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Background: The incidence of cerebral hemorrhage has rapidly increased over time, and vascular 
dysfunction has a significant influence on the pathogenesis and outcome of these patients. This is also the 
case for vasospasm in cerebral hemorrhage, but there is no method to assess this. We conducted this study to 
find molecular biomarkers of vasospasm in cerebral hemorrhage patients.
Methods: Raw data of GSE37924 was downloaded from the Gene Expression Omnibus (GEO) database, 
including 66 samples with cerebral vasospasm and 62 samples without cerebral vasospasm. Differentially 
expressed genes (DEGs) between samples with cerebral vasospasm and those without cerebral vasospasm 
were analyzed using the limma package in R software. To determine the functions of DEGs, we conducted 
functional enrichment analysis of DEGs through the clusterProfiler package in R. The protein-protein 
interaction (PPI) network of DEGs was constructed through STRING (https://string-db.org/) and 
generated via Cytoscape software. To understand the correlation between DEGs and immune-related 
genes, immune-related cerebral vasospasm genes were obtained via intersecting immune-related genes and 
cerebral vasospasm DEGs. We also compared the infiltration of 28 immune cells between cases with cerebral 
vasospasm and those without cerebral vasospasm. Finally, we constructed a model to perform the validation 
experiments.
Results: Of the DEGs, there were 24 upregulated and 21 downregulated genes in the vasospasm samples 
compared to the no-vasospasm samples. Functional enrichment analysis showed that these genes play key 
roles in several biological processes and signaling pathways such as the bone morphogenetic protein (BMP) 
signaling pathway, cellular response to BMP stimulus, natural killer cell chemotaxis, negative regulation of 
transmembrane receptor protein serine/threonine kinase signaling pathway, MHC protein complex binding, 
and receptor ligand activity, among others. CCL4, HLA-DQA1, IGF2, NTS, and so on were the significant 
immune-related genes. Furthermore, the immune cell infiltration results showed that there were differences 
between patients with vasospasm and those without vasospasm. Finally, we found that CCL4 had significantly 
higher expression in patients with vasospasm than those without vasospasm. 
Conclusions: CCL4 is an important regulator of vascular dysfunction in cerebral hemorrhage.
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Introduction

Cerebral hemorrhage is a form of stroke which is 
characterized by high incidence, high risk of disability, and 
a high mortality rate. Cerebral hemorrhage accounted for 
1/3 of stroke cases worldwide in 2013 (1). There are several 
types of cerebral hemorrhage, including intracerebral 
hemorrhage (ICH), subarachnoid hemorrhage (SAH), and 
intraventricular hemorrhage (IVH). The main cause of 
cerebral hemorrhage is vascular disruption. Furthermore, 
cerebral hemorrhage can induce blood-brain barrier (BBB) 
dysfunction, and this process plays a significant role in brain 
damage after initial cerebral hemorrhage. BBB dysfunction 
will lead to circulating leukocyte extravasation and enhances 
brain injury (2,3). All of these forms of cerebral hemorrhage 
cause increased BBB permeability, brain edema, and 
neuroinflammation. The vasculature is critical to cerebral 
hemorrhage but also plays a significant role after the initial 
hemorrhage, since it forms an integral part of the BBB. 

There are several mechanisms involved in endothelial 
or vascular dysfunction. The main alterations occur 
in the junctions [particularly tight junctions (TJs)], 
which are significant regulators of endothelial cell 
death and transcytosis. However, only few studies have 
investigated the changes in vascular function after cerebral 
hemorrhage. 

Several studies have examined brain endothelial 
junctions in ischemia but not in cerebral hemorrhage (4). 
In various cerebral hemorrhage types, many changes to 
the endothelium or vasculature can occur, with the main 
changes occurring in endothelial cell junctions. ZO-1, 
claudin-5, and occludin protein expression levels have been 
shown to decrease 1–3 days after ICH (5-10). All of these 
proteins are TJ proteins. Furthermore, brain claudin-5 
and occludin mRNA expression levels were shown to be 
downregulated 1–3 days after ICH (7). SAH can lead to 
reductions in cerebral blood flow, which can be influenced 
by intracranial pressure, hemorrhage mass effect, and 
macro/microvascular vasospasm (11). TJ proteins have 
also been detected in SAH (12-14). Cytoskeletal abnormal 
alterations have been found in smooth muscle cells after 
SAH, and the underlying mechanism may be a change 
in the expression of S-100 (15). Except for cerebral 
hemorrhage, TJ proteins and mRNA expression levels have 
been reported to be altered in ischemia (4). Based on the 
fact that endothelial and vascular functions are critical for 
cerebral hemorrhage, studies have explored therapy targets 
after hemorrhage (16). However, most of these studies only 

