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Introduction

In addition to being the most common and frequently 
occurring disease in clinical settings, the incidence of 
vertigo disease is increasing every year. Patients who 
complain of vertigo account for about 5% of the patients of 

the Internal Medicine Department, and 15% of the patients 
of the Otolaryngology Department. The disease is more 
common in the elderly (1,2). At present, research on vertigo 
disease is limited, and vertigo is the only major symptom of 
the disease. The main causes of vertigo disease are organic 
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and functional lesions (3).
Due to rapid advances, imaging technology now plays 

a crucial role in the diagnosis of vertigo disease. The 
occurrence of cardiovascular and cerebrovascular diseases for 
which vertigo is the chief complaint can now be effectively 
prevented by the quantitative analysis of medical images (4).  
In the early diagnosis of disease, image segmentation 
technology can help doctors to distinguish between normal 
and pathological tissue more precisely, and make full use of 
detailed information about lesion areas for the diagnosis and 
treatment of diseases (5). Traditional image segmentation 
algorithms are composed of segmentations, such as edge-
based segmentation and area segmentation. However, as 
traditional image segmentation algorithms can only use 
information on the gray scale of an image to segment the 
target area and lack spatial information, such algorithms are 
more sensitive to noise in images (6,7). With the emergence 
and growth of deep learning (DL), new segmentation 
technology has achieved excellent results in terms of 
computer-vision tasks.

In recent years, many studies have confirmed that the 
neutrophil to lymphocyte ratio (NLR) is closely correlated 
to the prognosis of patients with atherosclerosis, malignant 
tumors, and severe pancreatitis (8). To explore the 
application effects of DL technology in the segmentation 
and processing of magnetic resonance imaging (MRI) 
of the brains of patients, and the efficiency of the NLR 
and other routine blood indexes in the diagnosis of 
vertiginous cerebral infarction (VCI), DL technology 
for the segmentation of MRI of patients’ brains was first 
constructed. The effects of the NLR and other indexes in 
the diagnosis of VCI were compared and analyzed based on 
the gold standard for VCI patients (i.e., diagnosis results). 
This research sought to raise the diagnostic efficiency of 
VCI in clinical practice. We present the following article in 
accordance with the STARD reporting checklist (available 

at https://dx.doi.org/10.21037/apm-21-1786).

Methods

Convolutional neural network (CNN)

The CNN is a category of DL methods, which has been 
applied in image segmentation and early phase processing. 
Its basic structure mainly comprises an input layer, hidden 
layer, and output layer. The hidden layer usually consists of 
convolutional, pooling and fully connected layers (9) (see 
Figure 1).

Convolutional layer
A convolution is a mathematical operator used to generate 
a 3rd function by virtue of 2 functions. Provided that f (x) 
and g (x) are integrable functions and the convolutional 
operation is defined as *, the function h (x) is calculated as 
follows:

( ) ( )( ) ( ) ( )*h x f g x f t g x t dt
∞

−∞

= = −∫ 	 [1]

In Eq. [1], the h (x) function is also an integrable 
function.

The convolution kernel in a CNN is composed of a 
weight matrix. The convolution operation is the process by 
which the feature graphs pass through the moving filters 
of the convolution kernel. When the filter skims over the 
relevant position in an image, the multiplying and summing 
process is deemed as the discretization of the above 
integrations, and the mathematical equation is expressed as 
follows:

( ) ( ) ( ), , ,
a b

u a v b
g x y u v f x u y vλ ω β

=− =−

  = + + +  
  
∑ ∑ 	 [2]

where f (x, y) represents the gray scale value of the pixels at 
(x, y) location in images, ω (u, v) represents the weighted 
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Figure 1 Basic structure of a CNN. CNN, convolutional neural network.
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value at the (u, v) location of the weight matrix, both a and 
b are positive integers, (·) is a product sum of the weight 
matrix and its image pixels around, β represents the bias, 
and λ represents the activation function.

