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Objective: To explore the role of phosphatidylinositol-3-kinase/protein kinase B and alpha serine/
threonine protein kinase PI3K/PKB (also known as PI3K/Akt) signaling pathway in liver ischemia 
reperfusion injury.
Background: The PI3K/Akt signaling pathway is one of the major signal transduction pathways that 
regulates numerous cellular activities in vivo. The main functions of this pathway include induction of stem 
cell differentiation and metastasis, promotion of cell proliferation, inhibition of apoptosis, and regulation of 
tissue inflammation, tumor growth, and invasion. Liver ischemia reperfusion injury is an inevitable clinical 
problem that can occur during liver transplantation, liver resection, and various circulatory shock events, and 
it is one of the primary reasons for postoperative liver dysfunction, and poor disease outcome and patient 
prognosis. In recent years, it has been found that PI3K/Akt signaling pathway is closely related to liver 
ischemia reperfusion injury.
Methods: In this review, a large number of relevant literatures were collected to explain the biological 
basis of PI3K/Akt signaling pathway and its role in liver ischemia reperfusion injury. The review was based 
on a PubMed search using the terms “liver ischemia reperfusion injury”, “PI3K/Akt signaling pathway”, 
and “PI3K/Akt signaling pathway AND liver ischemia reperfusion injury”, so as to understand the complex 
interaction between them.
Conclusions: Activated PI3K/Akt signaling pathway can exert anti-inflammatory, antioxidant stress, anti-
apoptosis and autophagy regulation effects through downstream related targeted pathways and proteins, 
thus alleviating liver ischemia-reperfusion injury. Therefore, the regulation of PI3K/Akt signaling pathway 
is expected to become an effective targeted pathway for clinical prevention and alleviation of liver ischemia 
reperfusion injury.
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Introduction

Liver ischemia reperfusion injury (LIRI) commonly 
occurs during liver surgery, hemorrhagic shock, and other 
processes, and can lead to severe metabolic disorders, 
inflammatory immune responses, oxidative stress injury, 
and cell apoptosis. Studies have indicated that the 
pathogenesis of LIRI involves a number of different 
mechanisms, including oxidative stress, inflammatory 
responses, apoptosis, liver Kupffer cell activation and 
neutrophil aggregation, vascular cell adhesion molecule 
overexpression, autophagy, and calcium overload (1,2). 

The phosphatidylinositol-3-kinase/protein kinase B (PI3K/
Akt) signaling pathway is one of the important pathways 
regulating various cellular functions and plays an important 
role in numerous physiological processes and pathological 
responses. The PI3K/Akt signaling pathway is activated 
during the early stage of LIRI, where it plays anti-apoptosis, 
anti-inflammatory, anti-oxidative stress, and autophagy 
regulation roles. In this review, the functional characteristics 
of this pathway and its role in the various pathogenesis 
processes of LIRI are discussed.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://apm.
amegroups.com/article/view/10.21037/apm-21-3286/rc).

PI3K/Akt signaling pathway

General information regarding PI3K

PI3K has dual activities of lipid kinase and protein kinase, 
which belongs to the lipid kinase family of phosphorylated 
phosphatidylinositol, a component of eukaryotic cell 
membranes (3). Based on sequence homology and lipid 
substrate characteristics, PI3K is divided into three 
categories (class I, II, and III), as shown in Figure 1, where 
the PI3K I class has been the most thoroughly studied (4). 

The PI3K I class exists as dimers that are composed of a 
regulatory subunit and a catalytic subunit. According to 
their different molecular structures, PI3K proteins can be 
divided into groups A and B (5,6). Class IA PI3K consists 
of a heterodimer between the P85 regulatory subunit 
and the P110 catalytic subunit (7). In mammals, the P85 
subunits are further subdivided into α, β, and γ types that 
are encoded by the PI3K regulatory subunit (PIK3R) 1, 
PIK3R2 and PIK3R3, respectively. The specific functions 
of the P85 subunit include receptor binding, enzyme 
activation, and localization (8-11).  The p110 subunit 
consists of α, β, and δ types that are encoded by the PI3K 

