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Background: Idiopathic pulmonary fibrosis (IPF) is a lung disease involving chronic progressive 
fibrosis, with unclear pathogenesis. In recent years, people have paid increasing attention to the role of 
immune mechanism. In this study, bioinformatics analysis was used to determine the potential immune-
related biomarkers for the diagnosis of IPF, and further analyze the role of immune cell infiltration in the 
pathogenesis of IPF.
Methods: The IPF data set (GSE150910) was downloaded from the Gene Expression Omnibus (GEO) 
database. We used R software to screen differential immune-related genes (IRGs). Least absolute shrinkage 
and selection operator (LASSO) regression, random forest algorithm, and support vector machine 
(SVM) were used to screen and determine IPF IRGs to be diagnostic biomarkers. The GSE32537 and 
GSE10667 data sets were combined into 1 data set to verify the diagnostic efficacy of biomarkers. Cell-
type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) was used to evaluate 
the infiltration of immune cells in IPF tissues, and analyze the relationship between diagnostic markers 
and immune cell infiltration. Meanwhile, clinical specimens were used to verify the diagnostic efficacy of 
biomarkers and their relationship with immune cell infiltration.
Results: In this study, 408 participants were involved in the screening to find that PLXNA4 and SLIT2 
can be used as diagnostic biomarkers of IPF, and the results were verified by clinical samples. Immune cell 
infiltration analysis found that regulatory T cells (Tregs), memory B cells, plasma cells, and eosinophils 
might be involved in the process of IPF. In addition, Tregs were most closely related to PLXNA4 and 
SLIT2. In clinical samples, forkhead box p3 (FOXP3), a specific marker of Tregs, was positively correlated 
with PLXNA4 and negatively correlated with SLIT2, which is consistent with the results of bioinformatics 
analysis.
Conclusions: The genes PLXNA4 and SLIT2 can be used as diagnostic markers of IPF, and immune cell 
infiltration plays an important role in the occurrence and development of IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is an age-related, 
chronic, and progressive lung disease, and is the most 
common type of interstitial pneumonia, with an annual 
incidence of about 1.2–76.4/100,000, globally (1). The 
main pathological manifestations of IPF are fibroblast 
proliferation and extracellular matrix (ECM) deposition (2). 
Diagnostic criteria for IPF were intended to comply with 
the following two requirements. First, exclusion of other 
known causes of interstitial lung disease (ILD) (e.g., domestic 
and occupational environmental exposures, connective 
tissue disease, and drug toxicity). Second, the presence of 
a UIP pattern on high-resolution computed tomography 
(HRCT) in patients not subjected to surgical lung biopsy (3). 
The clinical manifestations are unexplained persistent and 
progressive dyspnea, and often accompanied by coughing and 
Velcro rales at the base of both lungs (4). At the early stage, 
IPF progresses slowly, and it will gradually cause diffuse 
fibrosis of the lungs, eventually leading to respiratory failure 
and death (5). Due to the lack of in-depth understanding 
of the pathogenesis of IPF and early intervention, IPF has 
become a serious life-threatening disease. Studies have 
reported that the median survival time of patients after the 
diagnosis of IPF is about 2.5–3.5 years (6). The mortality rate 
of IPF is even higher than that of many malignant tumors, 
such as colorectal cancer, bladder cancer, and nasopharyngeal 
cancer (7,8). At present, the diagnosis of IPF is usually based 
on clinical manifestations, imaging features, and lung biopsy. 
However, it is difficult to make an accurate early diagnosis 
with simple methods (9). Due to the lack of accurate 
diagnosis and effective treatment, IPF is progressive in most 
patients and is associated with a poor prognosis. Therefore, 
exploring new biomarkers for the diagnosis of IPF is very 
important to improve the prognosis of IPF patients.

The pathogenesis of IPF is very complicated, and not 
yet fully understood. The majority of studies believe that 
the abnormal repair of alveolar epithelial cells after injury 
is the main mechanism of IPF (10). Many environmental 
and genetic risk factors, such as smoking, inhaled suspended 
particles, viral infections, cell aging, and genetic mutations, 
all cause repeated damage and abnormal repair of alveolar 
epithelium (11). Studies have shown that the onset of 
IPF is related to the recruitment of fibroblasts in an 
injury site of the lung and the epithelial-mesenchymal 
transformation (EMT) of cells. After the transformation 
of epithelial cells into mesenchymal phenotype, they lose 
contact adhesion and tip-basal polarity, gain the ability to 