Pooling layer
The pooling layer (also referred to as the sampling layer) 
is usually used alternately with the convolutional layer. It is 
mainly applied in the dimensional reduction of the output 
feature graphs in the preceding convolution layer to cut 
down the size of the feature graphs. The pooling operation 
can be considered a special operation of the moving filter. 
Common pooling operations serve as mean-pooling and 
max-pooling methods (10). The mean-pooling operation 
returns to the range of the moving window, which is 
referred to as the mean value. The max-pooling operation 
returns to the range of the moving window, which is 
referred to as the maximum value. The latter ensures no 
change to the features in the feature graphs; thus, it is 
generally used in CNN. The moving window in the pooling 
layer usually has a size of 2×2 and a step length of 2.

Fully connected layer
When a CNN model is applied in image classification, 
the fully connected layer is usually located at the end of 
the model to connect the output layer of the model (see 
Figure 1). The fully connected layer is mainly applied in 
the classification and processing of data and images. The 
mathematical equation is expressed as follows:

1

n

i i
i

y f xω θ
=

 = − 
 
∑

 
	 [3]

where xi represents the input value of i nerve cells, ωi 
indicates the connection value of i nerve cells and current 
nerve cells, and θ is the threshold of the current nerve.

The output layer in the CNN model is generally 
composed of “N” nerve cells with an identical number of 
categories that are to be classified. When the nerve cells 
in the output layer of the model deliver the results, it is 
required to obtain a 1-dimensional (1D) vector with a 
length of N through the Softmax function. The 1D vector 
represents the probability that the input image belongs to a 
certain category.

Activation function
The activation function is a critical step in the network 
model, and can directly determine the state of nerve cells 
in the model. The activation function can be classified into 

functions such as the Sigmoid, Tanh, and Rectified Linear 
Unit (ReLU) functions (11). The Sigmoid function is able 
to map the images to the (0, 1) range. The mathematical 
equation for the activation function is expressed as follows:

( ) ( )1/ 1 xSigmoid x e−= + 	  [4]

In the back propagation algorithm, when the derivation 
of the activation function is required, the derivative of the 
Sigmoid activation function with respect to “x” can be 
represented by the function itself, which is as follows:

( ) ( ) ( )( )' 1 'Sigmoid x Sigmoid x Sigmoid x= − 	 [5]

The Sigmoid function is an increasing activation function 
with a simple derivation process. Thus, it is frequently 
used in the loss function in the neural network model. 
The Sigmoid function in reverse propagation is prone to 
small gradient, but it is not applicable to the training of a 
deep network. The Tanh function is similar to the Sigmoid 
function. The mathematical equation for the Tanh function 
is expressed as follows:

( )
x x

x x

e eTanh x
e e

−

−

−
=

+  
	 [6]

The Tanh function can also map the input image to the 
(0, 1) range to obtain the mean value with the output of 0. In 
actual application, the training effect of the Tanh activation 
function is superior to that of the Sigmoid function; 
however, the Tanh activation function also carries the risk of 
the gradient vanishing. Thus, the ReLU activation function 
used in the AlexNet model can address the weakness of the 
Sigmoid and Tanh functions. The mathematical equation for 
the ReLU is expressed as follows:

( ) ( )max ,0ReLU x x=  	 [7]

U-type full convolutional network (FCN)

The FCN has higher segmentation accuracy than the CNN 
model; however, it has a more complicated training process, 
and is less precise in the segmentation of details in images (12). 
The U-type convolutional network (U-Net) was improved 
based on the FCN model and is mainly made up of 2 U-shape 
structures (see Figure 2).

The contraction path is located on the left side. First, 
two successive convolutional layers are used. Next, the max-
pooling layer with a step length of 2 is used to down sample 
the feature graphs (the operation is repeatedly performed 
4 times). The expansion path is located on the right side. 
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First, the results output from the contraction path undergo 
the down-sampling operation. Next, the size of the feature 
graphs is returned to the original size using two successive 
convolutional layers (the operation is repeatedly performed 
4 times). The jump connection is also used in the network. 
This operation can transmit the feature graphs from 
the shallow layer to the high layer efficiently to obtain 
information about the features with different dimensions. 
The ReLU function serves as the activation function in the 
model.