focused on TJ protein expression and the endothelial cell 
junction, rather than vasospasm. We therefore performed 
this study to investigate the biomarkers of vasospasm after 
cerebral hemorrhage, aiming to further understand vascular 
regulation after cerebral hemorrhage and find novel 
therapies for the treatment of vascular dysfunction. Besides, 
we also analyzed the relationship between vasospasm 
and immune cell infiltration in cerebral hemorrhage 
in an attempt to find a new target for immunotherapy. 
We present the following article in accordance with the 
STREGA reporting checklist (available at https://apm.
amegroups.com/article/view/10.21037/apm-21-3717/rc).

Methods

Raw data

The transcriptome data and clinical data of GSE37924 was 
downloaded from the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) database, including 128 
cases with cerebral hemorrhage. Of these, there were 66 
cases with cerebral vasospasm and 62 cases without cerebral 
vasospasm. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Acquisition of differentially expressed genes (DEGs) related 
to cerebral vasospasm

Analysis of DEGs between cases with cerebral vasospasm 
and those without cerebral vasospasm were performed in 
R software via the limma package, and log2 fold change 
|logFC| >0.4 and false discovery rate (FDR) <0.05 were the 
criteria for determining DEGs.

Functional enrichment analysis of DEGs

We conducted  Gene Ontology  (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional 
enrichment analysis of DEGs through the clusterProfiler 
package in R, and the results were presented via the ggplot2 
package in R.

Construction of the protein-protein interaction (PPI) 
network

The PPI network of DEGs was constructed through the 
STRING database (https://string-db.org/) and generated 
via Cytoscape software.

https://apm.amegroups.com/article/view/10.21037/apm-21-3717/rc
https://apm.amegroups.com/article/view/10.21037/apm-21-3717/rc
https://www.ncbi.nlm.nih.gov/geo/
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Acquisition of immune genes associated with cerebral 
vasospasm

An immune-related gene list was downloaded from the 
ImmPort database, and immune-related cerebral vasospasm 
genes were obtained by intersecting immune-related genes 
and cerebral vasospasm DEGs. We then analyzed the 
expression levels of immune-related DEGs in patients with 
and without cerebral vasospasm.

Immune infiltration analysis

We used single sample gene set enrichment analysis 
(ssGSEA) to calculate the immune infiltration landscapes 
of the GSE37924 cohort.  The ssGSEA method is 
a machine learning algorithm used to characterize 
intratumoral immune landscapes and can identify the 
expression of 28 kinds of immune cells (17). We compared 
the infiltration of 28 immune cells between cases with 
cerebral vasospasm and those without cerebral vasospasm. 
Furthermore, we also analyzed the relationship between 
the abundance of the 28 immune cells and the expression 
of immune-related cerebral vasospasm genes.

Validation experiments

Establishment and evaluation of cerebrovascular spasm
Rat brain hemorrhage models were established as previously 
described (18) using the non-anticoagulant autologous 
artery blood injection model. After weighing, rats were 
injected with 10% hydrated chloroform for anesthesia and 
fixed in the brain stereo positioning instrument (Shenzhen 
Ruiford Life Technology Co., Ltd., China), and the 
right caudate nucleus was localized according to the Rat 
Stereotaxic Atlas. The map was used to perform right tail 
nuclear positioning: a 1 cm longitudinal incision was made 
in the middle of the head to expose the fontanelle, the three-
dimensional positioning instrument was adjusted so that 
the front was 1 mm after 1 mm, the right side was 3 mm, 
and a small hole of about 1 mm in diameter was created 
direct to the brain (19). The right femoral artery was fully 
exposed, the syringe puncture was traced, and non-anti-
condensate artery blood (100 µL) was extracted. The brain 
was slowly entered by drilling, slowly injected at 10 µL/min,  
after the blood is completed, 10 min, twice Neither, prevent 
blood return, medical bone wax to enclose drilling. After 
observing bleeding cessation, the scalp and the groin area 
incisions were monitored, and the rats were kept warm 

postoperatively until recovery. After resuscitation, the rats 
were scored according to the Longa method (20). 0 point: 
no nerve function; 1 point: the opposite front limb could 
not be completely stretched; 2 points: to the opposite side 
of the circle; 3 points: dump on the opposite side; 4 points: 
loss of consciousness. A score of 1 to 3 was considered 
model construction successful. At 72 hours after model 
establishment, the brain was removed from the head, and 
hematoma formation in the basal nucleus is found to be 
formed.