invade and migrate, and have the interstitial characteristics 
of producing ECM (12). ECM deposition results from 
increased synthesis as well as decreased degradation 
that due to decrease ECM removing activity of matrix 
metalloproteinases (MMPs) (13). In this EMT process, 
transforming growth factor-β1 (TGF-β1) is considered a 
key factor leading to the occurrence of IPF (14). Type II 
alveolar epithelial cell dysfunction can also increase the 
susceptibility to IPF (15). Currently, with new research 
methods such as proteomics and transcriptomics analysis, 
researchers have been able to partially reveal some genes 
and pathways related to the pathogenesis of IPF, including 
TGF-β pathway, Wnt pathway, autophagy-related pathway, 
and immune-related pathway (16,17). Recent studies have 
shown that immunology plays an important role in the 
occurrence and development of IPF (18). For example, 
Toll-like receptor 4 (TLR4) is involved in the regeneration 
and renewal of type II alveolar epithelial cells, affecting 
the repair of lung injury and the formation of fibrosis 
(19,20). Macrophage infiltration and high levels of reactive 
oxygen species (ROS) have been shown to be the key 
characteristics of lung fibrosis (21). Immune cells can affect 
the host’s defense function, regulate the stability of the local 
microenvironment and the production and degradation 
of ECM, thereby affecting the process of pulmonary  
fibrosis (22). Another study investigated the interaction 
between immune T cells and lung myofibroblasts. The 
result indicated that myofibroblasts possess Fas/FasL-
pathway-dependent characteristics that enable them to avoid 
immune surveillance and leading to pulmonary fibrosis (23). 
Cell-type Identification by Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT) is a biological information 
analysis tool that evaluates the proportion of immune cells 
based on RNA-seq and obtains different immune cell ratios 
from samples (24). It has been widely used to analyze the 
infiltration of immune cells in a variety of human immune-
related diseases, such as tumors, osteoarthritis, and lupus 
nephritis (25-27). Li et al. (28) also developed a hypoxia-
immune-related prediction model for the prognosis of IPF 
by using CIBERSORT. Different from previous studies, we 
analyzed the immune-related genes which can be utilized as 
diagnostic markers for IPF by machine learning. Moreover, 
we investigated the association between hub immune-
related genes and immune cell infiltration in IPF.

Firstly, we downloaded the IPF gene chip data set from 
the Gene Expression Omnibus (GEO) database, analyzed 
the differential genes, and further screened immune-related 
genes (IRGs) by using machine learning-based methods, 
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which might be used as biomarkers of IPF diagnosis. We 
used the GSE150910 cohort which is different from Li 
et al. Subsequently, we used CIBERSORT to analyze the 
differences in immune infiltration between IPF tissues and 
normal tissues in 22 immune cell subgroups. In addition, we 
also studied the relationship between IRGs and infiltrating 
immune cells, and conducted clinical verification to better 
understand the molecular immune mechanism in the 
development of IPF. We present the following article in 
accordance with the MDAR reporting checklist (available at 
https://dx.doi.org/10.21037/apm-21-2676).

Methods

Data collection in GEO database

The chip data of the IPF samples and the lung tissue 
samples of the control group were downloaded from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). All 
participants were diagnosed with IPF by pathological 
biopsy. The GEO patients with IPF included in this study 
all met the IPF diagnostic criteria stated by the consensus 
statement of the American Thoracic Association and 
the European Respiratory Association. The lung tissue 
samples of the normal control group were from patients 
without IPF, including paracancerous tissues of lung 
cancer patients and lung tissues of lung transplant patients. 
The included data sets were GSE150910 (n=206) (29), 
GSE10667 (n=38) (30), and GSE32537 (n=169) (31). The 
clinical characteristics of patients in the 3 independent 
data sets are summarized in Table 1. The gene set of IRGs 
came from the ImmPort database (https://immport.niaid.
nih.gov/home).

Screening of differentially expressed IRGs in IPF

The “DEseq2” program package in R software (version 
3.6.1, https://www.r-project.org/) was used to analyze the 
differential genes of the original data of GSE150910, and 

the unpaired Student’s t-test was used to calculate the P 
value. Differentially expressed genes (DEGs) were selected 
with |log2FC| >1 and corrected P value [false discovery rate 
(FDR)] <0.05 as the threshold. A volcano map was drawn 
of the expressed genes, the Venn diagram method was used 
to take the intersection of the obtained genes and the IRGs 
in the ImmPort database, and a heat map was drawn of the 
intersection genes.

Enrichment analysis of biological functions of IRGs

Kyoto encyclopedia of genes and genomes (KEGG) pathway 
enrichment analysis and Gene Ontology (GO) functional 
analysis were used to annotate differentially expressed IRGs 
from biological process (BP), molecular function (MF), and 
cellular components (CCs). Employing KEGG pathway 
enrichment analysis can provide high-level pathway functions 
and biological information through large-scale molecular data 
sets. The above analysis used the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) to analyze 
the biological function of the differential gene online, the 
threshold was set at the corrected P value (FDR value) <0.05, 
and the result was visualized using the “ggplot” program 
package in the R software.