Experimental materials

Research subjects
A total of 115 VCI patients (83 male and 32 female), admitted 
to the Department of Neurology at Huizhou Central People’s 
Hospital from January 2016 to December 2020, were 
chosen as the research subjects. All of the patients reported 
experiencing different degrees of dizziness. The ages of the 
patients ranged from 31 to 88 years old, and the patients 
had an average age of 63.28±10.16 years old. All procedures 
performed in this study involving human participants were 
in accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by ethics board of Huizhou 
Central People’s Hospital (No. kyll2021223) and informed 
consent was taken from all the patients.

Inclusion and exclusion standard
To be eligible to participate in the study, patients had to 

meet the following inclusion standard: (I) have vertigo 
symptoms, including dizziness, blurred vision, nausea, 
nystagmus, tinnitus, deafness, and ataxia; and (II) have 
undergone MRI diagnoses and have complete clinical data. 
Participants were excluded from the study if they met any 
of the following exclusion criteria: (I) had vertigo disease 
arising from Meniere disease, labyrinthitis, or trauma; (II) 
had suffered from a severely infectious disease, tumor, or 
severe liver or renal disease; (III) had received incomplete 
clinical treatment; and/or (IV) had been diagnosed with 
encephalorrhagia via MRI.

Experimental method

MRI examination
All the patients underwent MRI (or Diffusion-Weighted 
Imaging, DWI) examinations. The Signa Exlicte3.0T MRI 
machine of GE was used to collect images of the patients’ 
brains. The MRI acquisition covered T1- fluid attenuated 
inversion recovery (FLAIR), T2-fast spin echo (FSE), and T2-
FLAIR sequences for set scanning parameters (see Table 1).  
In addition, the parameters of the intracranial scan for the 
anterior and posterior circulation of the patient included the 
layer thickness (1.0 mm), flip angle (20°), visual field (18 cm), 
and matrix (512×256).

MRI segmentation based on the MS (U-Net) model
The U-Net model could not precisely segment the MRI 
of the brain. Thus, we introduced the inception model 

Conv 3×3, ReLU (pre-trained) 

Max pool, 2×2

Conv transpose 3×3, ReLU 

Copy and concatenate

Conv 3×3, ReLU

3×64 64×128 128×256×256 256×512×512 512×512×512 256×512×512 256×512×512 128×256×256 64×128×128 32×64×1512×512

Figure 2 Basic structure of the U-Net model. Conv, convolutional layer; ReLU, rectified linear unit.
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based on the U-Net model and constructed a multiscale 
U-Net [MS (U-Net)] model. The MS (U-Net) model had 
a convolutional layer for which the convolution kernel 
sizes of 1×1 and 5×5 were based on the U-Net model. The 
complete structure of the MS (U-Net) model is shown in 
Figure 3.

The convolution kernel sizes of 1×1, 3×3, and 5×5 were 
entered into the Block 1 module of the MS (U-Net) model 
for image convolutional processing to obtain three kinds of 
feature graphs with different sizes and the same contents; 
three kinds of feature graphs were combined in the fusion 
layer. The size of the feature graphs was dwindled using the 
pooling layer, and delivered to the next module (the step 
was repeatedly performed 4 times). The deconvolution of 
the input feature graphs was performed, and the processed 

results and the output results of the Block 1 module (Block 1  
and Block 2 were connected) were integrated. The 
convolution layer was used to perform the convolution 
operation for fusion results, and transmit them to the next 
module (the step was repeatedly performed 4 times). Finally, 
4 convolutional layers with the convolution kernels size of 
1×1 were used to process the last Block 2 module, and the 
segmentation graphs were classified using the Softmax.

1,800 brain MR images with a size of 256×256 were 
used to train the model. MRI of the brain were segmented 
into gray matter (GM), white matter (WM), cerebrospinal 
fluid (CSF), and background (BG) using the model. Cross-
entropy was employed as the loss function, the training 
optimization process served as the Adam function, and 
the initial learning rate was set as 0.0001 in the models 

Table 1 MRI scanning parameters

Sequence Position TR (ms) TE (ms) TI (ms)

T1-FLAIR Sagittal view 1,750 8.9 920

Axial view 3,196 7.9 960

T2-FLAIR Axial view 10,002 115 2,300

T2-FSE Axial view 5,100 118 –

MRI, magnetic resonance imaging; FLAIR, fluid attenuated inversion recovery; FSE, fast-spin echo; TR, repetition time; TE, echo time; TI, 
inversion time.

