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>st for overall effect: Z = 8.<br>12.0 Automation and a tau<br>betore dal. 2017<br>betoral (95% CI)<br>tal events<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>st for overall effect: Z = 8.<br>12.0 Automation and a tau<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>st for overall effect: Z = 4.<br>12.5 Other<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>st for overall effect: Z = 4.<br>12.5 Other<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>st for overall effect: Z = 5.<br>12.5 Other<br>tercogeneity: Tau <sup>2</sup> = 0.00;<br>st for overall effect: Z = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Readmission           Events           13           3491           356           35260           Chi? = 159, dl           2.37 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | group         N           Total         22           48125         504           504         48651           != 2 (P = 0.4         001)           1782         4124           4125         6205           4124         38625           97079         12           48125         865772           (= 2 (P = 0.3)         3001)           22         90112           (= 1 (P = 0.9)         112                                                                                                | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup><br>22642<br>38455<br>2864<br>19087<br>88; I <sup>2</sup> = 38%<br>60<br>55312<br>47718<br>103090<br>8); I <sup>2</sup> = 0%<br>29<br>837<br>866                                                                   | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>406052<br>280692<br>1078236<br>1078236<br>1078236<br>1078236<br>170<br>323462<br>280692<br>604324<br>170<br>928<br>1098                                                          | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.5%<br>3.8%<br>3.8%<br>3.6%<br>8.20.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.77]<br>1.25 [1.11, 1.40]<br>0.76 [0.74, 0.78]<br>0.76 [0.74, 0.77]<br>0.76 [0.74, 0.77]<br>1.52 [0.45, 3.58]<br>1.49 [0.76, 2.90]                                                                                                                                                                                 | Odds Ratio<br>M-H. Random. 95% Cl          |
| tudy or Subgroup<br>12.1 Medicare<br>hattoharya et al. 2011<br>beinne et al. 2018<br>iu et al. 2021<br>bubtotal (95% CI)<br>bale events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>ast for overall offect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>bubtotal (95% CI)<br>bubtotal (95% CI)<br>bubtotal (95% CI)<br>bubtotal (95% CI)<br>12.3 Medical aid<br>beinne et al. 2018<br>inspo et al. 2018<br>bio et al. 2018<br>b                                                                                                                                                                                                                                                                                                                                                                              | Readmission<br>Events<br>13<br>34991<br>356<br>35260<br>Chi <sup>2</sup> = 1.59, df<br>2.37 (P < 0.000<br>rance<br>1498<br>3768<br>526 (P < 0.000<br>rance<br>1498<br>3768<br>588 (P = 0.38)<br>3946<br>636<br>536<br>2936<br>7874<br>Chi <sup>2</sup> = 18.87, df<br>52 (P < 0.000<br>4<br>6545<br>516<br>Chi <sup>2</sup> = 18.47, df<br>52 (P < 0.000<br>4<br>6545<br>517<br>Chi <sup>2</sup> = 1.94, df<br>5,52 (P < 0.000<br>5<br>84<br>89<br>Chi <sup>2</sup> = 1.94, df<br>5,52 (P < 0.000<br>5<br>84<br>84<br>85<br>16 (P = 0.25)<br>5<br>84<br>85<br>85<br>86<br>16 (P = 0.25)<br>16 (P = 0.25)<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>19<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | group         N           Total         22           48125         504           48651         1           1= 2 (P = 0.4         001)           1782         4124           5906         506           448125         56205           34625         36625           386772         386572           12         (P = 0.3)           22         48125           38672         36675           (= 2 (P = 0.3)         001)           22         90           112         22                     | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0.00001); I <sup>2</sup> -<br>22642<br>38455<br>2864<br>19087<br>83048<br>8); I <sup>2</sup> = 38%<br>60<br>55312<br>47718<br>103090<br>8); I <sup>2</sup> = 0%<br>29<br>837<br>866                                                        | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>40605<br>280692<br>1078236<br>1770<br>323462<br>280692<br>604324                                                                                                                 | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.5%<br>3.8%<br>3.8%<br>3.6%<br>8.20.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.90, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.3 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.3 [1.08, 1.27]<br>1.47 [1.13, 1.21]<br>0.41 [0.13, 1.26]<br>0.76 [0.74, 0.78]<br>0.75 [0.73, 0.77]<br>0.76 [0.74, 0.77]<br>1.52 [0.45, 3.58]                                                                                                                                                              | Odds Ratio<br>M-H. Random. 95% Cl          |
| udy or Subgroup<br>12.1 Medicare<br>tattacharya et al. 2011<br>behme et al. 2018<br>u et al. 2021<br>bibotal (95% CI)<br>tatal events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>sist for overall effect: Z = 22<br>12.2 National health insu<br>an et al. 2015<br>terogeneity: Tau <sup>2</sup> = 7.02;<br>sist for overall effect: Z = 0.<br>12.3 Medical aid<br>bibotal (95% CI)<br>tatal events<br>terogeneity: Tau <sup>2</sup> = 7.02;<br>sist for overall effect: Z = 0.<br>12.3 Medical aid<br>bibotal (95% CI)<br>tatal events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>sit for overall effect: Z = 8.<br>12.4 Privall events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>sit for overall effect: Z = 8.<br>12.4 Privall events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>sit for overall effect: Z = 4.<br>12.5 Other<br>attacharya et al. 2011<br>uit et al. 2018<br>uit events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>sit for overall effect: Z = 4.<br>21.5 Other<br>attacharya et al. 2011<br>uit et al. 2013<br>uit events<br>terogeneity: Tau <sup>2</sup> = 0.00;<br>sit for overall effect: Z = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Readmission           Events           13           3491           356           35260           Chi? = 1.59, dl           2.37 (P < 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | group         N           Total         22           48125         504           48651         1           122         28651           4124         5906           4125         6205           4124         38625           97079         11           22         48125           38625         86772           3001)         22           212         12           212         12           212         12           212         20           12         12           238520         238520 | o readmissic<br>Events<br>80<br>218013<br>1153<br>219246<br>5); I <sup>2</sup> = 0%<br>13093<br>37741<br>50834<br>0,00001); I <sup>2</sup><br>22642<br>38455<br>22642<br>38455<br>22642<br>38455<br>83048<br>8); I <sup>2</sup> = 38%<br>60<br>55312<br>47718<br>103090<br>8); I <sup>2</sup> = 0%<br>29<br>837<br>866<br>3); I <sup>2</sup> = 0%            | n group<br>Total<br>170<br>323462<br>1691<br>325323<br>97682<br>40605<br>138287<br>= 100%<br>323462<br>433477<br>433477<br>433477<br>280692<br>1078236<br>1078236<br>1078236<br>1078236<br>1078236<br>1078236<br>1078236<br>1078236<br>1078236<br>1098<br>1098                                    | 4.3%<br>8.5%<br>8.1%<br>20.9%<br>8.3%<br>8.4%<br>16.7%<br>8.4%<br>8.4%<br>8.5%<br>3.8%<br>3.8%<br>3.6%<br>8.20.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M-H. Random. 95% Cl<br>1.63 [0.66, 4.00]<br>1.28 [1.25, 1.30]<br>1.12 [0.30, 1.39]<br>1.27 [1.25, 1.30]<br>34.08 [29.98, 38.74]<br>0.80 [0.72, 0.90]<br>5.23 [0.13, 206.14]<br>1.19 [1.15, 1.23]<br>1.17 [1.08, 1.27]<br>1.25 [1.11, 1.40]<br>1.13 [1.08, 1.77]<br>1.25 [1.11, 1.40]<br>0.76 [0.74, 0.78]<br>0.76 [0.74, 0.77]<br>0.76 [0.74, 0.77]<br>1.52 [0.45, 3.58]<br>1.49 [0.76, 2.90]                                                                                                                                                                                 | Odds Ratio<br>M-H. Random. 95% Cl          |

Figure 13 Influence of health care payment model on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