Screening and verification of diagnostic markers

The diagnostic markers of IPF were screened using 
least absolute shrinkage and selection operator (LASSO) 
regression, random forest algorithm, and support vector 
machine-recursive feature elimination (SVM-RFE). Due to 
the large sample size of IPF and the same chip annotation 
platform in the GSE32537 and GSE10667 data sets, the 
two data sets were merged into an independent data set after 
batch correction using the “SVA” program package in the R 
software. The combined data set was used as a verification 
set to analyze the diagnostic efficacy of the biomarkers 
obtained from GSE150910. The LASSO regression 
algorithm was conducted with the “glmnet” package, the 

Table 1 Clinical information of IPF patients included in the GEO chip data

GSE No. Sample number Ages IPF patients (male/female) Sample type Chip platform Authors

GSE32537 IPF sample [119] + NL [50] 62.55±8.75 77/42 Lung tissue GPL622 Yang et al.

GSE110147 IPF sample [22] + NL [11] 62±6 17//5 Lung tissue GPL622 Cecchini et al.

GSE150910 IPF sample [103] + NL [103] 60.3±8.3 57/46 Lung tissue GPL24676 Furusawa et al.

IPF, idiopathic pulmonary fibrosis; GEO, Gene Expression Omnibus; NL, normal lung tissue.

https://dx.doi.org/10.21037/apm-21-2676
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random forest algorithm with the “randomForest” package, 
and the SVM-RFE with the “e1071” package. The same 
IRGs screened from the three algorithms were verified with 
the collected clinical samples and TGF-β-treated A549 cells 
and HBE cells.

Tissue and cell lines

A total of 18 patients with IPF admitted to the First Affiliated 
Hospital of Chengdu Medical College from January 2018 to 
December 2020 were recruited. All patients were diagnosed 
in accordance with the IPF diagnostic criteria of the 2018 
American Thoracic Association and European Respiratory 
Association consensus statement (32). A total of 18 IPF 
tissues were taken from patients via lung biopsy. Normal 
lung tissue (5 cm away from tumor tissue) from 21 patients 
with lung cancer resection was collected as the control group. 
All tissues were collected at the First Affiliated Hospital 
of Chengdu Medical College. This study was approved 
by the Ethics Committee of the First Affiliated Hospital 
of Chengdu Medical College (2020CYFYIRB-BA-101) in 
compliance with the Declaration of Helsinki (as revised in 
2013). Informed consent was taken from all the patients.

Human adenocarcinoma cell lines (A549) and human 
bronchial epithelial cells (HBE) were purchased from 
the Cell Bank of Type Culture Collection of Chinese 
Academy of Sciences (Shanghai, China). Cells were 
cultured in Roswell Park Memorial Institute-1640 (RPMI-
1640) medium containing 10% fetal bovine serum (FBS),  
100 U/mL penicillin and 100 mg/mL streptomycin 
(Gibco, Amarillo, TX, USA) at 37 ℃ with 5% CO2. The 
A549 cells or HBE cells were treated with recombinant 
human TGF-β1 (PeproTech, East Windsor, NJ, USA) at a 

concentration of 10 ng/mL for 48 h before further analysis.

Real-time quantitative polymerase chain reaction

Total RNA was extracted from lung tissues or A549 cells 
or HBE cells with TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA). The RNA concentration was measured using 
a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). Then, 1,000 ng of total 
RNA was reverse transcribed using PrimeScript RT kit 
(TaKaRa, Dalian, China), and then complementary DNA 
(cDNA) was amplified with SYBR PreMix Ex Taq (TaKaRa, 
Dalian, China). Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) was selected as the internal reference, and 
2-∆∆Ct values were used for relative quantitative analysis of 
expression. The primers used in this study were listed in 
Table 2.

Western blotting

After they had been treated for 48 h, cells were collected 
and washed with pre-cooled phosphate-buffered saline 
(PBS), and then cell lysis buffer was added to extract total 
protein. Total protein concentration was determined using 
protein quinolinic acid method [bicinchoninic (BCA) 
method]. Then, protein samples were loaded and run 
through 10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE), followed by transferring to 
polyvinylidene fluoride (PVDF) membrane. After blocking 
in 5% skim milk for 2 h, the membrane was incubated 
with primary antibody overnight at 4 ℃. The next day, the 
membrane was washed with tris-buffered saline with Tween 
20 (TBST) for 3 times, and incubated with secondary 
antibody at room temperature for 2 h. Images were 
obtained with the Bio-Rad imaging system after washing 
(Bio-Rad Laboratories, Hercules, CA, USA). The signal 
was normalized using Image J software, and each group of 
experiments was repeated 3 times. In this experiment, the 
following antibodies were used: anti-PLXNA4 (1:1,000; 
Abcam, Shanghai, China), anti-SLIT2 (1:2,000; Abcam), 
and anti-GAPDH (1:5,000; Abcam).