Block1 Block2
Fusion

FusionFusionFusion

Fusion

Pooling
Fusion

Fusion

Fusion

Fusion

DeConv

Conv: 5×5

Conv: 5×5

Conv: 3×3

Conv: 3×3

Conv: 5×5

Conv: 1×1

Block1 Block2

Block1 Block2

Block1 Block2

Figure 3 Basic structure of the MS (U-Net) model. Conv, convolutional layer; MS (U-Net), multiscale U-Net.
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constructed in this study.

Data collection
In accordance with the patient record system and related 
examinations at the hospital, general information about each 
patient (i.e., age, gender and past medical history, including 
details of hypertension, diabetes, coronary heart disease, 
smoking and alcohol abuse) was collected. The patient 
started fasting on the 2nd day after admission to the hospital. 
After 8–12 hours, 5 mL of venous blood was collected from 
each patient in the supine position. The blood cells and 
blood biochemical indexes were tested with an automatic 
biochemical analyzer. The neutrophil, lymphocyte, high-
density lipoprotein (HDL), and low-density lipoprotein 
(LDL) were detected to calculate the NLR.

Statistical analysis
 

The SPSS22.0 software package was used in the statistical 
analysis. The measurement data that conformed to the 
normal distribution are presented as the mean value ± 
standard deviation, while the measurement data that did 
not conform to the normal distribution are presented 
as the median and quartiles. The enumeration data are 
presented as the number of cases and percentage [n (%)]. 
The measurement data were verified by independent 
sample t and sum of ranks tests, while the enumeration data 
were verified by chi-square and sum of ranks tests. The 
MRI diagnosis served as the gold standard. The receiver 
operating characteristic (ROC) curve was drawn to analyze 
the diagnosis effect. A P<0.05 indicated a statistically 
significant difference.

Results

Evaluation of MRI segmentation results for images of MS 
(U-Net) models

The MS (U-Net) model and the original U-Net model were 
compared to examine the segmentation effects of MRI of 
the brain (see Figure 4). The segmentation results of the MS 
(U-Net) model were closer to the standard segmentation 
results than those of the U-Net model. Additionally, the 
MS (U-Net) model retains the details of CSF in the MRI 
and highly restores the segmentation effect of CSF around 
the GM after segmentation. The MS (U-Net) model 
segmentation results showed that there was a more delicate 
border between the alba and GM. In short, the MS (U-Net) 

model constructed in this study that was applied in the 
segmentation of MRI of the brain was better able to process 
details than the original U-Net model, and its results were 
much closer to the real segmentation results.

To assess the segmentation effects of MRI of the brain 
of different models quantitatively, Jaccard similarity (Js) was 
used as the evaluation indicator. The higher the Js value, the 
more accurate the segmentation effect of the model. The 
calculation equation of the Js value is expressed as follows:

( ), M SJs M S
M S

∩
=

∪  
	 [8]

where M represents the segmentation results of the model, 
and S indicates the standard segmentation results.

The GM, WM, and CSF in three different MRI images 
of the brain of the U-Net model and MS (U-Net) model 
were analyzed to examine differences in their Js values (see 
Figure 5). The results showed that the Js values for GM 
and WM in the U-Net model and MS (U-Net) model were 
higher than 80%, and the segmented Js value of the MS 
(U-Net) model was higher than that of the U-Net model. 
The CSF-segmented Js values of the U-Net model and MS 
(U-Net) model were quite low. In general, the MS (U-Net) 
had a higher segmented Js value, which indicated that the 
MS (U-Net) model proposed in the study was more stable 
than the U-Net model in the segmentation of MRI of the 
brain.

Segmentation of MRI for vertigo patients based on the MS 
(U-Net) model

The U-Net model and MS (U-Net) model were used to 
segment MRI of the brains of the vertigo patients in the 
study (see Figure 6). The MS (U-Net) model proposed in 
the article was able to segment the lesion locations in the 
MRI of the patients more precisely than the U-Net model.

