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Introduction

Musculoskeletal (MSK) imaging has undergone a major 
transformation over the past five decades. Advancements 
in orthopaedic surgery and arthroscopy have developed 
in unison with imaging techniques, which has led 
to improvements in clinical diagnosis, therapeutic 
interventions and patient prognostication.

With recent major developments of magnetic resonance 
imaging (MRI), attention has turned to the unique 
capability of defining bone morphology and soft tissue 
abnormalities. Additionally, the development of state-of-
the-art quantitative MRI techniques has allowed for the 
depiction of early stage cartilage lesions (1). However, MRI 
is still limited in its ability to provide static morphological 
diagnosis. In the future, we will likely see all-in-one patient-

centric examinations based on MRI, which can provide 
valuable information on joint morphology, biochemical 
function and dynamic “in vivo” assessment.

Imaging

The past

Conventional radiography (XR) remains the cornerstone of 
hip imaging (2), and continues to have a role in screening, 
diagnosis and post-operative surveillance. The advent of 
computed tomography (CT), represented a transformation 
in clinical practice from XR to cross-sectional imaging. 
Initially, only low-quality axial two-dimensional images 
were available and examination times were even longer than 
current MRI acquisition times. Only with the establishment 
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of multiplanar reconstructions based on 3D data sets was 
the use of CT in MSK imaging transformed (3), allowing 
for accurate and improved surgical planning (Table 1).

MRI allows for a more comprehensive analysis of the 
articular cartilage, capsulolabral tissue, soft-tissue and 
osseous structures (14). Thirty years ago, MRI examinations 
were technically difficult and resulted in low resolution 
images. The development of MR arthrography (MRA) 
had a major impact on treatment decisions, particularly 
in the evaluation of cartilage and labral integrity (2). 
In the mid-1990s MRA was the examination of choice 
for the evaluation of labral disruption, and remains the 
imaging gold-standard for patients with femoroacetabular 
impingement (FAI) (15).

The present

The hip joint has gained particular attention in the last 
decade in parallel with significant advances in MSK 
imaging. Ganz developed a revolutionary technique 

that allowed for safe dislocation of the hip and direct 
visualization of the joint, which provided fundamental 
insights into the pathogenesis of early osteoarthritis (OA) 
(3,13). New biomechanical concepts were recognized such 
as the depiction of FAI as a major cause of secondary OA in 
non-dysplastic hips (14-18).

Crucial questions still remain to be answered. For 
instance:

(I) What morphological factors, beside cam-type FAI 
and dysplasia contribute to hip OA (19)?

(II) During disease progression, what is the exact 
discriminative point when cartilage damage 
becomes irreversible (20)?

(III) Why are some patients with FAI morphology 
asymptomatic and never develop OA (21-23)?

Accurately determining the amount of articular cartilage 
injury is important as it has a direct impact on the clinical 
decision-making between hip preservation surgery and total 
hip replacement (24). The workup of the young patient 
with hip pain generally follows specific algorithms (25) 

Table 1 Timeline of major achievements in imaging and hip orthopedics

Timeline Authors Findings or procedure Event

1933 Elmslie (4) “many patients who develop OA at a comparatively early age – 
for example from 40 to 50- will be found to have a pre-existing 
deformity of the joint”

Landmark on research to determine the 
cause of hip OA

1958 Wiles (5) Precedent of the modern genre arthroplasties First prosthetic total hip replacement

1965 Murray (6) Concept that secondary OA also derives from cases with subtler 
morphologic hip deformities. OA secondary to the “tilt deformity”

OA described as secondary if associated 
to a pre-existing deformity

1974 Ambrose and 
Hounsfield 
(7,8)

The first description of a Computerized axial tomography in the 
radiology literature by Hounsfield and colleagues in the British 
Journal of Medicine

First clinical application of computerized 
axial tomography

1975 Murray and 
Stulberg (6,9)

 “pistol grip deformity” first described as a finding similar to the 
“tilt deformity”, including a flattened lateral femoral neck with 
widening and shortening of the FHN