Evaluation of immune cell infiltration

Samples with P<0.05 were screened after uploading the gene 
expression matrix data in GSE150910 to CIBERSORT, 
and the immune cell infiltration matrix was obtained. We 
used the “ggplot2” program package to draw violin plots of 

Table 2 Specific primer sequences used in the study

Gene Primer sequences (5'-3')

PLXNA4 F: TCTCAGTACAACGTGCTG

R: TAGCACTGGATCTGATTGC

SLIT2 F: TGCCCATCAATGCGTTCTCCTAC

R: TTCGTACAGCCGCACTTCACCACT

FOXP3 F: GTCGATGTCCATGAATACAACCT

R: CAAGGCTAATGACGGCAAAC

GAPDH F: CATCACCATCTTCCAGGAGCG

R: TGACCTTGCCCACAGCCTTG



11602 Li et al. Immune-related genes in IPF

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(11):11598-11614 | https://dx.doi.org/10.21037/apm-21-2676

immune cell infiltration in IPF tissue and normal lung tissue.

Correlation analysis between diagnostic markers and 
infiltrating immune cells

The “ggstatsplot” software package was used to perform 
Spearman correlation analysis on the selected diagnostic 
markers and infiltrating immune cells, and the results were 
visualized. Immune cells with the largest absolute value of 
the correlation coefficient were selected for experimental 

verification.

Statistical analysis

The software GraphPad 8.0 (https://www.graphpad.com/; 
GraphPad Software, San Diego, CA, USA) and MedCalc 2.0 
(https://www.medcalc.org/; MedCalc Software Ltd., Ostend, 
Belgium) were used for histogram, scatter plot, and diagnostic 
receiver operating characteristic (ROC) curve drawing. 
An area under the curve (AUC) ≥0.7 indicated that there 
was a moderate degree of diagnostic power. The statistical 
difference between the two groups was analyzed by 2-tailed, 
unpaired t-test. Spearman correlation was used to analyze the 
correlation between genes and infiltrating immune cells.

Results

Data processing and screening of differential genes

A total of 1,692 differential genes were selected from the 
gene expression matrix of the GSE150910 data set using R 
software, of which 566 were up-regulated genes and 1,126 
were down-regulated genes (Figure 1). After intersection 
with 1,811 immune gene sets, 171 candidates different IRGs 
were obtained, of which 74 were down-regulated genes and 
97 were up-regulated (Figure 2A,2B).

Functional enrichment

The GO analysis results showed that DEGs were mainly 

Figure 1 Volcano map of differential genes. Upregulated 
genes with significant difference are in red, genes that were not 
significantly different are in black, and significant downregulated 
genes are in green.
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related to BPs such as positive regulation of secretion, 
leukocyte migration, second-messenger-mediated signaling, 
and involved in external side of plasma membrane, 
cytoplasmic vesicle lumen, and vesicle lumen, as well as 
other CCs and receptor ligand activity, cytokine activity, 
cytokine receptor binding, and other molecular roles. The 
KEGG pathway enrichment analysis results showed that 
171 differentially expressed IRGs were mainly enriched in 
cytokine-cytokine receptor interaction, neuroactive ligand-
receptor interaction, viral protein interaction with cytokine, 
and cytokine receptor and other pathways (Figure 3).

Screening and verification of diagnostic markers

A total of 31 genes were identified from the differential 
IRGs as diagnostic markers of IPF using the LASSO 
regression algorithm (Figure 4A). Among the differential 
IRGs, 26 were identified as diagnostic markers of IPF 
after performing the random forest algorithm (condition 
setting Mean Decrease Gini >1) (Figure 4B). The SVM-
RFE algorithm was used to identify 19 genes from 
differential IRGs as diagnostic markers of IPF (Figure 4C).  
We then took the intersection of the genes obtained by 
the 3 algorithms, and finally obtained 2 diagnostic markers 
(PLXNA4, SLIT2) (Figure 4D). In the GSE150910 data set, 
PLXNA4 was significantly high expressed in IPF tissues 
(P<0.05), and SLIT2 was significantly low expressed in IPF 
tissues (P<0.05) (Figure 4E,4F). We merged the GSE32537 
and GSE10667 into 1 data set as the validation set. Principal 
component analysis (PCA) showed that the samples were 
randomly distributed after batch correction (Figure 5A,5B). 
In the GSE150910 data set, when PLXNA4 and SLIT2 
were used for combined diagnosis, AUC =0.966 (95% CI: 
0.931 to 0.986) (Figure 6A). In the validation set, when 
PLXNA4 and SLIT2 were used for combined diagnosis, 
AUC =0.911 (95% CI: 0.857 to 0.949) (Figure 6B),  
indicating that PLXNA4 and SLIT2 have high diagnostic 
value. In order to further confirm the differential expression 
of PLXNA4 and SLIT2 in IPF, we performed real-time 
quantitative polymerase chain reaction (RT-qPCR) 
detection with clinical samples (18 cases of IPF and 21 
cases of control group). The detailed information about 
IPF patients is listed in Table S1. The results showed that 
the combined diagnosis of PLXNA4 and SLIT2 still had 
high potency, with AUC =0.899 (95% CI: 0.760 to 0.972) 
(Figure 6C). Besides, the difference of messenger RNA 
(mRNA) levels of PLXNA4 and SLIT2 in IPF tissues and 
normal lung tissues were consistent with the results of 