Comparison of clinical data of patients

Fifty healthy individuals, who received a physical 
examination at our hospital during the same period, were 
allocated to the control group. According to the MRI 
diagnosis results, 115 vertigo patients were allocated to the 
benign paroxysmal positional vertigo (BPPV) group (n=70) 
or the acute cerebral infarct (ACI) group (n=45). First, 
differences in the clinical data of patients were compared 
(see Table 2). There was no apparent difference among the 
control group, BPPV group and ACI group in terms of 
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age and gender (P>0.05). The proportion of patients with 
a history of smoking, alcohol abuse, diabetes, and coronary 
heart disease in the BPPV group and ACI group was higher 
than that of the control group (P<0.05). Additionally, the 
proportion of patients with a history of hypertension in 
the ACI group was high (P<0.05), and the proportion 
of patients with a history of smoking, hypertension, and 
diabetes was significantly higher in the in the ACI group 
than the BPPV group (P<0.05).

Comparison of routine blood examination results of 
patients

Figure 7 shows the difference in the routine blood 
examination results of all groups of patients. The monocyte 
count (MC), LDL/HDL ratio, and NLR of patients in 
the BPPV group were higher than those of patients in the 

Original Standard U-Net MS (U-Net)

Figure 4 Comparison of segmentation results of MRI of the brain. MRI, magnetic resonance imaging; MS (U-Net), multiscale U-Net.

A

B

C

100

80

60

40

20

A

B

C

U
-N

et
M

S
 (U

-N
et

)

CSFWMGM

84.33

81.06

82.07

86.62

86.33

87.15

83.15

82.09

83.13

85.85

86.04

85.17

31.52

30.85

31.17

40.16

41.22

42.33

Figure 5 Comparison of Js (%) values of MRI of the brain. MRI, 
magnetic resonance imaging. MS (U-Net), multiscale U-Net; GM, 
gray matter; WM, white matter; CSF, cerebrospinal fluid.



11377Annals of Palliative Medicine, Vol 10, No 11 November 2021

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2021;10(11):11370-11381 | https://dx.doi.org/10.21037/apm-21-1786

U-Net MS (U-Net)Original

Figure 6 Comparison of segmentation effects of MRI of the brains of vertigo patients. MRI, magnetic resonance imaging; MS (U-Net), 
multiscale U-Net.

Table 2 Comparison of the clinical data of patients

Information Control group (n=50) BPPV group (n=70) ACI group (n=45)

Age (years old) 60.86±10.26 61.88±12.15 62.07±11.38

Male (case/%) 37/74.00 52/74.29 31/68.89

Smoking history (case/%) 12/24.00 23/32.86* 22/48.89*#

Alcohol abuse (case/%) 10/20.00 21/30.00* 14/31.11*

Hypertension (case/%) 26/52.00 38/54.29 30/66.67*#

Diabetes (case/%) 9/18.00 15/21.43* 12/26.67*#

Coronary heart disease (case/%) 4/8.00 9/12.86* 5/11.11*

As compared to the control group, *P<0.05; as compared to the BPPV group, #P<0.05. BPPV, benign paroxysmal positional vertigo; ACI, 
acute cerebral infarct.
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control group (P<0.05). Compared with the control group, 
the levels of WBC, TG, MC, LDL/HDL and MLR in ACI 
patients were significantly increased (P<0.05), and the levels 
of HDL were significantly decreased (P<0.05). Compared 
with the BPPV group, the levels of WBC, MC, TG, LDL/
HDL and NLR in ACI patients were significantly increased 
(P<0.05), while the levels of HDL were significantly 
decreased (P<0.05). The patients in the control group and 

BPPV group showed no obvious differences in terms of 
their WBCs, TG and HDL levels (P>0.05); all groups of 
patients showed no difference in terms of the platelet counts 
and LDL levels (P>0.05).