catalytic subunits (PIK3C) A, PIK3CB, and PIK3CD, 
respectively (12). P110α and p110β primarily affect cell 
proliferation and insulin signaling in various tissues, 
while p110δ is found only in leukocytes and is involved in 
immune function and inflammation (9,13). Class IB PI3K 
consists of the regulatory P101 subunit and the catalytic 
P110γ subunit. P110γ is primarily expressed in white blood 
cells, and its expression is reduced in the heart, pancreas, 
liver, and skeletal muscle. The P85 regulatory subunit of 
class IA PI3K consists of the SH3 domain, the homology of 
the Rho binding domain/breakpoint cluster, the C-terminal 
SH2 domain, and the junction region (6,9,14). The PI3K 
II class does not possess a regulatory subunit and instead 
only contains a catalytic subunit. This protein exists as three 
subtypes (α, β, and γ) that contain proline-rich domains, 
RAS binding domains, HR3 domains, HR2 domains, HR1 
domains, PX domains, and C2 domains (6,15-17). Vps34 
is the only member of the class III PI3K family, and this 
protein is a human homologous yeast gene product. Human 
PI3K is a serine/threonine kinase that is also known as 
Vps34 (9). Vps34 is a heterodimer formed by the regulatory 
subunit of P150 and the catalytic subunit of nutmeg 
acylation of P100, which phosphorylates PI to PI3P and 
mediates autophagy and protein synthesis under nutritional 
stress (9,18,19).  Other studies have pointed out that 
although PI3P is widely present, its level does not change 
when cells are stimulated, so it is considered that PI3K class 
iii may be a housekeeping kinase that does not play a role in 
signal transduction (20).

General information regarding Akt 

Akt is a serine/threonine kinase that functions as the central 
mediator of the PI3K pathway and plays a key role in 
numerous cellular processes, including glucose metabolism, 
apoptosis, cell proliferation, transcription, and cell 
migration (21). There are three subtypes of Akt that include 
PKBα (Akt1), PKBβ (Akt2), and PKBγ (Akt3) (22,23), as 
shown in Figure 2. Akt1 is widely expressed in a number of 
tissues, while Akt2 is primarily expressed in insulin-sensitive 
tissues such as skeletal muscle, adipose tissue, and liver, and 
Akt3 is predominantly expressed in the testes and brain. Akt 
consists of a pH domain, an intermediate kinase domain, 
and a regulating carboxyl terminal domain in which the pH 
domain regulates Akt transposition (24). Akt is activated 
through two key phosphorylation processes. PIP3 as an 
intracellular second messenger, and the structure of the pH 
domain within Akt can facilitate binding to PIP3 to cause 

https://apm.amegroups.com/article/view/10.21037/apm-21-3286/rc
https://apm.amegroups.com/article/view/10.21037/apm-21-3286/rc
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Figure 1 Structural overview of each type of PI3K. SH3, Src homology 3; P, proline-rich region; BH, breakpoint cluster region homology; 
SH2, Src homology 2; iSH2, interSH2; ABD, adapter binding domain; RBD, Ras-binding domain; PI3K, phosphatidylinositol-3-kinase; 
CB, clathrin binding domain; PX, phox homology.

Figure 2 The structure and function of each type of Akt. PH, pleckstrin homology domain; KD, kinase domain; HM, hydrophobic motif.
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a conformation change in AT to expose the Ser473 and 
Thr308 sites to phosphoinositide dependent protein kinase 
1 (PDK1) phosphorylation of the kinase Thr308 structure 
This further facilitates the Akt activation process, where 
mammalian target of rapamycin (mTOR) compound 2 
(mTORC2) can initiate Ser473 phosphorylation facilitates 
additional adjustment structure of the domain at the 
terminus of the carboxyl region, thereby fully activating 
Akt (25). Similar phosphorylation events were observed on 
the corresponding residues of Akt2 (Thr309 and Ser474) 
and Akt3 (Thr305 and Ser472). Phosphorylation of both 

residues is necessary for maximum activation of Akt, and 
protein 2A phosphatase (PP2A) and leucine-rich repeat 
protein phosphatase function to dephosphorylate Thr308 
and Ser473 of Akt, respectively, thus leading to Akt 
inactivation (26). 