bioinformatics analysis (Figure 6D,6E, P<0.05). In addition, 
we also tested the expression of PLXNA4 and SLIT2 after 
the treatment of TGF-β1 in A549 cells and HBE cells. As 
shown in Figure 7A and Figure 7B, in A549 cells stimulated 
by TGF-β1, the mRNA level of PLXNA4 was significantly 
increased, and the mRNA level of SLIT2 was significantly 
decreased (P<0.05). We also used western blotting to 
analyze the expression of PLXNA4 and SLIT2 protein in 
A549 cells after TGF-β1 treatment. The results showed 
that PLXNA4 protein was upregulated and SLIT2 protein 
was downregulated (P<0.05). The difference was statistically 
significant, as shown in Figure 7C-7E. Similar results were 
also seen in HBE cells (Figure S1).

Immune cell infiltration 

The violin plot of the difference in infiltration of  
22 immune cells showed that compared with the normal 
control group, there were more infiltration in memory 
B cells, plasma cells, regulatory T cells (Tregs), follicular 
helper T cells, mast cells, M0 macrophages, and γT cells, 
while resting CD4 cells, resting natural killer (NK) cells, 
monocytes, and eosinophils were less infiltrated, as shown 
in Figure 8.

The correlation in PLXNA4, SLIT2, and infiltrating 
immune cells

Correlation analysis showed that SLIT2 was negatively 
correlated with Tregs, follicular helper T cells, γT cells, 
and memory B cells, which was positively correlated with 
resting NK cells, monocytes, and neutrophils (Figure 9A); 
However, PLXNA4 was positively correlated with Tregs, 
follicular helper T cells, and γT cells, while negatively 
correlated with neutrophils, monocytes, and resting NK 
cells (Figure 9B). It is worth noting that the absolute value 
of the correlation coefficient between PLXNA4 and Tregs 
and SLIT2 and Tregs was the highest. In order to further 
verify the correlation between PLXNA4, SLIT2, and Tregs, 
we used RT-qPCR to detect the expression of FOXP3 in 
clinical samples, which is the function-related molecule 
of Tregs (33). The results suggested that compared with 
normal tissues, mRNA level of FOXP3 in IPF tissues was 
significantly overexpressed (P<0.05, Figure 10A). The 
mRNA level of FOXP3 was positively correlated with the 
mRNA level of PLXNA4 (r=0.637, P=0.012), but negatively 
correlated with the mRNA level of SLIT2 (r=−0.582, 
P=0.003) (Figure 10B,10C).

https://cdn.amegroups.cn/static/public/APM-21-2676-Supplementary.pdf
https://cdn.amegroups.cn/static/public/APM-21-2676-Supplementary.pdf
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Figure 6 Diagnostic efficacy of PLXNA4 and SLIT2 and their validation in clinical samples. (A) Diagnostic efficacy of PLXNA4 combined 
with SLIT2 in GSE150910 data set; (B) diagnostic efficacy of PLXNA4 combined with SLIT2 in validation sets (GSE32537 and GSE10667); 
(C) diagnostic efficacy of PLXNA4 combined with SLIT2 in clinical samples; (D) mRNA level of PLXNA4 in IPF tissues and normal lung 
tissues; (E) mRNA level of SLIT2 in IPF tissues and normal lung tissues. mRNA, messenger RNA; IPF, idiopathic pulmonary fibrosis. 
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Discussion 

A serious life-threatening chronic disease, IPF is characterized 

by abnormal lung remodeling and ECM deposition. The 

pathogenesis of IPF is still unclear, and effective treatment 
methods have not been well developed (34). Therefore, it 
is very important to study the molecular mechanism of 
biomarkers for the onset and development of IPF, as well 
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Figure 7 Expression of PLXNA4 and SLIT2 in A549 cells treated with TGF-β1. (A,B) mRNA levels of PLXNA4 (A) and SLIT2 (B) in A549 
cells were detected by RT-qPCR; (C-E) Western blotting analysis of the effects of TGF-β1 on PLXNA4 and SLIT2 in A549 cells, *, P<0.05. 
TGF-β1, transforming growth factor-β1; mRNA, messenger RNA; RT-qPCR, real-time quantitative polymerase chain reaction.
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as to find the therapeutic target of IPF. Due to the lack 
of early diagnostic indicators for IPF, patients often miss 
their best opportunity for treatment, leading to progressive 
disease progression. Studies believe that immune cell 
infiltration can clear aging alveolar epithelial cells and play 
an important role in the occurrence and development of 
IPF (35). Therefore, it is of since for the improvement 

of prognosis to find specific immune-related markers 
and analyze the types of immune cells infiltrated by IPF. 
With the rapid development of science and technology, 
bioinformatics, as an emerging interdisciplinary subject, 
is widely used in the study of the pathogenesis of diseases. 
It can identify genes that play important roles in the 
development of diseases and discover new therapeutic 
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Figure 8 Evaluation and visualization of immune cell infiltration. IPF, idiopathic pulmonary fibrosis.
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targets for disease treatment. It also provides a powerful 
strategy for screening molecular markers (36). In this 
study, we attempted to use bioinformatics methods to 
determine the diagnostic markers of IPF, and further used 
the CIBERSORT tool to explore the role of immune cell 
infiltration in IPF.