Cam deformity first described 

1976 Mansfield (10) Finger image of the Dr. Maudsley First-ever human MRI image

1987 Hajek (11) To enhance the efficacy of MRI in evaluating articular soft-tissue 
structures, arthrography was performed before imaging in 45 
fresh cadaveric specimens

First study of direct magnetic resonance 
arthrography with gadopentetate 
dimeglumine/saline mixture into 
cadaveric shoulder joints

1993 Langen (12) Image quality improved with substantial radiation dose reduction Introduction of digital radiography

1998 – Simultaneous acquisition of four interweaving helices or spiral 
paths where previously there had been only one had a profound 
effect on the volume and spatial resolution of imaging

First multidetector (four-detector row) 
scanner CT

2001 Ganz (13) Safe hip surgical dislocation Understanding the pathophysiology of FAI

FHN, femoral head-neck; OA, osteoarthritis.
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(Figures 1,2). The primary goals of diagnostic imaging are to 
accurately identify osseous morphology and characterize the 
amount of chondrolabral damage. However, it is important 
to understand the limitations and strengths of each imaging 
modality, as for example, both XR and CT lack accuracy for 
assessing articular cartilage pathology (2), whereas specific 
MRI sequences and advanced technologies can be useful (26). 

New technical and imaging innovations are presently 

available in routine clinical setting, bringing important 
implications to the study of the young hip (21). The 
diagnostic performance of these techniques may therefore 
improve the ability to predict an individual patient-specific 
outcome (2,22).

Radiography 
After history and clinical examination, XR is useful to assess 
for OA, including evaluation of bone morphology, joint 
space width as well as to exclude other hip pathology (23). 
XR should include a standing anteroposterior (AP) view of 
the pelvis, and a lateral view of the affected hip. Nonetheless 
the utility and accuracy of the various types of radiographs 
remains controversial (25,27).

Ultrasound, arthrography and CT 
Conventional arthrography is seldomly performed as it 
has been replaced by MRA. However, the origin of the 
referred hip pain might still be confirmed by intra-articular 
anesthetic injection (28). Ultrasound is not routinely used 
in the workup of FAI, although ultrasound-guided injection 
procedures can be helpful to exclude pain derived from 
periarticular structures such as trochanteric pathology, 
iliopsoas bursitis and other myotendinous elements (29). 
CT can be helpful in the characterization of fractures and 
unusual bony anatomy. Further, it is helpful to evaluate 
bony morphology of the pelvis, version, the anterior inferior 
iliac spine and extra-articular causes of impingement, as well 
as, building 3D models (30-32). Regarding FAI, pincer-
type morphology is currently well addressed with standard 

Figure 1 Algorithm for evaluation of FAI used at Hospital da 
Luz in Lisbon. First, the diagnosis of FAI is suspected based on 
patient history and clinical findings. Next, the hip is assessed on 
an anteroposterior pelvic radiograph (acetabulum and pincer 
morphology) and on a 45° Dunn view. Using MRI, the morphology 
of the femur is assessed (cam deformities, femoral torsion) and 
damage to the cartilage and labrum is evaluated. Lastly, all data 
are combined to reach a diagnosis, define appropriate course of 
treatment and follow-up.

Figure 2 Schematic figure representing proposed complete MRI protocol for the assessment of the young hip. 2D sequences with radial 
imaging are used for the assessment of morphology and pathology. Version assessment of the femoral neck is performed. 3D sequences to 
allow for correction of pelvic tilting, 3D modelling, 3D printing and virtual ROM simulations. Finally, a sequence that allows for cartilage 
biochemical mapping.
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pelvic XR (25), while for cam morphology, CT or MRI can 
offer a clear advantage since the complexity of the three-
dimensional femoral shape can be thoroughly evaluated (33). 
Furthermore, measuring femoral version is only feasible 
with cross-sectional imaging (25).