Types and stages of LIRI 

LIRI is mainly divided into two types: (I) warm ischemia 
reperfusion injury, which occurs during liver resection, 
shock or trauma caused by various reasons, and can lead 
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to liver or even multiple organ failure; (II) cold ischemia 
reperfusion injury usually occurs during organ preservation 
and transplantation. Historically, it has been believed 
that liver cells are more sensitive to warm ischemia 
reperfusion, while liver sinusoidal endothelial cells (LSEC) 
are more sensitive to cold ischemia reperfusion. However, 
limitations on damage to specific cell types are rare under 
pathophysiological conditions (1,27).

LIRI includes two stages of ischemia and reperfusion: 
ischemia leads to decreased intracellular 5'-adenosine 
triphosphate (ATP) concentration, ATP-dependent Na+/
K+ pump failure, cell edema, and increased cytoplasmic 
calcium concentration, all of which leads to cell damage. 
Liver reperfusion enhances cellular damage through 
oxidative stress and inflammatory response. The initial 
stage of ischemia reperfusion injury (within 2 hours after 
reperfusion) involves Kupffer cells releasing reactive oxygen 
species (ROS) and pro-inflammatory mediators such as 
tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1, 
and arachidonic acid. ROS may lead to lipid peroxidation, 
mitochondrial permeability conversion, signal transduction 
pathway activation, caspase activation, hepatocyte and 
endothelial cell necrosis and apoptosis. Late stages (6–48 
h after reperfusion) are characterized by neutrophil-
mediated inflammatory responses. Cytokines, chemokines, 
and complement factors recruit neutrophils into the 
liver, where they damage liver cells by releasing ROS or 
proteases. Endothelin-1 (ET-1)-mediated vasoconstriction 
and increased platelet aggregation lead to microcirculation 
disorders and aggravate liver injury. Although there is a 
chronological sequence of events that occur during LIRI, 
these events may overlap or occur simultaneously in the 
body (28-30).

PI3K/Akt signaling pathway and LIRI

PI3K/Akt signaling pathway and anaerobic metabolism 
and acidosis

When the liver is in the ischemic stage, the tissue is in a 
state of ischemia and hypoxia, and cell normal redox process 
is blocked, the ATP in the cell was quickly consumption, 
anaerobic glycolysis increase, lead to the accumulation 
of lactic acid and ketone body acidic metabolites, and 
mitochondrial oxidative phosphorylation function decline, 
the organization cell pH decline, metabolic acidosis. 
After refluxes, the pH value returned to normal, and a 
large number of pH-dependent proteases, phospholipases 

and other activities increased, but aggravated tissue and 
organ damage, resulting in LIRI, which is one of the most 
common mechanisms of LIRI (27).

Rafiee et al. found that acidic microenvironment can 
activate the PI3K/Akt signaling pathway and significantly 
enhance the phosphorylation of Akt (31). After stimulated 
by factors such as hypoxia and acidic environment, the 
regulatory subunit P85 of PI3K relieved the inhibition of 
catalytic pressure group P110, and the spatial conformation 
of PI3K dimer changed and was then activated, which 
promoted the formation of  phosphat idyl inosi tol 
3,4,5-triphosphate (PIP3) on the membrane of PI3K. 
Signaling proteins are then recruited to regulate various 
intracellular activities such as cell survival, proliferation and 
differentiation (15).

Metabolic acidosis occurs during LIRI, and the acidic 
microenvironment affects the activity and function of 
lymphocytes. Studies have found that regulatory T cells 
(Tregs) can significantly relieve the inflammatory response 
caused by LIRI, and have a certain protective effect on 
injured organs (32-34). The acidic microenvironment of 
LIRI down-regulated the function of Tregs and promoted 
the apoptosis of Tregs. It is known that V-ATPase located 
in internal acidic vesicles and plasma membrane plays a role 
in regulating pH gradient across membrane (35,36). Tregs 
expressed more V-ATPase in acidic microenvironment. 
Some scholars have found that omeprazole can inhibit 
PI3K/Akt/mTOR signaling pathway by reducing v-ATPase 
expression, improve the induction efficiency of Tregs in 
acidic microenvironment, and then improve LIRI acidic 
microenvironment and reduce LIRI (37,38).