# Deng et al. Meta-analysis of risk factors for readmission of stroke

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Readmission<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | group<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No readmissi<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      | Weight                                                                                                                                        | Odds Ratio<br>M-H. Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Odds Ratio<br>M-H. Fixed, 95% Cl                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| .13.1 Atherosclerosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 68                                                        |
| hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                  | 2.4%                                                                                                                                          | 1.76 [0.72, 4.29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-10                                                        |
| jerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1674                                                                                                                                                 | 11.1%                                                                                                                                         | 1.94 [1.34, 2.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| ubtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1844                                                                                                                                                 | 13.5%                                                                                                                                         | 1.91 [1.35, 2.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                           |
| otal events<br>eterogeneity: Chi <sup>2</sup> = 0.04, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54<br>df = 1 (P = 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ): l <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| est for overall effect: Z = 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| .13.2 Cardioembolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                  | 1.001                                                                                                                                         | 1 00 10 00 1 051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                           |
| hattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                  | 1.0%                                                                                                                                          | 1.03 [0.22, 4.85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| jerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1674                                                                                                                                                 | 23.1%                                                                                                                                         | 1.30 [0.96, 1.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| otal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1844                                                                                                                                                 | 24.1%                                                                                                                                         | 1.28 [0.95, 1.73]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| leterogeneity: Chi <sup>2</sup> = 0.08,<br>est for overall effect: Z = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | df = 1 (P = 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ); I² = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| 3.13.3 Small vessel diseas<br>Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                  | 3.7%                                                                                                                                          | 0.31 [0.09, 1.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1674                                                                                                                                                 | 12.7%                                                                                                                                         | 0.49 [0.27, 0.89]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>_</b>                                                    |
| Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1841                                                                                                                                                 | 2.3%                                                                                                                                          | 0.25 [0.03, 1.84]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3685                                                                                                                                                 | 18.6%                                                                                                                                         | 0.43 [0.25, 0.72]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                           |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| leterogeneity: Chi <sup>2</sup> = 0.71,<br>est for overall effect: Z = 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ); I² = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| .13.4 Other determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170                                                                                                                                                  | 0.6%                                                                                                                                          | 1.79 [0.36, 8.87]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1674                                                                                                                                                 | 1.8%                                                                                                                                          | 1.96 [0.80, 4.82]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1841                                                                                                                                                 | 0.3%                                                                                                                                          | 3.89 [0.89, 17.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3685                                                                                                                                                 | 2.7%                                                                                                                                          | 2.15 [1.07, 4.33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Heterogeneity: Chi <sup>2</sup> = 0.71,<br>Fost for overall effect: Z = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ); I <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| 3.13.5 Undetermined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170                                                                                                                                                  | 1.3%                                                                                                                                          | 1.18 [0.32, 4.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Bjerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1674                                                                                                                                                 | 34.1%                                                                                                                                         | 0.63 [0.46, 0.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Khanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1841                                                                                                                                                 | 5.7%                                                                                                                                          | 0.78 [0.38, 1.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3685                                                                                                                                                 | 41.0%                                                                                                                                         | 0.67 [0.51, 0.89]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                           |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| leterogeneity: Chi <sup>2</sup> = 1.04,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ); I² = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Test for overall effect: Z = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14743                                                                                                                                                | 100.0%                                                                                                                                        | 0.98 [0.84, 1.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>♦</b>                                                    |
| fotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H - 40 /D +0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .25 (P = 0.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 89.6%                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 0.1 1 10<br>Favours No readmission Favours Readmission |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .25 (P = 0.80)<br>es: Chi <sup>2</sup> = 38.61<br>Readmission g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | df = 4 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.00001). I <sup>2</sup><br>No readmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n group                                                                                                                                              |                                                                                                                                               | Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Favours No readmission Favours Readmission Odds Ratio       |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .25 (P = 0.80)<br>es: Chi <sup>2</sup> = 38.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | df = 4 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.00001). I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group                                                                                                                                              | Weight I                                                                                                                                      | Odds Ratio<br>M-H. Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Favours No readmission Favours Readmission Odds Ratio       |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .25 (P = 0.80)<br>es: Chi <sup>2</sup> = 38.61<br>Readmission g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | df = 4 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.00001). I <sup>2</sup><br>No readmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n group                                                                                                                                              | <u>Weight 1</u><br>7.9%                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio       |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subbgroup<br>1.13.1 Atherosclerosis<br>Bhattacharya et al. 2011<br>jerkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .25 (P = 0.80)<br>es: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | df = 4 (P<br>group M<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.00001). I <sup>2</sup><br>No readmission<br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n group<br>Total<br>170<br>1674                                                                                                                      |                                                                                                                                               | M-H. Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Favours No readmission Favours Readmission Odds Ratio       |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subgroup<br>5.13.1 Atherosclerosis<br>Bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .25 (P = 0.80)<br>es: Chi <sup>2</sup> = 38.61<br>Readmission <u>c</u><br>Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | df = 4 (P<br>group M<br>Total<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.00001). I <sup>2</sup><br>No readmission<br>Events<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n group<br>Total<br>170                                                                                                                              | 7.9%                                                                                                                                          | M-H. Random, 95% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Favours No readmission Favours Readmission Odds Ratio       |
| teterogeneity: Chi <sup>2</sup> = 42.08,<br>fest for overall effect: Z = 0.<br>fest for subaroup difference<br>1.13.1 Atherosclerosis<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% CI)<br>total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .25 (P = 0.80)<br>es: Chi <sup>2</sup> = 38.61<br>Readmission <u>g</u><br>Events<br>12<br>42<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | df = 4 (P<br>Total<br>22<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00001). I <sup>2</sup><br>No readmission<br>Events<br>69<br>202<br>271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group<br>Total<br>170<br>1674                                                                                                                      | 7.9%<br>12.5%                                                                                                                                 | M-H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours No readmission Favours Readmission Odds Ratio       |
| Heterogeneity: Chi <sup>2</sup> = 42.08,<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subgroup<br>b.13.1 Atherosclerosis<br>shattacharya et al. 2011<br>Sjerkreim et al. 2018<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .25 (P = 0.80)<br>as: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.00001). I <sup>2</sup><br>No readmission<br>Events<br>69<br>202<br>271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group<br>Total<br>170<br>1674                                                                                                                      | 7.9%<br>12.5%                                                                                                                                 | M-H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours No readmission Favours Readmission Odds Ratio       |
| eletrogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0.<br>fest for subaroup difference<br><u>study or Subgroup</u><br>1.13.1 Atheroselerosis<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>eletrogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3:<br>1.13.2 Cardioembolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .25 (P = 0.80)<br>ss: Chi <sup>2</sup> = 38.61<br>Readmission <u>g</u><br><u>Events</u><br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | df = 4 (P<br>roup N<br><u>Total</u><br>22<br>200<br>222<br>1 (P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.00001). I <sup>2</sup><br>No readmission<br>Events<br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n group<br>Total<br>170<br>1674<br>1844                                                                                                              | 7.9%<br>12.5%<br>20.4%                                                                                                                        | M-H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]                                                                                                                                                                                                                                                                                                                                                                                                                                 | Favours No readmission Favours Readmission Odds Ratio       |