The IPF expression profile data set were downloaded 
from the GEO database and we screened a total of 171 
differentially expressed IRGs. The GO enrichment analysis 
showed that these genes were related to BPs including 
positive regulation of secretion, leukocyte migration, second-
messenger-mediated signaling, and related to CCs such 
as external side of plasma membrane, cytoplasmic vesicle 
lumen, vesicle lumen, and effects of receptor ligand activity, 
cytokine activity, and cytokine receptor binding. The KEGG 
pathway enrichment analysis suggested that 171 differentially 
expressed IRGs were mainly enriched in cytokine-cytokine 
receptor interaction, neuroactive ligand-receptor interaction, 
viral protein interaction with cytokine and cytokine receptor, 
and interleukin-17 (IL-17) signaling pathway. The above 
results suggest that immune response plays an important role 
in the occurrence of IPF. Yang et al. (37) showed that when 
macrophages were exposed to the outer membrane vesicles 
of gram-negative bacteria, they could drive the release of IL-
17B through TLR2/4, and then induce alveolar epithelial 

cells to secrete chemokines and growth factors, leading to the 
occurrence of pulmonary fibrosis. This report is consistent 
with the IL-17 pathway predicted in the KEGG enrichment 
pathway in this study. Wang et al. also suggested that  
IL-17 could induce EMT in A549 cells via Smad2/3 
activation mediated by TGF-β1 (38). Wynn et al. (39) 
also reported that the development of pulmonary fibrosis 
was closely related to helper T lymphocytes, involving 
multiple cytokines produced by helper T lymphocytes and 
macrophages, such as IL-4 and IL-13. Results of the above 
research and this study suggest that immune response plays 
an important role in the occurrence and development of IPF. 
Susceptible/aging lung tissues are repeatedly damaged and 
repaired, leading to the abnormality of alveolar epithelial 
cells, which is currently the recognized pathogenesis of 
IPF. Most experimental evidence supports that the immune 
system is involved in damage repair and collagen deposition 
of IPF. At the frontier of immunity, they sense and respond 
to dangerous stimuli, ultimately modulating the lung’s 
response at the level of immune cells, and play a vital role in 
lung homeostasis, inflammation, and fibrosis mechanisms. 
Therefore, we chose TGF-β1 to stimulate A549 cells and 
HBE cells to verify the results of bioinformatics analysis.

The SVM-RFE is a machine learning method based on 
support vector machine, which filters the best variables by 
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Figure 9 Correlation between PLXNA4 and SLIT2 and infiltrating immune cells. (A) Correlation between SLIT2 and infiltrating immune 
cells; (B) correlation between PLXNA4 and infiltrating immune cells. The size of the dots indicates the strength of the association between 
genes and immune cells; the bigger the dots, the stronger the correlation. The color of the dot represents the P value, and the redder the 
color, the smaller the P value.
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Figure 10 Verification of the relationship between PLXNA4, SLIT2, and Tregs in clinical samples. (A) The mRNA level of FOXP3 in 
normal lung tissues and IPF tissues; (B) the relationship between FOXP3 and PLXNA4 mRNA levels in IPF tissues; (C) the relationship 
between FOXP3 and SLIT2 mRNA levels in IPF tissues. IPF, idiopathic pulmonary fibrosis.
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subtracting the feature vector generated by SVM (40). The 
LASSO regression is also a machine learning method, which 
determines variables by finding λ value when the classification 
error is the smallest (41). The random forest algorithm is an 
ensemble learning algorithm based on decision trees, which 
is mainly used to deal with classification and regression 
problems. The random forest algorithm can use the 
Bootstrap resampling technology to randomly select multiple 
samples with the same number of the original data sample 
set to form a sample subset, and each sample subset was 
used to build a decision tree, and then merge the prediction 
results of multiple decision trees to get the best variables (42).  
In this study, the mean decrease gini of node impurity was 
used as an index to measure the importance of a variable. 
The higher the value, the greater the impact of the variable 
on classification. By combining the above three learning 
methods, PLXNA4 and SLIT2 were identified as diagnostic 
markers of IPF. In the GEO data set and the clinical samples, 
PLXNA4 was high expressed in IPF tissues, and SLIT2 was 
low expressed in IPF tissues. In the GSE150910 data set and 
validation set, PLXNA4 combined with SLIT2 showed a high 
diagnostic efficiency in diagnosing IPF, with AUC values 
>0.7, and this phenomenon had been verified in clinical 
samples. These results suggest that PLXNA4 and SLIT2 may 
play a role in the occurrence and development of IPF and can 
be used as diagnostic markers of IPF.