PI3K/Akt signaling pathway and oxidative stress

Due to ischemia and hypoxia that occur during LIRI, 
oxygen free radicals are stimulated through xanthine 
oxidase system, phagocyte system and mitochondrial 
respiratory chain during reperfusion, resulting in increased 
production of ROS and insufficient scavenging capacity, 
thus resulting in liver cell damage. Increased ROS can 
damage liver cells by generating a variety of lipid peroxides 
that damage the structure and function of LSEC, cause 
DNA mutations in the nucleus of liver parenchyma tissues, 
inhibit oxidative phosphorylation of mitochondria, and 
cause microcirculation disorders (2,39-41).

PI3K is a redox sensitive kinase that can be activated 
by changes in intracellular ROS levels (42). During the 
process of LIRI, the increase in intracellular ROS and 



810 Wang et al. PI3K/Akt signaling pathway in LIRI

© Annals of Palliative Medicine. All rights reserved.   Ann Palliat Med 2022;11(2):806-817 | https://dx.doi.org/10.21037/apm-21-3286

oxidative stress levels cause compensatory activation of 
the PI3K/Akt signaling pathway. The activated PI3K/
Akt signaling pathway promotes the generation of heme 
oxygenase-1 (HO-1) by upregulating the expression of 
Nrf2, thus alleviating oxidative stress injury during LIRI 
(43-47). In addition, activation of PI3K/Akt pathway can 
activate endothelial nitric oxide synthase (eNOS) in vascular 
endothelial cells, increase the formation of nitric oxide 
(NO), and further improve LIRI (48-50).

PI3K/Akt signaling pathway and inflammatory response

In the early stages of ischemia reperfusion, Kupffer cells are 
activated, which, in addition to producing a large number of 
ROS, increases the release of pro-inflammatory chemokines 
and cytokines that promote and amplify subsequent 
neutrophil-mediated inflammatory responses (51,52). 
Stimulated by pro-inflammatory factors and chemokines 
at the early stage, neutrophils adhere to and aggregate in 
the liver space. These neutrophils release a large number 
of proteases (e.g., collagenase, elastase, cathepsin G) that 
act on cell membranes and matrix components, thereby 
promoting cellular degradation (53). Neutrophils also drive 
inflammation of liver damage by releasing inflammatory 
mediators, including proteolytic enzymes, lipocalin 2, 
arachidonic acid metabolites, and ROS (54); In response 
to macl-1 adhesion, neutrophils release myeloperoxidase 
(MPO) and proteases through NADPH oxidase and 
threshing, leading to superoxide formation. It can directly 
cause liver endothelial injury or indirectly induce tissue 
injury by triggering other inflammatory mediators (55).

During LIRI, Kupffer cell activation significantly 
increases the expression of high-mobility group B1 
(HMGB1), and this activates Toll-like receptor 4 (TLR4) 
to trigger the recruitment of MyD88 and subsequently 
promote the activation of downstream signaling pathways, 
ultimately leading to significant increases in NF-κB, 
TNF-α, and IL-6 (56). PI3K can inhibit the activation of 
NF-κB and its downstream pro-inflammatory cytokines 
by inactivating TLR4 signaling through preventing the 
recruitment of Toll-IL-1 resistance domain junction 
protein (TIRAP) to the cell membrane, thus alleviating 
LIRI (57-59). Blocking of PI3K/Akt leads to increased 
transcription of NF-κB and the release of TNF-α, IL-
1β, and IL-6 to ultimately exacerbate LIRI (60).  Shen  
et al. determined that activation of the PI3K/Akt signaling 
pathway during LIRI increased the expression of IL-4 
and IL-10, decreased the expression of IL-1β and TNF-α, 

and reduced the liver inflammatory response (50). Our 
recent study found that methyl eugenol can reduce LIRI 
by activating the PI3K/Akt signaling pathway, inhibiting 
the expression of inflammatory factors and reducing the 
apoptosis rate (61).