Base artery disease test
After model establishment, rats were administered with 
anesthesia, perfused with saline, depressed with 4% 
polymethylaldehyde (pH 7.4), and the complete brain 
base artery (BA) and middle cerebral artery (MCA) were 
obtained. After incubation at 4 ℃ in 4% paraformaldehyde 
overnight, tissues were dehydrated and embedded in 
paraffin. In order to avoid arterial branches, the BA was 
cross-cut at the same intermediate position (2 mm) each 
time. Every 4 slices cut in the coronal plane was stained 
with hematoxylin and eosin (HE) and observed under the 
microscope. The basilar arteries in the no-vasospasm group 
were found that the tube walls were thin, the lumen was 
large, and the endometrium was smooth. Angiogenesis of 
the base artery was visible, the tube wall was thickened, the 
lumen was small, endothelial cell deformation, and tortuous 
intimal folds were observed in vasospasm group.

RNA extraction and quantitative real-time polymerase 
chain reaction (qRT-PCR)
The total RNA of rat brain vascular tissues was extracted 
using TRIzol and RNAISO Plus Total RNA Extraction 
reagents (Japan Takara). The concentration and purity 
of RNA samples were measured by NanoDrop 2000 
(Thermo Fisher Scientific, USA). Reverse transcription 
was performed with a random primer, and removal of 
genomic DNA was performed with the Primescript TMRT 
Reagent Kit and the GDNA ERASER kit (Japan Takara). 
Then, cDNA amplification was performed using TB 
Green Premix EX TAQ II (Japan, Takara) and the Applied 
Biosystems 7500 Fast Real Time PCR Systems Sequence 
Detection System (US Applied Biosystems). GAPDH and 
β-actin were used as internal controls, and each experiment 
was performed in triplicate. The relative quantification of 
mRNA expression was compared to internal parametrin, 
and the 2−ΔΔCt method was used. Finally, we performed 
validation of the selected genes to confirm the gene 
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Figure 1 DEGs in cerebral hemorrhage patients. (A) Heatmap of DEGs in cerebral hemorrhage patients; (B) volcano plot of all DEGs, 
where red and green represent upregulated and downregulated genes, respectively. DEGs, differentially expressed genes. 
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Ethical statement
Experiments were performed under a project license (No. 
202110002) granted by institutional ethics board of the 
First Affiliated Hospital of Guangxi Medical University, in 
compliance with the First Affiliated Hospital of Guangxi 
Medical University guidelines for the care and use of 
animals.

Statistical analysis

All statistical analyses were performed in R software. 
Difference analysis and correlation analysis were performed 
using the Wilcoxon test and Spearman correlation analysis, 
respectively. P<0.05 was considered statistically significant.

Results

Analysis of DEGs

DEG analysis indicated that compared with cerebral 
hemorrhage patients without vasospasm, there were 24 
upregulated and 21 downregulated genes in the vasospasm 

samples (Figure 1). 

Functional enrichment analysis results of DEGs

The GO functional enrichment analysis results of DEGs 
indicated that negative regulation of transmembrane 
receptor protein serine/threonine kinase signaling pathway, 
BMP signaling pathway, response to BMP, cellular response 
to BMP stimulus, and natural killer cell chemotaxis were 
the top 5 biological processes (BP) in cerebral hemorrhage 
patients. COPII-coated ER to golgi transport vesicle, MHC 
class II protein complex, MHC protein complex, integral 
component of lumenal side of endoplasmic reticulum 
membrane, and lumenal side of endoplasmic reticulum 
membrane were the top 5 cell components (CC). Receptor 
ligand activity, signaling receptor activator activity, MHC 
protein complex binding, MHC class II receptor activity, 
and MHC class II protein complex binding were the top 5 
molecular functions (MF) in cerebral hemorrhage patients 
(Figure 2A,2B). 