| leterogeneity: Chi <sup>2</sup> = 42.08,<br>fest for overall effect: Z = 0.<br>fest for subaroup difference<br>bludy or Subgroup<br>1.13.1 Atherosclerosis<br>bhattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% CI)<br>fotal events<br>feterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 3.<br>L.13.2 Cardioembolism<br>bhattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 (P = 0.80)<br>s: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . df = 4 (P<br>Total<br>22<br>200<br>222<br>: 1 (P = 0.1<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.00001). I <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>34); I <sup>2</sup> = 0%<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n group<br>Total<br>170<br>1674<br>1844<br>1844                                                                                                      | 7.9%<br>12.5%<br>20.4%                                                                                                                        | M.H. Random, <u>95% C</u><br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.93 [0.22, 4.85]                                                                                                                                                                                                                                                                                                                                                                                                     | Favours No readmission Favours Readmission Odds Ratio       |
| eleterogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0.<br>fest for subaroup difference<br>Study or Subaroup<br>1.3.1 Atherosclerosis<br>Shattacharya et al. 2011<br>Subtotal (9% CI)<br>Total events<br>teterogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>1.3.2 Cardioembolism<br>Shattacharya et al. 2011<br>Sjørkreim et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .25 (P = 0.80)<br>ss: Chi <sup>2</sup> = 38.61<br>Readmission <u>g</u><br><u>Events</u><br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.00001). I <sup>2</sup><br>No readmission<br>Events<br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n group<br>Total<br>170<br>1674<br>1844<br>1844<br>170<br>1674                                                                                       | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%                                                                                                       | M.H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]                                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio       |
| leterogeneity: Chi <sup>2</sup> = 42.08<br>frest for overall effect: Z = 0.<br>fest for subaroup difference<br>b.13.1 Atherosclerosis<br>bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>feterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 3.<br>b.13.2 Cardioembolism<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 (P = 0.80)<br>s: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . df = 4 (P<br>Total<br>22<br>200<br>222<br>: 1 (P = 0.1<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.00001). I <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%<br>15<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group<br>Total<br>170<br>1674<br>1844<br>1844                                                                                                      | 7.9%<br>12.5%<br>20.4%                                                                                                                        | M.H. Random, <u>95% C</u><br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.93 [0.22, 4.85]                                                                                                                                                                                                                                                                                                                                                                                                     | Favours No readmission Favours Readmission Odds Ratio       |
| eleterogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0.<br>rest for subarouo difference<br>study or Subgroup<br>1.3.1 Atherosclerosis<br>shattacharya et al. 2011<br>Siperkreim et al. 2018<br>Subtotal (95% CI)<br>rest for overall effect: Z = 3.<br>1.1.3.2 Cardioembolism<br>Shattacharya et al. 2011<br>Siperkreim et al. 2018<br>Subtotal (95% CI)<br>rotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 (P = 0.80)<br>s: Chi <sup>2</sup> = 38.61<br>Readmission <u>g</u><br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00001). I <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%<br>15<br>530<br>545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>1844<br>170<br>1674                                                                                       | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%                                                                                                       | M.H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]                                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio       |
| leterogeneity: Chi <sup>2</sup> = 42.08<br>frest for overall effect: Z = 0.<br>fest for subaroup difference<br>b.13.1 Atherosclerosis<br>bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>feterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 3.<br>b.13.2 Cardioembolism<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 (P = 0.80)<br>s: Chi <sup>2</sup> = 38.61<br>Readmission <u>g</u><br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>75<br>77<br>Chi <sup>2</sup> = 0.08, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00001). I <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%<br>15<br>530<br>545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>1844<br>170<br>1674                                                                                       | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%                                                                                                       | M.H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]                                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio       |
| eleterogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0.<br>fest for subaroup difference<br>Study or Subaroup difference<br>Bhattacharya et al. 2011<br>Bjerkreim et al. 2018<br>Subtotal (95% Cl)<br>rest for overall effect: Z = 3:<br>1.1.3.2 Cardioembolism<br>shattacharya et al. 2011<br>Subtotal (95% Cl)<br>rotal events<br>deterogeneity: Tau <sup>2</sup> = 0.00;<br>rotal events<br>deterogeneity: Tau <sup>2</sup> = 0.00;<br>rotal events<br>deterogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.00;<br>rest for overall effect: Z = 1.0                                                                                                                                                                                                     | 25 (P = 0.80)<br>ys: Chi <sup>2</sup> = 38.61<br>Readmission <u>y</u><br><u>Events</u><br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>Chi <sup>2</sup> = 0.08, df =<br>64 (P = 0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00001). I <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%<br>15<br>530<br>545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>1844<br>170<br>1674                                                                                       | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%                                                                                                       | M.H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]                                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio       |
| eletrogeneity: Chi <sup>2</sup> = 42.08<br>frest for overall effect: Z = 0.<br>fest for subaroup difference<br>b.13.1 Atherosclerosis<br>bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>feterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 3.<br>b.13.2 Cardioembolism<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>feterogeneity: Tau <sup>2</sup> = 0.00;<br>fest for overall effect: Z = 1.<br>d.13.3 Small vessel disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25 (P = 0.80)<br>ys: Chi <sup>2</sup> = 38.61<br>Readmission <u>y</u><br><u>Events</u><br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>Chi <sup>2</sup> = 0.08, df =<br>64 (P = 0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00001). I <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>84); I <sup>2</sup> = 0%<br>15<br>530<br>545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>1844<br>170<br>1674                                                                                       | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%                                                                                                       | M.H. Random, 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]                                                                                                                                                                                                                                                                                                                                                                                       | Favours No readmission Favours Readmission Odds Ratio       |
| eletrogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0.<br>fest for subaroup difference<br>study or Subgroup<br>b.13.1 Atherosclerosis<br>shatacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>b.13.2 Cardioembolism<br>shatacharya et al. 2011<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.<br>b.13.3 Small vessel disease<br>shatacharya et al. 2011<br>Sjørkreim et al. 2018<br>Shatacharya et al. 2011<br>Sjørkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>Chi <sup>2</sup> = 0.04, df =<br>707, Chi <sup>2</sup> = 0.04, df =<br>707, Chi <sup>2</sup> = 0.06, df =<br>64 (P = 0.10)<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | df = 4 (P<br>roup P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>1 (P = 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.00001),  ²<br>ko readmissio:<br><u>Events</u><br>69<br>202<br>271<br>34);  ² = 0%<br>545<br>545<br>578);  ² = 0%<br>57<br>193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844                                                                               | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%                                                                                              | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]                                                                                                                                                                                                                                                                                                                        | Favours No readmission Favours Readmission Odds Ratio       |
| Ideerogeneity: Chi <sup>2</sup> = 42.08<br>Fest for overall effect: Z = 0.<br>Fest for subarouo difference<br>Study or Subarouo difference<br>Study or Subarouo difference<br>Shattacharya et al. 2011<br>Siperkreim et al. 2018<br>Subotata (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Siperkreim et al. 2018<br>Subotata (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.4.<br>I.3.3 Small vessel disease<br>Shattacharya et al. 2018<br>Shattacharya et al. 2018<br>Shattacharya et al. 2018<br>Shanevski et al. 2018<br>Shanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 (P = 0.80)<br>ys: Chi <sup>2</sup> = 38.61<br>Readmission g<br><u>Events</u><br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df<br>70 (P = 0.0002)<br>2<br>75<br>77<br>Chi <sup>2</sup> = 0.06, df<br>64 (P = 0.10)<br>0<br>8<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.00001),   <sup>2</sup><br>No readmission<br><u>Events</u><br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841                                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%                                                                     | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]                                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio       |
| eletrogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0.<br>fest for subaroup difference<br>Study or Subaroup difference<br>Bhattacharya et al. 2011<br>Bjorkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>eletrogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3:<br>3.1.3.2 Cardioembolism<br>Subtotal (95% Cl)<br>Total events<br>eletrogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.<br>Subtotal (95% Cl)<br>Total events<br>feterogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.<br>5.1.3.5 mall vessel diseases<br>Bhattacharya et al. 2011<br>Bjorkreim et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 (P = 0.80)<br>15: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>77<br>Chi <sup>2</sup> = 0.08, df =<br>64 (P = 0.10)<br>e<br>3<br>12<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e df = 4 (P<br>roup P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.00001), i <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34); i <sup>2</sup> = 0%<br>15<br>530<br>545<br>78); i <sup>2</sup> = 0%<br>57<br>193<br>204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844                                                                               | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%                                                                             | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]                                                                                                                                                                                                                                                                                                                        | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Fest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subgroup<br>1.3.1 Atherosclerosis<br>Shattacharya et al. 2011<br>Subotata (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>8.13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Siperkreim et al. 2018<br>Subotata (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>1.3.3 Small vessel diseas:<br>Shattacharya et al. 2011<br>Siperkreim et al. 2018<br>Chanevski et al. 2018<br>Chanevski et al. 2018<br>Subotat (95% CI)<br>Total events<br>Idenarya et al. 2011<br>Siperkreim et al. 2018<br>Chanevski et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 25 \left( P = 0.80 \right) \\ 95 \cdot Chi^2 = 38.61 \\ \hline Readmission g \\ \hline Events \\ 12 \\ 42 \\ 54 \\ Chi^2 = 0.04, df = 70 \\ 77 \\ 70 \left( P = 0.0002 \right) \\ \hline 2 \\ 75 \\ 77 \\ 77 \\ Chi^2 = 0.08, df = 64 \\ (P = 0.10) \\ e \\ \hline 3 \\ 12 \\ 1 \\ 16 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>222<br>200<br>222<br>200<br>222<br>225<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>225<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.00001),   <sup>2</sup><br><u>Voreadmission</u><br><u>Events</u><br><u>69</u><br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841                                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%                                                                     | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]                                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subaroup difference<br>Study or Subaroup difference<br>Shattacharya et al. 2011<br>Sightreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Frest for overall effect: Z = 3.<br>I.13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Frest for overall effect: Z = 1.<br>I.13.3 Small vessel disease<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Frest for overall effect: Z = 1.1<br>Sightreim et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 (P = 0.80)<br>ss: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>222<br>200<br>222<br>200<br>222<br>225<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>225<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.00001),   <sup>2</sup><br>Voreadmission<br>Events<br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841                                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%                                                                     | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]                                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subarouo difference<br>Study or Subarouo difference<br>Shattacharya et al. 2011<br>Sightreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3:<br>L13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Sightreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.4;<br>L13.3 Small vessel diseases<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.4;<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 (P = 0.80)<br>ss: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . df = 4 (P<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>222<br>200<br>222<br>200<br>222<br>225<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>225<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>225<br>200<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.00001),   <sup>2</sup><br>Voreadmission<br>Events<br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841                                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%                                                                     | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]                                                                                                                                                                                                                                                                                                   | Favours No readmission Favours Readmission Odds Ratio       |