PI3K/Akt signaling pathway and apoptosis

Apoptosis is closely related to LIRI, and apoptosis of 
hepatocytes and hepatic sinusoidal endothelial cells is 
an important cause of LIRI. The process of apoptosis is 
extremely complex, and the generation of oxygen free 
radicals, cell energy metabolism disorder, intracellular 
calcium overload, the activation of cytokines and caspase 
and B lymphocyte tumor-2 (Bcl-2) family gene expression 
is closely related to the mechanism disorder will induce a 
variety of diseases. Disorders of the mechanisms underlying 
apoptosis, including the death receptor pathway, the 
mitochondrial pathway, the perforin/granzyme pathway, 
and the endoplasmic reticulum pathway, may induce 
various diseases. The mitochondrial pathway, also known 
as endogenous apoptosis pathway, is the most important 
pathway for mediating apoptosis. When cells receive a 
variety of endogenous apoptosis signal stimulations, the Bcl-2 
protein regulates mitochondrial permeability by irreversibly 
opening the mitochondrial permeability transition pore 
(mPTP), ultimately resulting in clearance of cytochrome 
C into the cytoplasm. Apoptosis protein activated factor 1 
(Apaf-1) then interacts with this released cytochrome C to 
facilitate increased levels of the caspase 9 precursor that then 
becomes active through an auto-cleavage process. Activated 
caspase 9 activates a downstream caspase cascade that is 
mediated by caspase 3 to induce apoptosis (62,63). 

The PI3K/Akt s ignal ing pathway is  a  c lass ical 
antiapoptotic pathway. When the PI3K/Akt signaling 
pathway is activated, Akt inhibits caspase 3-mediated cell 
death by phosphorylating Bcl-2/Bcl-XL-associated death 
promoter (Bad). Concurrently, the depolymerization of Bcl-
2 with phosphorylated Bad further promotes cell survival. 
Studies have demonstrated that activation of the PI3K/Akt/
mTOR signaling pathway can significantly increase Bcl-
2 protein levels, reduce the expression of Bax and caspase 
3 proteins, protect cells from apoptosis, and significantly 
improve LIRI (3,27,64-68).

PI3K/Akt signaling pathway and autophagy

Autophagy is a lysosomal dependent catabolic process that 
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plays an important role in regulating cell homeostasis by 
degrading damaged organelles and misfolded proteins. 
Autophagy is not only important for the dynamic balance 
of proteins, but it also acts a quality control system 
under internal and external stress conditions and is 
closely related to the occurrence and development of 
a variety of physiological processes (such as nutritional 
deficiency, ischemia, hypoxia, and others) and diseases 
(such as neurodegenerative diseases, immune diseases, 
and others). During LIRI, autophagy can be activated by 
adverse factors such as reduced ATP synthesis, elevated 
production of ROS, and calcium overload. Mitochondrial 
autophagy can rapidly remove the aging and damaged 
mitochondria and excess oxygen free radicals through the 
lysosomal mechanism to thus maintain the normal function 
of mitochondria and alleviate LIRI. However, when the 
content of oxygen free radicals and calcium ions exceeds 
the clearance rate of autophagy, autophagy cannot clear all 
damaged mitochondria. This eventually leads to irreversible 
cell death (69). Currently, it remains undetermined whether 
autophagy plays a protective or injurious role in LIRI. 
It should be noted that class I PI3K and class III PI3K 
play different roles in autophagy regulation. Class I PI3K 
inhibits autophagy through PI3K/Akt/mTORC1 pathway, 
while class III PI3K enhances autophagy by inducing 
Beclin1 (70).

It has been demonstrated that Akt regulates autophagy 
levels by directly phosphorylating and inhibiting adenosine 
monophosphate-activated protein kinase (AMPK)-mediated 
phosphorylation of tuberous sclerosis complex 2 (TSC2), 
thus inducing complete inhibition of TSC2 and activation 
of mTOR (71). Yang et al. found that downregulation 
of the PI3K/Akt/mTOR signaling pathway resulted in 
increased expression of Beclin-1, Atg7, and LC3 and 
decreased expression of p62, thus indicating that autophagy 
can be properly enhanced to protect the liver from 
ischemia-reperfusion injury (72). A recent study showed 
that octreotide and melatonin can enhance autophagy by 
regulating AMPK/PI3K/Akt/mTOR/ULK1 signaling, and 
subsequently reduce LIRI (73).

Liu et al. revealed that shikonin treatment could improve 
LIRI by upregulating the expression of PI3K and p-Akt and 
inhibiting autophagy. PI3K can upregulate the expression 
of the Bcl-2 protein, and the Bcl-2/Beclin-1 complex plays 
a key role in the regulation of apoptosis and autophagy (74). 
A recent study demonstrated that upregulation of Bcl-2 
could inhibit the disassociation of Beclin-1 and Bcl-2, thus 
leading to decreased Beclin-1 expression and inhibition 

of autophagy (75). Various doses of shikonin significantly 
decreased the expression of LC3 and Beclin-1 and increased 
the expression of P62, thus suggesting that shikonin 
treatment can inhibit autophagy by activating the PI3K/
Akt pathway and can thereby prevent hepatic ischemia 
reperfusion injury (64).