The results of KEGG pathway analysis indicated that 
Epstein-Barr virus infection, antigen processing and 
presentation, B-cell receptor signaling pathway, rheumatoid 
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Figure 4 Immune-related genes associated with cerebral vasospasm. (A) Venn diagram of immune-related genes and DEGs; (B) expression 
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expressed genes.

Figure 3 The PPI network of DEGs, where red and green represent upregulated and downregulated genes, respectively. PPI, protein-
protein interaction; DEGs, differentially expressed genes.

arthritis, and Th17 cell differentiation were the top 5 
enriched KEGG pathways (Figure 2C,2D).

The PPI network of DEGs

We constructed a PPI network for 45 DEGs via the 
STRING database. The results showed that there were 
17 DEGs which interacted with each other, comprising 9 

upregulated genes and 8 downregulated genes (Figure 3).

Immune-related genes associated with cerebral vasospasm

Venn analysis results revealed that there were 10 overlapping 
genes between immune-related genes and DEGs in 
cerebral vasospasm (Figure 4A). Differential expression 
analysis results showed that C-C motif chemokine ligand 
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4 (CCL4), major histocompatibility complex, class II, DQ 
alpha 1 (HLA-DQA1), major histocompatibility complex, 
class II, DR beta 1 (HLA-DRB1), interleukin 1 receptor 
antagonist (IL1RN), ISG15 ubiquitin like modifier (ISG15), 
and lymphotoxin beta (LTB) were expressed at low levels in 
patients with cerebral vasospasm, while heat shock protein 
90 alpha family class A member 1 (HSP90AA1) and insulin 
like growth factor 2 (IGF2) were expressed at high levels in 
cerebral vasospasm patients (Figure 4B). 

Levels of immune cell infiltration in cerebral hemorrhage 
patients

Each of the 28 immune cells in the ssGSEA analysis are 
shown in a histogram (Figure 5A). Correlation analysis 
between immune cells showed that type 17 T helper 
cells and effector memory CD4 T cells were negatively 
correlated with the abundance of most other immune cells, 
while most of the other 26 types of immune cells were 
positively correlated (Figure 5B). Myeloid derived suppressor 
cells, neutrophils, effector memory CD8 T cells, immature 
B cells, activated dendritic cells, and mast cells showed 
high levels of infiltration in cerebral hemorrhage patients  
(Figure 5C). Correlation analysis results demonstrated that 
the expression levels of CCL4, IL1RN, PIK3CD, HLA-
DQA1, LTB, HLA-DRB1, and ISG15 were positively 
correlated with the infiltration levels of most immune cells, 
while the expression levels of HSP90AA1, IGF2, and NTS 
were negatively correlated with the infiltration levels of 
most immune cells (Figure 5D).

Differential gene expression levels 

The validation experiments showed that CCL4, Rasgpr1, 
and Spp1 were significantly expressed in vasospasm samples, 
while VEGFC, IL17B, HCST, and Crb1 were downregulated 
in vasospasm samples (Figure 6).

Discussion

Cerebral hemorrhage is a form of stroke characterized 
by high mortality. Risk factors of cerebral hemorrhage 
include hypertension and atherosclerosis, among others. 
The dysfunction of blood vessels has a critical influence 
on the treatment choice, and can even distinguish the 
outcomes of these patients. At present, there is a lack of 
sensitive and specific markers and imaging diagnostic tools 
to identify the patients with or without vasospasm. Several 

factors have a strong influence on vascular function during 
the initial stages or after cerebral hemorrhage, especially 
gene alterations (4,15). Thus, we analyzed DEGs between 
patients with and without vasospasm, and performed 
enrichment analysis of the selected genes to determine their 
roles in cerebral vasospasm. 

Of the DEGs found in our study, there were 24 
upregulated and 21 downregulated genes  in  the 
vasospasm samples compared to those without vasospasm. 
Fur thermore ,  we  se l ec ted  DEGs  for  va l ida t ion 
experiments via the hub PPI network. Gene expression 
level results showed that only CCL4 was significantly 
expressed in vasospasm patients. CCL4, a CC chemokine, 
also known as macrophage inflammatory protein (MIP)-
1β, has a variable influence on multiple immune and non-
immune cells via its interaction with its specific receptor, 
CCR5. Several studies have shown that the CCL4 signaling 
pathway is important for tumorigenesis and progression 
(21-24). Zhu et al. revealed that CCL4 may play a critical 
role in ischemic stroke, and may be significantly correlated 
with sex (25). CCL4 has also been shown to regulate 
human vascular smooth muscle cells (26). Furthermore, 
Chang et al. indicated that CCL4 can act as an inhibitor 
for atherosclerosis via regulating macrophage cells (27). 
However, there are no studies on the relationship between 
CCL4 and cerebral hemorrhage. 