Comparison of diagnostic efficiency of indicators

The ROC curves were outlined to analyze the different 
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routine blood indexes, and determine the diagnostic 
efficiency for the BPPV and ACI patient groups (see Figure 8). 
The AUCs of the WBC, TG level, HDL level, LDL/HDL 
ratio, and NLR of the ACI patients were 0.965, 0.930, 0.905, 
0.900, and 0.945, respectively, showing obvious differences 
in diagnosing BPPV and ACI (P=0.000, 0.001, 0.002, 0.003, 
and 0.001). The AUCs of the TG level, LDL/HDL ratio, 
and the NLR of BPPV patients were 0.760, 0.770, and 0.855, 
respectively, showing obvious differences in diagnosing 
BPPV and ACI (P=0.049,0.041,0.007). However, the AUCs 
of the WBC and HDL level of the BPPV patients were 
0.500 and 0.670, respectively, showing obvious differences in 
diagnosing BPPV and ACI (P=0.999, 0.199).

Discussion

The incidence of vertigo may be caused by vertebrobasilar 
artery lesions, vestibular blood supply insufficiency, and 

ischemic stroke (13). The diseases with vertigo as the main 
complaint have attracted widespread attention because 
the patients are increasingly younger. MRI technology 
continues to have excellent application value in the early 
diagnosis of cerebrovascular diseases, and can cure vertigo 
disease caused by vascular lesions (14).

DL technology has been applied in MRI-aided diagnoses 
of patients, and has been shown to dramatically improve 
the diagnosis efficiency of the disease (15). The traditional 
CNN model is mainly applied in the classification and 
processing of images. The FCN has been used to address 
the lengthy training time issue and other issues in the 
image segmentation. The U-Net model has poor detail 
segmentation effects in terms of the segmentation and 
processing of MRI of the brain (16-18). Based on the U-Net 
model, the concept of a multiscale model was introduced, 
and a MS U-Net model was constructed in this study. This 
MS U-Net model was applied in MRI segmentation. We 
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found that the MS U-Net model had higher segmentation 
precision than the U-Net model, and its segmentation 
results were closer to the standard segmentation results than 
those of the traditional U-Net model.

The MS U-Net model proposed in this study was then 
used in the segmentation and processing of MRI of the brains 
of VCI patients, and was found to effectively segment the 
infarct regions. Cerebral infarction refers to a blood supply 
disorder of the local brain tissue arising from multiple factors. 
Studies have shown that if a patient has an acute cerebral 
infarction (ACI), in vivo neutrophils can preferentially reach 
the patient’s ischemic area and destroy the blood-brain 
barrier by releasing proteolytic enzyme, which interacts with 
platelets to aggravate brain damage (19,20).

The WBC is the most common clinical index for 
evaluating the inflammatory response of the human  
body (21). Many studies have confirmed that monocytes 
and HDL are closely correlated with the occurrence and 
progression of atherosclerosis and other cardiovascular and 
cerebrovascular diseases (22,23). In this study, DL-based 
MRI was used to analyze diagnoses of BPPV and ACI, 
and compare differences between BPPV patients and ACI 
patients in terms of the WBC, platelet count, HDL, LDL, 
and TG levels, the LDL/HDL ratio, the NLR, and other 
indicators. The results showed that compared to BPPV 
patients, the WBC, MC, TG level, LDL/HDL ratio, and 
NLR of ACI patients increased significantly (P<0.05), 
while their HDL level decreased significantly (P<0.05). 
Additionally, we showed that the WBC, TG and HDL levels, 
LDL/HDL ratio and NLR can be applied in the diagnosis 
of ADI diseases. Thus, these indicators can serve as auxiliary 
diagnostic indicators for ACI patients with vertigo symptoms.

Conclusions

In conclusion, DL technology was applied in the 
segmentation and processing of MRI of the brains of the 
VCI patients to obtain better segmentation results of lesion 
areas. The WBC, TG level, HDL level, LDL/HDL ratio, 
NLR, and other indexes reflect the VCI severity of patients 
to some extent. However, it should be noted that this study 
had some limitations. Notably, only differences in the 
clinical routine blood indexes of BPPV patients and ACI 
patients were analyzed; however, the question of whether 
all the indexes can serve as independent predictors in VCI 
diagnosis was not explored. The study also had a very 
limited sample size, which should be increased in future 
clinical observations and investigations.
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