| Iderogeneity: Chi <sup>2</sup> = 42.08<br>Irest for overall effect: Z = 0.<br>(rest for subaroup difference<br>Study or Subgroup<br>I.3.1 Atherosclerosis<br>shattacharya et al. 2011<br>Bjorkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>3.1.3.2 Cardioembolism<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.01;<br>Jiorkreim et al. 2018<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Shattacharya et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>3.1.3.4 Other determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>77<br>Chi <sup>2</sup> = 0.06, df =<br>64 (P = 0.10)<br>e<br>3<br>12<br>13 (P = 0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a df = 4 (P<br>Total<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>200<br>222<br>200<br>225<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00001), I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>170<br>1674<br>1841<br>3685                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%                                                            | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]                                                                                                                                                                                                                                                                              | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Fest for subarouo difference<br>Study or Subarouo difference<br>Shattacharya et al. 2011<br>Sintreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>I.13.3 Small vessel diseas:<br>Shattacharya et al. 2018<br>Subtata (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.3.3 Chevents et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.3.4 Other determined<br>Shattacharya et al. 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 (P = 0.80)<br>ss: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a df = 4 (P<br>Total<br>22<br>200<br>222<br>21 (P = 0.)<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.00001),   <sup>2</sup><br>40 readmission<br>Events<br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841<br>3685                                                        | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%                                                            | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]                                                                                                                                                                                                                                                         | Favours No readmission Favours Readmission Odds Ratio       |
| Iderogeneity: Chi <sup>2</sup> = 42.08<br>Irest for overall effect: Z = 0.<br>(rest for subaroup difference<br>Study or Subgroup<br>I.3.1 Atherosclerosis<br>shattacharya et al. 2011<br>Bjorkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>3.1.3.2 Cardioembolism<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.01;<br>Jiorkreim et al. 2018<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Shattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Shattacharya et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>3.1.3.4 Other determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 25 \ (P=0.80) \\ 95 \ Chi^2 = 38.61 \\ \hline \\ \mbox{Readmission g} \\ \mbox{Events} \\ \mbox{L} \\ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a df = 4 (P<br>Total<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>200<br>222<br>200<br>225<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00001), I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>170<br>1674<br>1841<br>3685                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%                                                            | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]                                                                                                                                                                                                                                                                              | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subaroup difference<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3:<br>1.1.3.2 Cardioembolism<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>1.1.3.3 Small vessel disease.<br>Shattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>1.1.3.3 Small vessel disease.<br>Shattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Chanevski et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% Cl)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>1.1.3.4 Other determined<br>Shattacharya et al. 2011<br>Bjørkreim et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 25 \ (P=0.80) \\ y_{57} \ Chi^2 = 38.61 \\ \hline \\ \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \mathrm{d} f = 4 \; (P \\ Total \\ \hline Total \\ 22 \\ 200 \\ 222 \\ 200 \\ 222 \\ 200 \\ 222 \\ 1 \; (P = 0) \\ 22 \\ 200 \\ 222 \\ 200 \\ 225 \\ 1 \; (P = 0) \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 22 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200$ | < 0.00001), i <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34); i <sup>2</sup> = 0%<br>15<br>530<br>545<br>530<br>545<br>78); i <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70); i <sup>2</sup> = 0%<br>9<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n group<br>Total<br>170<br>1674<br>1844<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841<br>3685<br>170<br>1674                                 | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%                                                                    | M-H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]                                                                                                                                                                                                                                    | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subarouo difference<br>Study or Subarouo difference<br>Study or Subarouo<br>Statuto et al. 2011<br>Subotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>Stattacharya et al. 2011<br>Subotal (95% CI)<br>Stattacharya et al. 2011<br>Subtatal (95% CI)<br>Stattacharya et al. 2011<br>Signifereim et al. 2018<br>Subtatal (95% CI)<br>Stata events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>Stattacharya et al. 2011<br>Signifereim et al. 2018<br>Subtatal (95% CI)<br>Statal events<br>Ideterogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>Statal events<br>Ideterogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.3.4 Other determined<br>Shattacharya et al. 2011<br>Subtatal (95% CI)<br>Total events<br>Idanevski et al. 2018<br>Subtatal (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a df = 4 (P T<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>255<br>255<br>255<br>255<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0001),   <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9<br>26<br>30<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>170<br>1674<br>1841<br>3685                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%                                    | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>3.89 [0.80, 17.02]                                                                                                                                                                                                              | Favours No readmission Favours Readmission Odds Ratio       |
| Iderogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subarouo difference<br>Study or Subarouo difference<br>Shattacharya et al. 2011<br>Sightreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3:<br>I.13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Sightreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.3;<br>I.13.3 Small vessel diseases<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.4;<br>I.13.3 Small vessel diseases<br>Shattacharya et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3.<br>I.13.4 Other determined<br>Shattacharya et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 (P = 0.80)<br>15: Chi <sup>2</sup> = 38.61<br>Readmission <u>c</u><br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>Chi <sup>2</sup> = 0.04, df =<br>77<br>Chi <sup>2</sup> = 0.06, df =<br>64 (P = 0.10)<br>e<br>3<br>12<br>1<br>Chi <sup>2</sup> = 0.71, df =<br>16<br>Chi <sup>2</sup> = 0.71, df =<br>0<br>0<br>Chi <sup>2</sup> = 0.71, df =<br>10<br>Chi | a df = 4 (P T<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>255<br>255<br>255<br>255<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0001),   <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9<br>26<br>30<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>170<br>1674<br>1841<br>3685                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%                                    | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>3.89 [0.80, 17.02]                                                                                                                                                                                                              | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subarouo difference<br>Study or Subarouo difference<br>Shattacharya et al. 2011<br>Signtreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Signtreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>I.13.3 Small vessel disease<br>shattacharya et al. 2018<br>Subtata (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.<br>I.13.3 Small vessel disease<br>shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>I.13.4 Other determined<br>Shattacharya et al. 2018<br>Chanevski et al. 2018<br>Chanevski et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>Colla events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z | 25 (P = 0.80)<br>15: Chi <sup>2</sup> = 38.61<br>Readmission <u>c</u><br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>Chi <sup>2</sup> = 0.04, df =<br>77<br>Chi <sup>2</sup> = 0.06, df =<br>64 (P = 0.10)<br>e<br>3<br>12<br>1<br>Chi <sup>2</sup> = 0.71, df =<br>16<br>Chi <sup>2</sup> = 0.71, df =<br>0<br>0<br>Chi <sup>2</sup> = 0.71, df =<br>10<br>Chi | a df = 4 (P T<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>2 (P = 0.1)<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>22<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>222<br>200<br>33<br>255<br>255<br>255<br>255<br>255<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.0001),   <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9<br>26<br>30<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>170<br>1674<br>1841<br>3685                                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%                                    | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>3.89 [0.80, 17.02]                                                                                                                                                                                                              | Favours No readmission Favours Readmission Odds Ratio       |
| Iderogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Fest for subaroup difference<br>Study or Subaroup difference<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3:<br>1.13.2 Cardioembolism<br>Bhattacharya et al. 2011<br>Bjørkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idetrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.00;<br>Fest for overall effect: Z = 3.<br>1.13.4 Other determined<br>Bhattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idetrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>1.13.4 Other determined<br>Bhattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idetrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>1.13.4 Other determined<br>Bhattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idetrogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>3.13.5 Undetermined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 25 \ (P=0.80) \\ y_{52} \ Ch^{i2} = 38.61 \\ \hline \\ Readmission g \\ \hline \\ Events \\ 12 \\ 42 \\ 54 \\ Ch^{i2} = 0.04, \ df = \\ 75 \\ 77 \\ Ch^{i2} = 0.04, \ df = \\ 75 \\ 77 \\ Ch^{i2} = 0.04, \ df = \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a df = 4 (P = 0)<br>Total<br>22<br>200<br>222<br>1 (P = 0)<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>220<br>225<br>225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.00001), I <sup>2</sup><br>ko readmissio<br>Events<br>69<br>202<br>271<br>34); I <sup>2</sup> = 0%<br>15<br>530<br>545<br>530<br>545<br>78); I <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70); I <sup>2</sup> = 0%<br>9<br>26<br>30<br>65<br>57<br>193<br>204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                                             | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%                                   | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>3.89 [0.89, 17.02]<br>2.24 [1.12, 4.48]                                                                                                                                                                                         | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Fest for overall effect: Z = 0.<br>Fest for subarouo difference<br>Study or Subaroup<br>(3.1 Atherosclerosis<br>Shattacharya et al. 2011<br>Signification and a subarous<br>Shattacharya et al. 2011<br>Signification and a subarous<br>(3.5 Atherosclerosis<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Cital events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>(3.2 Cardioembolism<br>Shattacharya et al. 2011<br>Signification and a subarous<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Cital events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 1.4.<br>(1.3.3 Small vessel diseased<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Cital events<br>eterogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>(1.3.4 Other determined<br>Shattacharya et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% CI)<br>Cital events<br>teterogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 2.<br>(1.3.5 Undetermined<br>Shattacharya et al. 2011<br>Subtotal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a df = 4 (P<br>Total<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>233<br>255<br>2 ( P = 0.1<br>22<br>200<br>33<br>255<br>2 ( P = 0.2<br>222<br>200<br>33<br>255<br>2 ( P = 0.2<br>222<br>200<br>33<br>255<br>2 ( P = 0.2<br>222<br>200<br>33<br>255<br>2 ( P = 0.2<br>22<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>220<br>200<br>222<br>200<br>225<br>220<br>200<br>222<br>200<br>225<br>220<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.00001),   <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9<br>9<br>20<br>30<br>70);   <sup>2</sup> = 0%<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>1844<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                        | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%                           | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>2.24 [1.12, 4.48]<br>1.18 [0.32, 4.36]                                                                                                                                                | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subarouo difference<br>Study or Subarouo difference<br>Shattacharya et al. 2011<br>Spirkeim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3:<br>L13.2 Cardioembolism<br>Shattacharya et al. 2011<br>Spirkeim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.4<br>.13.3 Small vessel diseas:<br>Shattacharya et al. 2018<br>Chanevski et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.4<br>.13.3 Small vessel diseas:<br>Shattacharya et al. 2018<br>Chanevski et al. 2018<br>Chanevski et al. 2018<br>Chanevski et al. 2018<br>Shattacharya et al. 2011<br>Spirkreim et al. 2018<br>Chanevski et al. 2                                                                                                                                                     | 25 (P = 0.80)<br>15: Chi <sup>2</sup> = 38.61<br>Readmission <u>c</u><br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>7<br>77<br>77<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>7<br>77<br>Chi <sup>2</sup> = 0.04, df =<br>10<br>6<br>64 (P = 0.10)<br>e<br>3<br>12<br>1<br>16<br>Chi <sup>2</sup> = 0.71, df =<br>13 (P = 0.002)<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>2<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d f = 4 (P = 0)<br>Total<br>22<br>200<br>222<br>1 (P = 0)<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.0001), i <sup>2</sup><br>ko readmission<br>Events<br>69<br>202<br>271<br>34); i <sup>2</sup> = 0%<br>15<br>530<br>545<br>78); i <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70); i <sup>2</sup> = 0%<br>9<br>26<br>30<br>65<br>70); i <sup>2</sup> = 0%<br>20<br>20<br>20<br>21<br>21<br>24<br>24<br>26<br>30<br>26<br>20<br>27<br>27<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                      | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                         | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%                  | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>3.89 [0.89, 17.02]<br>2.24 [1.12, 4.48]<br>1.18 [0.32, 4.36]<br>0.63 [0.46, 0.86]                                                                                                                                               | Favours No readmission Favours Readmission Odds Ratio       |