To determine the fundamental biological functions 
of these DEGs, we performed functional enrichment 
analysis. The results showed that these genes play key 
roles in several biological processes and signaling pathways 
such as the bone morphogenetic protein (BMP) signaling 
pathway, cellular response to BMP stimulus, natural killer 
cell chemotaxis, negative regulation of transmembrane 
receptor protein serine/threonine kinase signaling pathway, 
MHC protein complex binding, and receptor ligand 
activity, among others. The BMP signaling pathway has 
not been investigated in cerebral hemorrhage, but there are 
several studies that have demonstrated its critical function 
in various vascular diseases (28-30). The transmembrane 
receptor protein serine/threonine kinase signaling pathway 
also acts as the significant regulator for vascular (31). MHC 
class II antigen but not MHC protein complex binding has 
been detected in traumatic brain injury (32). According to 
natural killer cell chemotaxis, it is the immune cells that 
have been clarified in the cerebral hemorrhage. Kim et al. 
revealed that natural killer cell chemotaxis plays a significant 
role in delayed cerebral ischemia following SAH (33). From 
these findings, the DEGs found in this study play significant 
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Figure 6 The PCR results of several genes between vasospasm and without vasospasm. The ns represents P>0.05. *, P<0.05; **, P<0.01; ***, 
P<0.001. PCR, polymerase chain reaction.

roles in the regulation of vascular diseases, but there is no 
research on the involvement of these DEGs in cerebral 
stroke. 

Several studies have shown that inflammation plays a 
significant role in angiogenesis (34-36). The relationship 

between inflammation and the vasculature has been well 
investigated in cancer, but few studies have been performed 
in others diseases. Capitão et al. showed that inflammation 
has a significant influence on diabetic retinopathy (34). 
Inflammation is also strongly correlated with immunity. 
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In this study, we conducted an analysis of the intersection 
between DEGs and immune-related genes, as immune-
related genes often work via the regulation of immune cell 
infiltration. We selected the intersecting immune-related 
genes and explored the relationships between immune-
related genes and the infiltration of various immune cells. 
The results showed that CCL4, HLA-DQA1, HLA-DRB1, 
HSP90AA1, IGF2, IL1R, NISG15, LTB, NTS, and PIK3CD 
were intersecting genes. LTB4 has been investigated for its 
role in cerebral hemorrhage (37-40). Hijioka et al. indicated 
that LTB can promote neutrophil infiltration, leading to 
neuroinflammation (41). Zhu et al. showed that IGF2 could 
regulate vascular smooth muscle cells (42). IGF2 is also a 
novel target for psychiatric and neurological disorders (43).  
Durocher et al. showed that PIK3CD was the immune 
response hub gene for ICH (44). Our results showed that 
there were differences in immune cells between patients 
with and without vasospasm. Neutrophils and natural killer 
cells had higher infiltration in vasospasm patients. Our 
findings show that these immune-related genes and immune 
cells may act as significant factors in cerebral hemorrhage 
and vascular dysfunction such as vasospasm. Xue et al.’ 
review indicated that in animal models and early clinical 
trials in intracerebral haemorrhage, several drugs have 
reduced detrimental neuroinflammation without substantial 
compromise of the beneficial reparative aspects of an 
inflammatory response (45). Other genes have been not yet 
been determined in cerebral hemorrhage. The limitation 
of this study is the lack of in vitro and in vivo experiments. 
Further, we will conduct vitro and in vivo experiments on 
the hub genes in present study to verify the relationship 
between gene expression regulation and cerebral vasospasm, 
so as to lay a foundation for accurate target therapy of 
cerebral hemorrhage. 

Conclusions

The immune-related gene CCL4 may act as a critical 
regulator of cerebral hemorrhage patients with vasospasm, 
but the fundamental biological function of this gene 
remains unclear. Our present study may pave the way for 
further research in vasospasm after cerebral hemorrhage. 
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