PI3K/Akt signaling pathway and heat shock proteins 
(HSPs)

HSPs are also known as emergency proteins and exist 
as a group of structurally highly conserved peptides. 
HSPs possess a variety of biological activities, and their 
most important role is to act as molecular chaperones 
where they aid in facilitating the correct folding of newly 
synthesized proteins, influence the refolding of proteins 
destroyed by stress, and maintain the stability of various 
protein structures. Studies have revealed that there are 
multiple HSP expressions during LIRI (76,77). HSP70 is 
the most highly conserved and most important HSP. The 
expression level of HSP70 in normal cells is typically low. 
In response to various stimuli such as ischemia, hypoxia, 
and inflammatory responses, HSP70 can migrate from the 
cytoplasm to the nucleus and become expressed at high 
levels. HSP70 possesses immunomodulatory properties, and 
in combination with IL-2, it can enhance the ability of Tregs 
to increase the secretion levels of the immunosuppressive 
cytokines IL-10 and TGF-β. Human HSP70 enhances the 
regulatory activity of Tregs primarily through modulating 
the interaction between TLR2 and T cells, and PI3K/Akt 
is involved in HSP70-dependent activation of Tregs (78). 

Zheng et al. revealed that HSP70 can protect the liver from 
ischemia-reperfusion injury by stimulating the PI3K/Akt 
signaling axis to regulate the differentiation of Tregs (79).

PI3K/Akt signaling pathway and non-coding RNA

Non-coding RNA refers to a type of RNA that does not 
participate in encoding proteins during the process of gene 
expression transcription and instead plays an important 
role in the process of transcription and post-transcription 
modification. During LIRI, the expression of certain 
non-coding RNAs within cells becomes abnormal, and 
these non-coding RNAs are primarily involved in cell 
energy metabolism, apoptosis, autophagy, oxidative stress 
responses, and inflammation (80). 

MicroRNAs (miRNAs) can recognize and target 
mRNA to regulate the expression of target genes at the 
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post-transcriptional or translational level. Studies have 
demonstrated that miR-494 can upregulate the PI3K/Akt 
pathway by targeting PTEN to reduce cell apoptosis and 
improve LIRI in rats (81).

Long non-coding RNAs (lncRNAs) can interact with all 
types of intracellular macromolecules, including proteins, 
DNA, and RNA. LncRNA can be used as signal, bait, guide, 
skeleton, and enhancement molecule to modulate gene 
expression at the transcriptional and post-transcriptional 
levels. Cui et al. demonstrated that lncRNA H19 could 
enhance autophagy-induced hypoxia/reoxygenation injury 
in liver cancer cells through downregulation of the PI3K/
Akt/mTOR pathway (82).

The main biological function of small interfering RNA 
(siRNA) is to participate in RNA interference (RNAi). 
RNAi induces gene silencing by targeting mRNA for 
degradation or by preventing mRNA from being translated 
into proteins. During the process of LIRI, siRNA-induced 
β-catenin deficiency and STAT3 silencing are used to 
inhibit PTEN and activate the PI3K/Akt pathway, and this 
can downregulate the immune function of dendritic cells 
(DCs), inhibit TLR4-driven inflammatory responses, and 
reduce cell apoptosis (83,84).

PI3K/Akt signaling pathway and exosomes

Exosomes are a class of tiny vesicles possessing a lipid 
bilayer structure and ranging in size from 30 to 150 
nm in diameter. Exosomes can transmit information 
between cells, and the proteins, DNA, and RNA that they 
carry can be absorbed by the recipient cells to facilitate 
specific functions. Studies have revealed that hepatocyte-, 
DC-, and mesenchymal bone marrow stem cell-derived 
exosomes can mitigate LIRI through different mechanisms 
(79,85,86). DC-derived exosomes inhibit the immune 
inflammatory cascade and reduce inflammation-induced 
hepatocyte necrosis, and Zheng et al. revealed that DC-
derived exosomes can activate the PI3K/Akt/mTOR 
signaling pathway in the initial CD4+ T lymphocytes by 
delivering HSP70 to these lymphocytes. This induced 
the differentiation of the initial CD4+ T lymphocytes into 
Tregs and indirectly inhibited the differentiation of the 
initial CD4+ T lymphocytes into Th17 cells. Amplified 
Tregs can induce the formation and maintenance of 
immune tolerance, and at the same time, the reduction 
of Th17 production can further inhibit the production of 
immune inflammatory cascade, thus inhibiting the necrosis 
and apoptosis of liver cells induced by inflammation to 

ultimately improve LIRI (79).