| Ideerogeneity: Chi <sup>2</sup> = 42.08<br>Fest for overall effect: Z = 0.<br>Fest for subarouo difference<br>Study or Subarouo difference<br>Study or Subarouo difference<br>Statuto et al. 2011<br>Signification and the subarous and the subarous<br>Statuto and the subarous and the subarous<br>Ideerogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>Statuto and the subarous and the subarous<br>Subatata (95% CI)<br>Statuto and the subarous and the subarous<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the sub-<br>Statuto and the subarous an                                                                                                                                                                                                                                                                             | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a df = 4 (P<br>roup 1 /<br>Total 22<br>200<br>222<br>11 (P = 0.1<br>22<br>200<br>222<br>201<br>222<br>200<br>222<br>201<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>233<br>255<br>2 ( P = 0.1<br>22<br>200<br>33<br>255<br>2 ( P = 0.1)<br>222<br>200<br>33<br>255<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.00001),   <sup>2</sup><br>ko readmissio<br><u>Events</u><br>69<br>202<br>271<br>34);   <sup>2</sup> = 0%<br>15<br>530<br>545<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9<br>9<br>20<br>30<br>70);   <sup>2</sup> = 0%<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%<br>9.4%  | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>2.24 [1.12, 4.48]<br>1.18 [0.32, 4.36]<br>0.63 [0.46, 0.86]<br>0.63 [0.46, 0.86]<br>0.78 [0.36, 1.60]                                                                                                                           | Favours No readmission Favours Readmission Odds Ratio       |
| Idecrogeneity: Chi <sup>2</sup> = 42.08<br>Frest for overall effect: Z = 0.<br>Frest for subarouo difference<br>Study or Subaroup<br>Study or Subaroup<br>It.3.1 Atherosclerosis<br>Bhattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3.<br>It.3.2 Cardioembolism<br>Bhattacharya et al. 2011<br>Sjorkreim et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.<br>It.3.3 Small vessel diseas:<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 1.<br>It.3.3 Small vessel diseas:<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Idecrogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 3.<br>It.3.4 Other determined<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 2.<br>It.3.5 Undetermined<br>Shattacharya et al. 2018<br>Subtotal (95% CI)<br>Total events<br>Iderogeneity: Tau <sup>2</sup> = 0.00;<br>Fost for overall effect: Z = 2.<br>It.3.5 Undetermined<br>Shattacharya et al. 2018<br>Chanevski et                                                                                                                       | 25 (P = 0.80)<br>15: Chi <sup>2</sup> = 38.61<br>Readmission <u>c</u><br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.4, df =<br>70 (P = 0.0002)<br>2<br>75<br>Chi <sup>2</sup> = 0.04, df =<br>77<br>Chi <sup>2</sup> = 0.080, df =<br>64 (P = 0.10)<br>e<br>3<br>12<br>11<br>Chi <sup>2</sup> = 0.71, df =<br>13 (P = 0.002)<br>2<br>6<br>2<br>Chi <sup>2</sup> = 0.71, df =<br>12<br>10<br>Chi <sup>2</sup> = 0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d f = 4 (P = 0)<br>Total<br>22<br>200<br>222<br>1 (P = 0)<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>220<br>222<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.00011, I <sup>2</sup><br><u>Events</u><br>69<br>202<br>271<br>34); I <sup>2</sup> = 0%<br>15<br>530<br>78); I <sup>3</sup> = 0%<br>57<br>193<br>204<br>57<br>193<br>205<br>70); I <sup>2</sup> = 0%<br>26<br>30<br>65<br>65<br>202<br>20<br>723<br>776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                         | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%                  | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>3.89 [0.89, 17.02]<br>2.24 [1.12, 4.48]<br>1.18 [0.32, 4.36]<br>0.63 [0.46, 0.86]                                                                                                                                               | Favours No readmission Favours Readmission Odds Ratio       |
| Iderogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0,<br>rest for overall effect: Z = 0,<br>rest for subarouo difference<br>study or Subgroup<br>1.3.1 Atherosclerosis<br>thattacharya et al. 2011<br>ijerkreim et al. 2018<br>utubtata (19% CI)<br>total events<br>rest for overall effect: Z = 3.<br>1.3.2 Cardioembolism<br>ihattacharya et al. 2011<br>ijerkreim et al. 2018<br>utubtata (19% CI)<br>total events<br>rest for overall effect: Z = 1.<br>1.3.3 Small vessel diseas:<br>hattacharya et al. 2018<br>tubtata (19% CI)<br>total events<br>rest for overall effect: Z = 1.<br>1.3.3 Small vessel diseas:<br>hattacharya et al. 2018<br>tubtata (19% CI)<br>total events<br>rest for overall effect: Z = 3.<br>1.3.4 Other determined<br>hattacharya et al. 2018<br>tubtata (19% CI)<br>total events<br>rest for overall effect: Z = 3.<br>1.3.4 Other determined<br>hattacharya et al. 2018<br>tubtata (19% CI)<br>total events<br>rest for overall effect: Z = 2.<br>1.3.5 Undetermined<br>hattacharya et al. 2018<br>thattacharya et al. 2018                                                                                                                                                                                            | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>Chi <sup>2</sup> = 0.04, df =<br>70, (P = 0.0002)<br>2<br>Chi <sup>2</sup> = 0.71, df =<br>13 (P = 0.02)<br>2<br>Chi <sup>2</sup> = 0.71, df =<br>13 (P = 0.02)<br>3<br>65<br>2<br>Chi <sup>2</sup> = 1.04, df =<br>80<br>Chi <sup>2</sup> = 1.04, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a df = 4 (P<br>roup 1 +<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>21<br>1 (P = 0.1<br>22<br>200<br>33<br>255<br>2 (P = 0.1<br>22<br>200<br>33<br>255<br>2 (P = 0.1<br>22<br>200<br>222<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>25<br>25<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.00011, i <sup>2</sup><br>ko readmission<br>Events<br>69<br>202<br>271<br>15<br>530<br>545<br>78); i <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70); i <sup>2</sup> = 0%<br>9<br>26<br>30<br>70); i <sup>2</sup> = 0%<br>20<br>723<br>776<br>1519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                                | 7.9%<br>12.5%<br>20.4%<br>4.1%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%<br>9.4%  | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>2.24 [1.12, 4.48]<br>1.18 [0.32, 4.36]<br>0.63 [0.46, 0.86]<br>0.63 [0.46, 0.86]<br>0.78 [0.36, 1.60]                                                                                                                           | Favours No readmission Favours Readmission Odds Ratio       |
| Iderogeneity: Chi <sup>2</sup> = 42.08<br>Test for overall effect: Z = 0,<br>est for subarouo difference<br>study or Subgroup<br>1.3.1 Atherosclerosis<br>bhattacharya et al. 2011<br>bjørkreim et al. 2018<br>utubtata (19% CI)<br>total events<br>iderogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>1.3.2 Cardioembolism<br>bhattacharya et al. 2011<br>jørkreim et al. 2018<br>utubtata (19% CI)<br>total events<br>iderogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.<br>1.3.3 Small vessel disease<br>bhattacharya et al. 2018<br>tubtata (19% CI)<br>total events<br>iderogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 1.<br>1.3.3 Small vessel disease<br>bhattacharya et al. 2018<br>tubtata (19% CI)<br>total events<br>iderogeneity: Tau <sup>2</sup> = 0.00;<br>rest for overall effect: Z = 3.<br>1.3.4 Other determined<br>bhattacharya et al. 2018<br>thanevski et al. 2018<br>thanevski et al. 2018<br>thanevski et al. 2018<br>thattacharya et al. 2011<br>jørkreim et al. 2018<br>thattacharya et al                                                                                                                                                     | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>Chi <sup>2</sup> = 0.04, df =<br>70, (P = 0.0002)<br>2<br>Chi <sup>2</sup> = 0.71, df =<br>13 (P = 0.02)<br>2<br>Chi <sup>2</sup> = 0.71, df =<br>13 (P = 0.02)<br>3<br>65<br>2<br>Chi <sup>2</sup> = 1.04, df =<br>80<br>Chi <sup>2</sup> = 1.04, df =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a df = 4 (P<br>roup 1 +<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>201<br>222<br>200<br>222<br>201<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>233<br>255<br>2 (P = 0.1<br>22<br>200<br>33<br>255<br>2 (P = 0.2<br>22<br>200<br>33<br>255<br>2 (P = 0.2)<br>22<br>220<br>200<br>33<br>255<br>2 (P = 0.2)<br>22<br>220<br>200<br>33<br>255<br>2 (P = 0.2)<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.00011, i <sup>2</sup><br>ko readmission<br>Events<br>69<br>202<br>271<br>15<br>530<br>545<br>78); i <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70); i <sup>2</sup> = 0%<br>9<br>26<br>30<br>70); i <sup>2</sup> = 0%<br>20<br>723<br>776<br>1519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170<br>1674<br>1844<br>170<br>1674<br>1844<br>170<br>1674<br>1841<br>3685<br>170<br>1674<br>1841<br>3685<br>170<br>1674<br>1841<br>3685              | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%<br>9.4%<br>27.6% | <ul> <li>M.H. Random. 95% C</li> <li>1.76 [0.72, 4.29]</li> <li>1.94 [1.34, 2.81]</li> <li>1.91 [1.36, 2.69]</li> <li>1.03 [0.22, 4.85]</li> <li>1.30 [0.96, 1.76]</li> <li>1.28 [0.95, 1.73]</li> <li>0.31 [0.09, 1.10]</li> <li>0.49 [0.27, 0.89]</li> <li>0.25 [0.03, 1.84]</li> <li>0.43 [0.26, 0.73]</li> <li>1.79 [0.36, 8.87]</li> <li>1.96 [0.80, 4.82]</li> <li>3.89 [0.80, 4.82]</li> <li>3.89 [0.80, 4.82]</li> <li>2.24 [1.12, 4.48]</li> <li>1.18 [0.32, 4.36]</li> <li>0.67 [0.51, 0.89]</li> </ul> | Favours No readmission Favours Readmission Odds Ratio       |
| telerogeneity: Chi <sup>2</sup> = 42.08<br>rest for overall effect: Z = 0,<br>rest for overall effect: Z = 0,<br>rest for subarouo difference<br>situdy or Subarouo<br>1.31. Atherosclerosis<br>bhattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 3:<br>1.3.2 Cardioembolism<br>ihattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 1.4<br>.13.3 Small vessel diseas:<br>hattacharya et al. 2018<br>ichanevski et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 3.<br>.13.4 Other determined<br>hattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 3.<br>.13.4 Other determined<br>hattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 2.<br>.13.5 Undetermined<br>hattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 2.<br>.13.5 Undetermined<br>hattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 2.<br>.13.5 Undetermined<br>hattacharya et al. 2011<br>ijerkreim et al. 2018<br>ububtati (95% CI)<br>rotal events<br>rest for overall effect: Z = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 25 \ (P=0.80) \\ y_{57} \ Ch^{12} = 38.61 \\ \mbox{Readmission g} \\ \mbox{Events} \\ 12 \\ 42 \\ 54 \\ Ch^{12} = 0.04, \ df = 1 \\ 77 \\ (P=0.0002) \\ 2 \\ 77 \\ Ch^{12} = 0.04, \ df = 1 \\ 76 \\ (P=0.0002) \\ 2 \\ 77 \\ Ch^{12} = 0.06, \ df = 64 \\ (P=0.10) \\ e \\ 3 \\ 12 \\ 16 \\ Ch^{12} = 0.71, \ df = 1 \\ 16 \\ Ch^{12} = 0.71, \ df = 1 \\ 16 \\ Ch^{12} = 0.71, \ df = 1 \\ 2 \\ (P=0.002) \\ 3 \\ 65 \\ 12 \\ Ch^{12} = 1.04, \ df = 7 \\ 78 \\ (P=0.005) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a df = 4 (P<br>roup 1 +<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>21<br>1 (P = 0.1<br>22<br>200<br>33<br>255<br>2 (P = 0.1<br>22<br>200<br>33<br>255<br>2 (P = 0.1<br>22<br>200<br>222<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>22<br>200<br>225<br>25<br>25<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>255<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.00011, I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n group<br>Total<br>170<br>1674<br>1844<br>170<br>1674<br>1844<br>1844<br>1841<br>3685<br>170<br>1674<br>1841<br>3685                                | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%<br>9.4%<br>27.6% | M.H. Random. 95% C<br>1.76 [0.72, 4.29]<br>1.94 [1.34, 2.81]<br>1.91 [1.36, 2.69]<br>1.03 [0.22, 4.85]<br>1.30 [0.96, 1.76]<br>1.28 [0.95, 1.73]<br>0.31 [0.09, 1.10]<br>0.49 [0.27, 0.89]<br>0.25 [0.03, 1.84]<br>0.43 [0.26, 0.73]<br>1.79 [0.36, 8.87]<br>1.96 [0.80, 4.82]<br>2.24 [1.12, 4.48]<br>1.18 [0.32, 4.36]<br>0.63 [0.46, 0.86]<br>0.63 [0.46, 0.86]<br>0.78 [0.36, 1.60]                                                                                                                           | Favours No readmission Favours Readmission Odds Ratio       |
| Ideerogeneity: Chi <sup>2</sup> = 42.08<br>Fest for overall effect: Z = 0.<br>Fest for subarouo difference<br>Study or Subarouo difference<br>Study or Subarouo difference<br>Statuto et al. 2011<br>Signification and the subarous and the subarous<br>Statuto and the subarous and the subarous<br>Ideerogeneity: Tau <sup>2</sup> = 0.00;<br>Fest for overall effect: Z = 3.<br>Statuto and the subarous and the subarous<br>Subatata (95% CI)<br>Statuto and the subarous and the subarous<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the subarous and the sub-<br>Statuto and the subarous and the subarous and the sub-<br>Statuto and the subarous and the sub-<br>Statuto and the subarous an                                                                                                                                                                                                                                                                             | 25 (P = 0.80)<br>95: Chi <sup>2</sup> = 38.61<br>Readmission g<br>Events<br>12<br>42<br>54<br>Chi <sup>2</sup> = 0.04, df =<br>70 (P = 0.0002)<br>2<br>75<br>77<br>77<br>Chi <sup>2</sup> = 0.04, df =<br>70, df =<br>64 (P = 0.10)<br>6<br>3<br>12<br>13 (P = 0.002)<br>2<br>6<br>Chi <sup>2</sup> = 0.71, df =<br>2<br>8<br>(Chi <sup>2</sup> = 0.71, df =<br>2<br>2<br>Chi <sup>2</sup> = 0.71, df =<br>3<br>5<br>12<br>Chi <sup>2</sup> = 0.02)<br>3<br>5<br>12<br>Chi <sup>2</sup> = 0.04, df =<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a df = 4 (P<br>roup 1 +<br>Total<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>1 (P = 0.1<br>22<br>200<br>222<br>201<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>225<br>220<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>200<br>222<br>200<br>233<br>255<br>2 (P = 0.1<br>222<br>200<br>33<br>255<br>2 (P = 0.1<br>222<br>200<br>33<br>255<br>2 (P = 0.1<br>222<br>200<br>33<br>255<br>2 (P = 0.1<br>222<br>200<br>33<br>255<br>2 (P = 0.1<br>209<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.000011,   <sup>2</sup><br>ko readmission<br>Events<br>69<br>202<br>271<br>530<br>545<br>533<br>78);   <sup>2</sup> = 0%<br>57<br>193<br>204<br>454<br>70);   <sup>2</sup> = 0%<br>9<br>26<br>30<br>70);   <sup>2</sup> = 0%<br>20<br>723<br>776<br>59;   <sup>2</sup> = 0%<br>20<br>20<br>21<br>21<br>21<br>21<br>21<br>23<br>24<br>25<br>25<br>27<br>20<br>27<br>20<br>27<br>27<br>20<br>27<br>27<br>27<br>20<br>27<br>20<br>27<br>27<br>27<br>27<br>27<br>27<br>20<br>27<br>27<br>27<br>27<br>20<br>27<br>27<br>27<br>20<br>27<br>27<br>27<br>27<br>27<br>20<br>27<br>27<br>27<br>27<br>20<br>27<br>27<br>27<br>20<br>27<br>27<br>20<br>27<br>27<br>20<br>27<br>27<br>20<br>27<br>20<br>27<br>20<br>27<br>20<br>27<br>20<br>27<br>20<br>20<br>20<br>20<br>20<br>27<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1700<br>1674<br>1844<br>1700<br>1674<br>1844<br>1844<br>1700<br>1674<br>1841<br>3685<br>1700<br>1674<br>1841<br>3685<br>1700<br>1674<br>1841<br>3685 | 7.9%<br>12.5%<br>20.4%<br>13.0%<br>17.2%<br>5.5%<br>10.4%<br>2.8%<br>18.7%<br>3.9%<br>7.8%<br>4.4%<br>16.2%<br>5.2%<br>13.0%<br>9.4%<br>27.6% | <ul> <li>M.H. Random. 95% C</li> <li>1.76 [0.72, 4.29]</li> <li>1.94 [1.34, 2.81]</li> <li>1.91 [1.36, 2.69]</li> <li>1.03 [0.22, 4.85]</li> <li>1.30 [0.96, 1.76]</li> <li>1.28 [0.95, 1.73]</li> <li>0.31 [0.09, 1.10]</li> <li>0.49 [0.27, 0.89]</li> <li>0.25 [0.03, 1.84]</li> <li>0.43 [0.26, 0.73]</li> <li>1.79 [0.36, 8.87]</li> <li>1.96 [0.80, 4.82]</li> <li>3.89 [0.80, 4.82]</li> <li>3.89 [0.80, 4.82]</li> <li>2.24 [1.12, 4.48]</li> <li>1.18 [0.32, 4.36]</li> <li>0.67 [0.51, 0.89]</li> </ul> | Favours No readmission Favours Readmission Odds Ratio       |