The PLXNA4 gene encodes the Plexin-A4 protein, a 
member of the neuroreceptors, which is the receptor of 
secreted semaphorin 3 (Sema3A) and semaphore 6 (Sema6A) 
and mediates the effects of a variety of semaphores (43). It 
does not have intrinsic kinase activity, but it can trigger the 
activity of Plexins-related receptor and non-receptor tyrosine 
kinases through receptor-ligand binding. After Plexin-A4 is 
activated by Sema3A, it can exert certain biological functions, 

such as regulating cytoskeleton movement, cell adhesion, 
migration, and integrin functions, which are closely related 
to pulmonary fibrosis (44). Wen et al. believed that Plexin-A4 
was necessary for the activation of GTPase Rac1 induced 
by TLRs. Semaphorin 3A, as the ligand of Plexin-A4, could 
exacerbate the cytokine storm caused by TLR agonists 
and bacterial sepsis (45). The TLRs are transmembrane 
recognition receptors widely involved in human immune 
response and the first line of defense for human innate 
immunity (46). Studies have shown that TLR4 can mediate 
the remodeling of lung tissue after injury, recognize specific 
cytokines, promote the proliferation of fibroblasts, and 
produce a large amount of ECM (47). Given that Plexin-A4 
participates in the body’s immune inflammatory response 
through interacting with TLRs, we speculate that PLXNA4 
may be involved in the immune mechanism of IPF. In this 
study, the expression of Plexin-A4 in A549 cells and HBE 
cells treated with TGF-β1 was also significantly increased, 
verifying that PLXNA4 participates in the process of 
pulmonary fibrosis mediated by TGF-β1, but the mechanism 
still needs in-depth studies. The SLIT2 gene belongs to 
SLIT family and is mainly expressed in the kidney. As a 
secreted ECM protein, the receptor of SLIT2 is Robo 
immunoglobulin (48). Studies have shown that the SLIT2/
ROBO1 signaling pathway is involved in the angiogenesis of 
glomerular endothelial cells in the early stage of diabetes, 
which is also involved in the kidney inflammation and fibrosis 
induced by TGF-β1. The SLIT2 gene is low expressed in 
renal fibrotic tissues, and the EMT process of renal tubular 
epithelial cells can be inhibited by the overexpression of 
SLIT2 (49). Due to the similarity of pathogenesis of renal 
fibrosis and lung fibers, the significant decrease of SLIT2 
expression in A549 cells and HBE cells suggested that SLIT2 
may inhibit the formation of pulmonary fibrosis. Huang  
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et al. (50) also believed that the expression of SLIT2 in 
human fibrotic lung tissue was lower than that in non-fibrotic 
lung tissue. The negative regulation of SLIT2 on TGF-β1-
induced pulmonary fibrosis may be related to the regulation 
of miR-424. Previous research has shown that PLXNA4 and 
SLIT2 were involved in the occurrence and development 
of IPF, suggesting that PLXNA4 and SLIT2 can be used as 
diagnostic markers of IPF, which has also been verified in this 
study with a small sample size. However, it is still necessary 
to expand the sample size to verify the diagnostic value of 
PLXNA4 and SLIT2.

In order to further explore the role of immune cell 
infiltration in IPF, CIBERSORT was used to comprehensively 
evaluate IPF immune infiltration. We found that memory B 
cells, plasma cells, follicular helper T cells, Tregs, gamma-
delta T cells, M0 macrophages, mast cells, and neutrophils 
infiltrated more, while CD4 memory T cells, NK cells, 
monocytes, and eosinophils infiltrated less. Plasma cells, 
also called effector B cells, are derived from B cells and 
participate in humoral immunity. It has been reported that 
B-cell activating factor and CD20+ B cells are abnormal in 
IPF lung tissues (51,52). Follicular helper T cells have been 
identified as a new type of helper T cells. Studies have found 
that follicular helper T cells have obvious proliferation 
and pathological activation in the peripheral blood of IPF 
patients (53). Studies have shown that Tregs can promote 
the release of TGF-β1 and the deposition of collagen 
during lung injury (54). In the peripheral blood of IPF 
patients, the number of Tregs is significantly increased, and 
the ratio of Tregs/Th17 is in an imbalanced state. Gruber 
et al. (55) performed flow cytometry on the bronchoalveolar 
lavage fluid (BALF) of IPF patients and found that there was 
no significant difference in gamma-delta T cells between IPF 
patients and the control group. This phenomenon is different 
from the results of this study, which might be due to the 
difference in samples and detection techniques, and needs to 
be further verified. Mast cells also play an important role in 
the development of pulmonary fibrosis. When histamine H1 
and angiotensin II from mast cells bind to the corresponding 
receptors on the surface of fibroblasts, the proliferation of 
fibroblasts, the secretion of TGF-β1, and the synthesis of 
collagen are promoted, thereby promoting the occurrence 
of fibrosis (56). There is no research on the role of M0 
macrophages, monocytes, and resting NK cells in IPF.