Conclusion and prospects

LIRI is a serious clinical problem that is considered to be 
the potential mechanism underlying the dysfunction and 
injury of organs other than the liver itself. Recent studies 
demonstrated that the PI3K/Akt signaling pathway is closely 
associated with LIRI, and PI3K/Akt signaling can improve 
LIRI by influencing the anti-oxidative stress responses, 
anti-inflammatory processes, regulation of immune cells, 
regulation of autophagy, and reduction of cell apoptosis (as 
shown in Figure 3). 

However, in the process of LIRI, how the PI3K/Akt 
signaling pathway coordinates the functions of the above 
pathological phenomena and whether there are interactions 
between these phenomena still need to be further discussed. 
In addition, most current studies are only limited to the 
involvement of PI3K/Akt signaling pathway in LIRI, but 
how PI3K/Akt signaling pathway is activated during LIRI 
has not been clarified. In addition, most of the current 
studies are focused on animal models, and different 
experimental conditions and modeling will inevitably 
produce different experimental results. Whether various 
intervention methods have the same safety and effect in 
clinical application remains to be further studied.

It is noteworthy that the abnormal activation of PI3K/
Akt signaling pathway is involved in the regulation of tumor 
cell survival, proliferation, invasion and migration in the 
process of various tumors. By inhibiting the expression of 
each molecule in this pathway and blocking this signaling 
pathway, tumor growth and metastasis can be inhibited and 
anti-tumor effect can be achieved (87,88). Therefore, PI3K/
Akt will show different effects in different diseases and cells, 
so clinical intervention of PI3K/Akt signaling pathway 
needs to be dealt with in combination with the actual 
situation.

Therefore, in the future, studies on PI3K/Akt signaling 
pathway in LIRI can focus on the following points: (I) what 
is the specific molecular mechanism by which PI3K/Akt 
signaling pathway is activated or inhibited during LIRI? 
(II) Whether targeted intervention of PI3K/Akt signaling 
pathway can reduce liver ischemia-reperfusion injury 
in large animal experiments, such as pigs and monkeys, 
or even in clinical process? (III) In the prevention and 
treatment of LIRI, whether there will be adverse reactions 
after activation of PI3K/Akt signaling pathway, and how 
to evaluate its safety? (IV) For liver cancer patients, is it 
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Figure 3 The relationships between liver ischemia reperfusion injury and PI3K/Akt signaling pathway. LIRI, liver ischemia reperfusion 
injury; ATP, adenosine triphosphate; ROS, reactive oxygen species; DC, dendritic cell; IL, interleukin; TGF, transforming growth factor; 
PIP2, phosphatidylinositol-4,5-diphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; PTEN, phosphatase and tensin homolog; 
PDK, phosphoinositide dependent protein kinase; PI3K, phosphatidylinositol-3-kinase; Akt, alpha serine/threonine protein kinase; mTOR, 
mammalian target of rapamycin; ATG, autophagy-related protein; LC3, autophagy microtubule-associated protein light chain β3; Bad, Bcl-
2/Bcl-XL-associated death promoter; Bcl-2, B lymphocyte tumor-2; IKK, IκB kinase; IκB, inhibitor proteins of NF-κB; NF-κB, nuclear 
factor-κB; Nrf2, nuclear factor E2 related factor 2; HO-1, heme oxygenase-1;eNOS, endothelial nitric oxide synthase; NO, nitric oxide; 
TNF, tumor necrosis factor.
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Although there are still some unclarified questions about 
the effect of PI3K/Akt signaling pathway on LIRI, the 
PI3K/Akt signaling pathway has the potential to become a 
target for the prevention and treatment of LIRI, providing 
a research direction for the prevention and treatment of 
ischemia reperfusion.
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