Figure 14 Influence of etiology on 30-day readmission in patients with ischemic stroke (Fixed effects model, Random effects model).

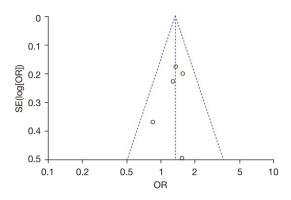



Figure 15 Publication bias of prior stroke.

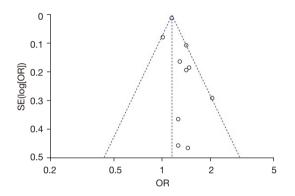



Figure 16 Publication bias of diabetes mellitus.

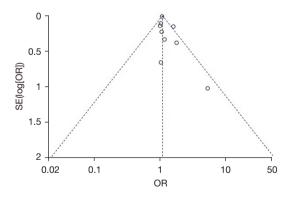



Figure 17 Publication bias of hypertension.

post-discharge rehabilitation showed protective effects. To our surprise, some of these risk factors have been shown to increase the risk of ischemic stroke, but our current study suggested that they did not increase the risk of 30-day readmission in patients with ischemic stroke.

We confirmed that a history of stroke, diabetes

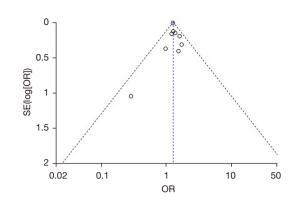



Figure 18 Publication bias of atrial fibrillation.

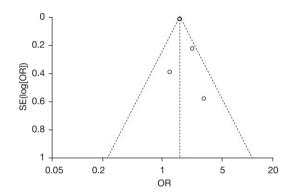



Figure 19 Publication bias of heart failure.

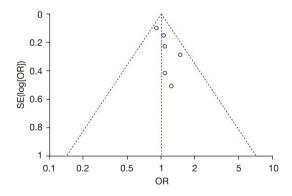



Figure 20 Publication bias of hyperlipidemia.

mellitus, hypertension, atrial fibrillation, or heart failure is a risk factor for 30-day readmission in patients with ischemic stroke. In our current analysis, "history of stroke" had different meanings across the included studies (4,17,18,22,28-30) and was not explicitly defined in each study. Nevertheless, it could be definitively concluded

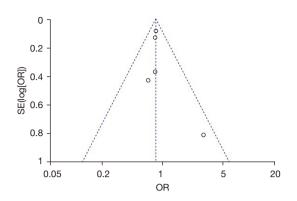



Figure 21 Publication bias of coronary heart disease.

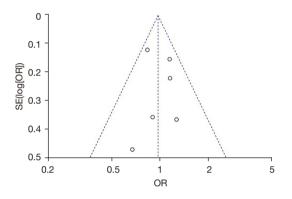



Figure 22 Publication bias of smoking.