Through analyzing the correlation between PLXNA4 
and SLIT2 and immune cells, we found that the absolute 
value of the correlation coefficient between Tregs, 
PLXNA4, and SLIT2 was the largest, Tregs were positively 

correlated with PLXNA4, and negatively correlated 
with SLIT2. We then verified the results of biosynthesis 
by detecting Tregs-specific marker (FOX3P) in clinical 
samples, and results suggested that Tregs participated in 
the immune regulation of IPF and played an important 
role in maintaining the body’s self-tolerance and immune 
homeostasis. The study found that the number and 
proportion of Tregs in the peripheral blood of IPF patients 
increased, as well as the proportion of TGF-β1-expressed 
Tregs (57). Birjandi et al. (58) found that after pulmonary 
fibrosis induced by bleomycin in mice, the number of 
Tregs in the lung tissue increased. Bleomycin may cause 
changes in the phenotype and function of Tregs, leading to 
the destruction of immune homeostasis in the lungs, and 
promote the formation of pulmonary fibrosis. However, 
the role of Tregs in the process of pulmonary fibrosis is 
still controversial. Studies have shown that the number of 
Tregs in the peripheral blood and BALF of IPF patients is 
reduced and the inhibitory ability of Tregs to Th cells is 
impaired (59). The difference to this study may be because 
the samples included in this study were mainly IPF lung 
tissue specimens and were detected by PCR, and the sample 
size was small. In addition, the mechanism of Tregs in 
pulmonary fibrosis is complex, which is related to the stage 
of pulmonary fibrosis, the immune microenvironment in 
the lung, and the interaction with other T cell subsets (60). 
Therefore, further studies are needed to verify the results of 
this study and clarify the complex interaction between genes 
and immune cells.

There are also some limitations of this study. The 
CIBERSORT analysis was based on limited gene expression 
profile data, and these data do not include the interaction of 
immune cells and the plasticity of immune cell phenotypes, 
which may have led to certain biases in the results. Besides, 
this study was predominantly a second mining and analysis 
of the data set based on previously published data. Although 
clinical samples and experimental verification were also 
carried out, the included sample size was relatively small. 
Furthermore, only lung tissues were involved, and the 
sample size still needs to be expanded. Meanwhile, the 
detection of serum and BALF of patients with IPF should 
be multi-dimensionally verified.

Conclusions

In summary, PLXNA4 and SLIT2 were shown to be 
diagnostic markers of IPF. We also found that memory B 
cells, plasma cells, follicular helper T cells, Tregs, gamma-
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delta T cells, M0 macrophages, and resting mast cells may 
be involved in the occurrence and development of IPF. In 
addition, Tregs are positively correlated with PLXNA4, 
and negatively correlated with SLIT2. Tregs may play 
an important role in the occurrence and development 
of IPF. Further research on Tregs may determine new 
targets for IPF immunotherapy and help improve the 
immunomodulatory treatment effect of IPF patients. 
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Table S1 Clinical features of patients and control people

ID number Type Age(years) Gender

1 IPF 72 Female

2 IPF 74 Male

3 IPF 57 Female

4 IPF 54 Male

5 IPF 77 Female

6 IPF 64 Male

7 IPF 59 Female

8 IPF 66 Female

9 IPF 59 Female

10 IPF 42 Male

11 IPF 46 Male

12 IPF 58 Female

13 IPF 66 Female

14 IPF 41 Male

15 IPF 59 Female

16 IPF 73 Female

17 IPF 52 Male

18 IPF 57 Female

19 Control 37 Male

20 Control 52 Male

21 Control 58 Female

22 Control 49 Male

23 Control 45 Male

24 Control 57 Female

25 Control 39 Male

26 Control 59 Male

27 Control 45 Female

28 Control 47 Female

29 Control 68 Female

30 Control 72 Male

31 Control 55 Male

32 Control 68 Female

33 Control 67 Female

34 Control 54 Male

35 Control 47 Male

36 Control 64 Female

37 Control 59 Male

38 Control 49 Female

39 Control 67 Male

IPF, Idiopathic pulmonary fibrosis.
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Figure S1 Expression of PLXNA4 and SLIT2 in human bronchial epithelial cells treated with TGF-β1. (A-B) mRNA levels of PLXNA4 (A) 
and SLIT2 (B) in human bronchial epithelial cells were detected by RT-qPCR; (C-E) Western blotting analysis of the effects of TGF-β1 on 
PLXNA4 and SLIT2 in human bronchial epithelial cells, *, P<0.05. TGF-β1, transforming growth factor-β1; mRNA, messenger RNA; RT-
qPCR, real-time quantitative polymerase chain reaction.