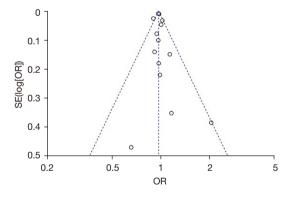



Figure 23 Publication bias of gender (female).

that patients with a history of stroke are more likely to be readmitted within 30 days after discharge than those who experienced stroke for the first time. The possible explanation for this is that patients with previous ischemic stroke episodes have more risk factors, such as worse vascular

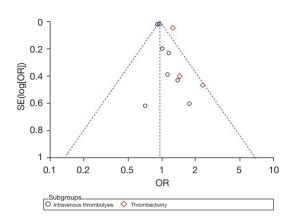



Figure 24 Publication bias of treatment modality.

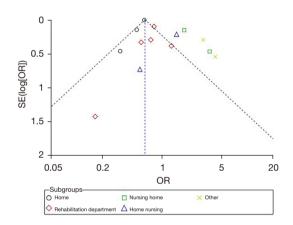



Figure 25 Publication bias of discharge destination.

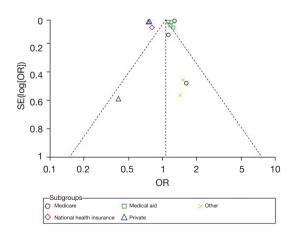



Figure 26 Publication bias of health care payment model.

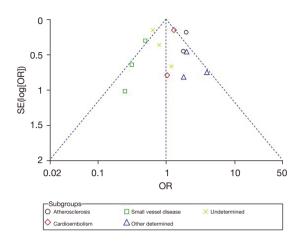



Figure 27 Publication bias of etiology.

condition, older age, or more comorbidities. However, it is unclear how a different, complex stroke history affects 30-day readmission. Whether diabetes mellitus, hypertension, atrial fibrillation, and heart failure are risk factors for 30-day readmission in patients with ischemic stroke remains controversial, even in some multicenter studies that had large sample sizes (2,5,7,18,23,31,32). Our current analysis confirmed the associations of these 4 comorbidities with 30-day readmission. It is possible that when patients have these comorbidities, the inner walls of blood vessels are often damaged and blood is more likely to be in a hypercoagulable state, leading to thrombus formation or dislodgement of existing thrombus, which ultimately cause stroke recurrence. Stroke recurrence is the leading cause of 30-day readmission in patients with ischemic stroke (2,4,7,17,24), and these comorbidities themselves may also directly lead to readmission (15,16,24,31). In addition, the outcomes of recovery from these comorbidities were closely related to medications, outpatient follow-up, and patients' dietary habits and exercise. Furthermore, the patients' conditions and health care capacity varied from region to region, which may explain the inconsistent results across multiple studies. Therefore, for patients with ischemic stroke with a history of stroke, diabetes, hypertension, atrial fibrillation, and/or heart failure, tailored health care should be offered within 30 days after discharge, which may benefit more patients and lower the 30-day readmission rate.

Length of hospital stay and age have been explored in many studies, but the type of data reported varied widely across studies. Boehme *et al.*, Vahidy *et al.*, Lichtman *et al.*, Qiu *et al.*, and Han *et al.* (5,7,18,28,33) presented the means and SDs of length of hospital stay. Bjerkreim *et al.*,

Wen et al., Mittal et al., Khanevski et al., and Kilkenny et al. (4,11,30,34,35) reported the medians and quartiles, while Crispo et al. and Lee et al. (12,36) performed subgroup comparisons. The same was true for age, with means and SD (4,5,7,17,18,22,28,30,34), medians and guartiles (11,35), and subgroup comparisons (12,18,29,33,36) being reported in different articles, which proved problematic in allowing us to obtain accurate quantitative results via meta-analysis. We believe that advanced age is largely a risk factor for 30-day readmission, while the length of hospital stay is still a controversial factor. According to the studies performed by Bambhroliva et al. (3) (n=2,078,854) and by Hirayama et al. (37) (n=620,788), advanced age is a risk factor for 30-day readmission in patients with ischemic stroke, which is consistent with the results of a study in China (2) that included 50,912 patients from 375 hospitals in 29 provinces. Hirayama et al. (37) noted that the 30-day readmission rate was significantly higher in patients older than 65 years compared with those younger than 65 years (65-74 years: OR 1.19, 95% CI: 1.16-1.21; 75-84 years: OR 1.29, 95% CI: 1.27–1.31; >85 years: OR 1.24, 95% CI: 1.22–1.27; all P<0.001). Nouh et al. (29) also showed that the 30-day readmission rate was higher in patients >75 years. Qureshi et al. (17) reported a 19% increase in the odds of readmission for each decade of older age. Compared to young and middle-aged patients, older adult patients had more comorbidities, as well as worse vascular condition, higher blood viscosity, and lower cardiac function, which could lead to hemodynamic deficiencies. As a result, patients with advanced age are more likely to be readmitted. A question then arises: what is the cutoff age for "advanced age"? There was no definite answer in our current analysis. In terms of length of hospital stay, some Korean and American studies (7,12,33,36) suggested that the length of hospital stay affects the 30-day readmission in patients with ischemic stroke, which was corroborated by the results of a few prospective cohort studies (32,38). Conversely, other studies from Norway (4), Australia (35), and China (28) reported opposing results. Unfortunately, some of the prospective studies with large sample sizes did not analyze the length of hospital stay (4,37). A study by Wen et al. (2) showed that a length of hospital stay longer than 7 days was associated with a reduced risk of 30-day readmission. In another study by Wen et al. (11), however, the risk of 30-day readmission was lowest in patients hospitalized for about 10 days, and longer or shorter length of hospital stay increased the risk of readmission. The controversy over the length of hospital stay may be due to differences in region,

11102

sample size, study type, medical resources, and level of care, though one of the key considerations may be as follows: a longer length of hospital stay indicates that the disease is more severe and more difficult to treat; however, the patients receive more medical resources and high-quality care, which theoretically leads to better outcomes and thus lowers readmission rates. A shorter length of hospital stay may have the opposite effect. We hope that multicenter prospective studies with larger sample sizes can further clarify the role of the length of hospital stay.

In our current analysis, 4 risk factors were excluded, including hyperlipidemia, coronary heart disease, smoking, and gender. These 4 factors are known to be risk factors for the development of ischemic stroke. Interestingly, however, they were not associated with 30-day readmission in patients with ischemic stroke. In some previous studies (4,11,32,39), abnormal lipid metabolism and heart-related diseases differed between two groups of patients, but the investigators did not analyze hyperlipidemia and coronary heart disease separately. In addition, although studies with large sample sizes performed by Crispo et al. and Lichtman et al. (12,18) suggested that gender might increase the likelihood of 30-day readmission in patients with ischemic stroke, our analysis did find a basis for this association (1.3 million participants in 13 articles), which was supported by a prospective study performed by Terman et al. (32). This may be due to the fact that, within 30 days of discharge, patients have good medication compliance, their disease is effectively controlled, and acute conditions due to hyperlipidemia and coronary artery disease are relatively rare. For smoking and gender, a period of 30 days may be too short to reflect the impact these factors on readmission, and perhaps a longer period would have shown a difference. It is also possible that the included studies had some limitations in data analysis. For instance, gender was not analyzed in subgroups based on age or disease condition, and no accurate or specific data on smoking were collected.

Regretfully, we failed to analyze the impact of 5 possible risk factors on 30-day readmission in patients with ischemic stroke, including discharge disposition (home, rehabilitation facility, nursing home, home nursing, and others), health care payment model (Medicare, NHS, Medicaid, private insurance, and others), treatment modality (thrombolysis and thrombectomy), and etiology (atherosclerosis, cardiogenic cerebral embolism, small vessel disease, other definite causes, and other unknown causes). Nevertheless, we were the first to perform a detailed and systematic subgroup analysis of these factors. In fact, we performed subgroup analyses for each of these factors, but the literature was insufficient due to heterogeneity. Only intravenous thrombolysis and post-discharge rehabilitation had valuable outcomes in that they were protective factors for 30-day readmission in patients with ischemic stroke. This may be because patients who complete intravenous thrombolysis are those who are sent to the hospital promptly after disease onset for treatment, where they receive excellent medical care and have good outcomes and significant recovery immediately after completion of thrombolysis, which may eliminate the impact of inadequate blood supply to the brain. Therefore, we suggest that active intravenous thrombolysis should be carried out for patients with ischemic stroke who arrive in hospital within the treatment time window according to the standard operating requirements to reduce the risk of 30-day readmission. Postdischarge rehabilitation can help patients effectively control various risk factors, receive more health care, and reduce the risk of 30-day readmission. According to Andrews et al. (40), compared with low- and medium-intensity therapy, highintensity therapy (physical therapy, occupational therapy, and speech therapy) can lower the 30-day readmission rate. However, patients who receive higher-intensity therapy may have more comorbidities and greater illness severity relative to those who receive lower-intensity therapy. We suggest that medical staff should strengthen health education, emphasize the importance of active rehabilitation when patients are discharged from hospital and in outpatient treatment, and provide personalized rehabilitation guidance according to each patient's condition.

Our research also has some limitations. First, some of the factors [e.g., alcohol consumption, marriage, infection, National Institutes of Health Stroke Scale (NIHSS) score, nasogastric tube feeding, and indwelling catheter] were not subjected to meta-analysis because of the limited amount of included literature (41), but they were still very common. Although they have been investigated in a few multicenter studies with large sample sizes, more studies are still needed. Second, some potential risk factors were not included because the number of prospective observational or interventional studies focusing on the same factor was too small for a meta-analysis or a descriptive analysis. Nevertheless, we took these studies into account as much as possible in the analysis. All the studies included in this analysis were case-control studies, so causality cannot be inferred. In addition, recall bias may exist. Third, most of the included articles were from the United States, which

might have had an impact on the study results due to the differences in cultural background, health care services, and research capacity. Some of the included articles did not strictly meet the inclusion or exclusion criteria, which might have also affected our conclusions. Fourth, some of the databases were not searched due to the limited resources of the research institutions. However, the databases used in our current analysis are large international databases that are commonly used in academic research. In particular, we searched Chinese databases, which ensures that the vast majority of the relevant literature was retrieved.

# Conclusions

The 30-day readmission rate remains high in ischemic stroke survivors, ranging from 1.41% to 27.64%. The results varied across countries and regions, with the highest reported 30-day readmission rate from China and the lowest from the United States. Special attention should be paid to patients with a history of stroke, diabetes, hypertension, atrial fibrillation, heart failure, and/or advanced age. Timely intravenous thrombolysis can alleviate the disease, and post-discharge rehabilitation should be encouraged. These interventions help to reduce 30-day readmissions and benefit more patients. In contrast, interventions based on hyperlipidemia, coronary heart disease, smoking status, or gender may not improve the current situation. Additional research is needed on the length of hospital stay, treatment modality, discharge disposition, health care payment model, and etiology to explore their impact on 30-day readmission in patients with ischemic stroke.

#### Acknowledgments

*Funding*: This work was supported by West China Nursing Discipline Development Special Fund Project, Sichuan University (grant No. HXHL19004). The funding bodies were not involved in any aspects of the study.

#### Footnote

*Reporting Checklist:* The authors have completed the PRISMA reporting checklist. Available at https://dx.doi. org/10.21037/apm-21-2884

*Conflicts of Interest:* All authors have completed the ICMJE uniform disclosure form (available at https://dx.doi.

org/10.21037/apm-21-2884). The authors have no conflicts of interest to declare.

*Ethical Statement:* The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

*Open Access Statement:* This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

# References

- GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019;18:439-58.
- Wen T, Liu B, Wan X, et al. Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China. BMC Neurol 2018;18:218.
- Bambhroliya AB, Donnelly JP, Thomas EJ, et al. Estimates and Temporal Trend for US Nationwide 30-Day Hospital Readmission Among Patients With Ischemic and Hemorrhagic Stroke. JAMA Netw Open 2018;1:e181190.
- Bjerkreim AT, Khanevski AN, Selvik HA, et al. The Impact of Ischaemic Stroke Subtype on 30-day Hospital Readmissions. Stroke Res Treat 2018;2018:7195369.
- Boehme AK, Kulick ER, Canning M, et al. Infections Increase the Risk of 30-Day Readmissions Among Stroke Survivors. Stroke 2018;49:2999-3005.
- Zuckerman RB, Sheingold SH, Epstein AM. The Hospital Readmissions Reduction Program. N Engl J Med 2016;375:494.
- Vahidy FS, Donnelly JP, McCullough LD, et al. Nationwide Estimates of 30-Day Readmission in Patients With Ischemic Stroke. Stroke 2017;48:1386-8.
- Rao A, Barrow E, Vuik S, et al. Systematic Review of Hospital Readmissions in Stroke Patients. Stroke Res Treat 2016;2016:9325368.
- 9. Zhong W, Geng N, Wang P, et al. Prevalence, causes and

# Deng et al. Meta-analysis of risk factors for readmission of stroke

risk factors of hospital readmissions after acute stroke and transient ischemic attack: a systematic review and metaanalysis. Neurol Sci 2016;37:1195-202.

- Lichtman JH, Leifheit-Limson EC, Jones SB, et al. Predictors of hospital readmission after stroke: a systematic review. Stroke 2010;41:2525-33.
- Wen TC, Liu BY, Zhang YN. Risk factors for unplanned readmission in ischemic stroke survivors within 31 days: a random forest algorithm research. Chinese Journal of Evidence-Based Medicine 2019;19:532-8.
- Crispo JAG, Thibault DP, Fortin Y, et al. Association between medication-related adverse events and nonelective readmission in acute ischemic stroke. BMC Neurol 2018;18:192.
- Fehnel CR, Lee Y, Wendell LC, et al. Post-Acute Care Data for Predicting Readmission After Ischemic Stroke: A Nationwide Cohort Analysis Using the Minimum Data Set. J Am Heart Assoc 2015;4:e002145.
- Hung LC, Sung SF, Hu YH. A Machine Learning Approach to Predicting Readmission or Mortality in Patients Hospitalized for Stroke or Transient Ischemic Attack. Applied Sciences-Basel 2020;10:6337.
- Yousufuddin M, Bartley AC, Alsawas M, et al. Impact of Multiple Chronic Conditions in Patients Hospitalized with Stroke and Transient Ischemic Attack. J Stroke Cerebrovasc Dis 2017;26:1239-48.
- Zhong WB. The risk evaluation of readmission of acute ischemic stroke and transient ischemic attack. Shangdong University, 2017.
- Qureshi AI, Baskett WI, Huang W, et al. Acute Ischemic Stroke and COVID-19: An Analysis of 27 676 Patients. Stroke 2021;52:905-12.
- Lichtman JH, Leifheit-Limson EC, Jones SB, et al. Preventable readmissions within 30 days of ischemic stroke among Medicare beneficiaries. Stroke 2013;44:3429-35.
- Nahab F, Takesaka J, Mailyan E, et al. Avoidable 30day readmissions among patients with stroke and other cerebrovascular disease. Neurohospitalist 2012;2:7-11.
- Lin HJ, Chang WL, Tseng MC. Readmission after stroke in a hospital-based registry: risk, etiologies, and risk factors. Neurology 2011;76:438-43.
- 21. Li HW, Yang MC, Chung KP. Predictors for readmission of acute ischemic stroke in Taiwan. J Formos Med Assoc 2011;110:627-33.
- 22. Bhattacharya P, Khanal D, Madhavan R, et al. Why do ischemic stroke and transient ischemic attack patients get readmitted? J Neurol Sci 2011;307:50-4.
- 23. Burke JF, Skolarus LE, Adelman EE, et al. Influence of

hospital-level practices on readmission after ischemic stroke. Neurology 2014;82:2196-204.

- 24. Lakshminarayan K, Schissel C, Anderson DC, et al. Fiveyear rehospitalization outcomes in a cohort of patients with acute ischemic stroke: Medicare linkage study. Stroke 2011;42:1556-62.
- 25. Thompson MP, Zhao X, Bekelis K, et al. Regional Variation in 30-Day Ischemic Stroke Outcomes for Medicare Beneficiaries Treated in Get With The Guidelines-Stroke Hospitals. Circ Cardiovasc Qual Outcomes 2017;10:e003604.
- 26. Allen A, Barron T, Mo A, et al. Impact of Neurological Follow-Up on Early Hospital Readmission Rates for Acute Ischemic Stroke. Neurohospitalist 2017;7:127-31.
- Suri MF, Qureshi AI. Readmission within 1 month of discharge among patients with acute ischemic stroke: results of the University HealthSystem Consortium Stroke Benchmarking study. J Vasc Interv Neurol 2013;6:47-51.
- Qiu X, Xue X, Xu R, et al. Predictors, causes and outcome of 30-day readmission among acute ischemic stroke. Neurol Res 2021;43:9-14.
- 29. Nouh AM, McCormick L, Modak J, et al. High Mortality among 30-Day Readmission after Stroke: Predictors and Etiologies of Readmission. Front Neurol 2017;8:632.
- Mittal MK, Rabinstein AA, Mandrekar J, et al. A population-based study for 30-d hospital readmissions after acute ischemic stroke. Int J Neurosci 2017;127:305-13.
- Elgendy IY, Omer MA, Kennedy KF, et al. 30-Day Readmissions After Endovascular Thrombectomy for Acute Ischemic Stroke. JACC Cardiovasc Interv 2018;11:2414-24.
- 32. Terman SW, Reeves MJ, Skolarus LE, et al. Association Between Early Outpatient Visits and Readmissions After Ischemic Stroke. Circ Cardiovasc Qual Outcomes 2018;11:e004024.
- Han KT, Kim SJ, Jang SI, et al. Positive correlation between care given by specialists and registered nurses and improved outcomes for stroke patients. J Neurol Sci 2015;353:137-42.
- Khanevski AN, Bjerkreim AT, Novotny V, et al. Thirtyday recurrence after ischemic stroke or TIA. Brain Behav 2018;8:e01108.
- 35. Kilkenny MF, Longworth M, Pollack M, et al. Factors associated with 28-day hospital readmission after stroke in Australia. Stroke 2013;44:2260-8.
- 36. Lee SA, Park EC, Shin J, et al. Patient and hospital factors associated with 30-day unplanned readmission in patients

with stroke. J Investig Med 2019;67:52-8.

- Hirayama A, Goto T, Faridi MK, et al. Age-related differences in the rate and diagnosis of 30-day readmission after hospitalization for acute ischemic stroke. Int J Stroke 2018;13:717-24.
- Shah SV, Corado C, Bergman D, et al. Impact of Poststroke Medical Complications on 30-Day Readmission Rate. J Stroke Cerebrovasc Dis 2015;24:1969-77.
- 39. Jin P, Matos Diaz I, Stein L, et al. Intermediate risk of

**Cite this article as:** Deng Z, Wu X, Hu L, Li M, Zhou M, Zhao L, Yang R. Risk factors for 30-day readmission in patients with ischemic stroke: a systematic review and meta-analysis. Ann Palliat Med 2021;10(10):11083-11105. doi: 10.21037/apm-21-2884

cardiac events and recurrent stroke after stroke admission in young adults. Int J Stroke 2018;13:576-84.

- Andrews AW, Li D, Freburger JK. Association of Rehabilitation Intensity for Stroke and Risk of Hospital Readmission. Phys Ther 2015;95:1660-7.
- Lekoubou A, Bishu KG, Ovbiagele B. Influence of a Comorbid Diagnosis of Seizure on 30-Day Readmission Rates Following Hospitalization for an Index Stroke. J Stroke Cerebrovasc Dis 2020;29:104479.