Magnetic resonance imaging 
MRI is an all-in-one imaging method as it depicts joint 
and periarticular pathology, including stress fractures, 
myotendinous injuries, bursitis and signs of ischiofemoral 
impingement (26). MRI can accurately assess bone 
morphology associated with FAI syndrome and detect 
chondrolabral damage. While conventional MRI can only 
detect macroscopic chondral damage (34), the presence of 
subchondral edema and cystic changes, have been shown to 
be indirect signs of advanced cartilage changes in the hip 
joint at the time of arthroscopy (35).

MRI techniques include (23,36):
(I) Conventional MRI;
(II) Magnetic resonance arthrography (direct/indirect; 

with or without traction);
(III) Quantitative biochemical MRI: T2/T2* mapping, 

delayed gadolinium-enhanced of  cart i lage 
(dGEMRIC) and T1rho (T1ρ).

Technical advances in MSK MRI are emerging with 
potential for implementation into clinical practice, namely 
(37,38):

(I) High-resolution 3D sequences for imaging of 
cartilage (23);

(II) Biochemical imaging of cartilage;
(III) 7.0 Tesla MRI (39);
(IV) Imaging of metal prosthetics with novel MRI pulse 

sequences (22).
New quantitative MRI imaging is encouraging for 

early detection of chondral and labrum injuries (40), as it 
probes changes in cartilage properties and biochemical 
composition, which represents an early stage of the 
degenerative cascade (41).

High-Resolution MRI
In order to obtain high-resolution MRI, a compromise 
between time and resolution is mandatory given that 
technical details are optimized (42,43). As such, some 
factors must be warranted:

(I) Time: maintain patient throughput with short 
examination times (around 30 minutes);

(II) Magnet: 3.0Tesla MRI has been widely adopted for 
hip evaluation. The theoretical doubling of signal-

to-noise ratio can be used to obtain high-resolution 
(hR) imaging and/or shorter scan acquisition times;

(III) Coils: dedicated hip coils for optimal image 
quality (44). Improved coil geometry will further 
improve image quality;

(IV) Advanced morphological sequences (37):
 Implementation of parallel imaging allowing 

scan time to be accelerated;
 Compressed sensing;
 Isotropic MR images allowing for multiplanar 

reformats and 3D imaging.

MR arthrography
MRA can be performed by introduction of contrast material 
either (I) intra-articularly, as in direct MRA (dirMRA) or (II) 
intravenously, as in indirect MRA (indMRA) (45).

A detailed and comprehensive protocol for dirMRA 
should be strictly followed to achieve maximum quality 
(Figures 2-6). MRA of the hip plays a major role in:

(I) Diagnosing internal derangements of the joint (46);
(II) Evaluating symptomatic improvement following 

administration of anesthetic, helpful to confirm that 
symptoms and joint changes are related. 

Several studies have compared the performance of these 
different protocols with variably reported accuracies (47-49).  
Previously, MRA has shown to be more accurate in 
detecting minor acetabular cartilage defects than non-
contrast MRI (50,51). Diagnostic test accuracy was shown 
to be better for dirMRA when compared with conventional 
MRI for detection of labral and cartilage injury, in specific 
chondral lesions. Concerning indMRA, good results were 
also obtained, although more studies are needed to fully 
assess its accuracy (52). In patients with suspected FAI, 
MRA may still be considered the gold standard of imaging 
for the evaluation of the chondrolabral injury (25,49,53).

MR arthrography with leg traction
The rationale behind traction MRA (traMRA) is centered on 
the separation of the acetabular and femoral surfaces allowing 
a better assessment of the chondrolabral interface and central 
compartment (54,55). Recently, a study correlating traMRA 
with arthroscopy assessed the utility of this technique for 
the diagnosis of chondrolabral damage (55). Traction was 
well tolerated by most patients and consistently achieved 
separation of cartilage layers, enabling accurate detection of 
chondral and labral lesions (55). 

Procedure: prior to the application of traction with the 
hip slightly flexed, a conventional arthrography injection 
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(10–27 mL) is performed and MR-compatible traction 
devices are routinely used for continuous traction during 
the examination. Traction devices consist of a weight 
connected to a pulley system, a cable or rope connected to 
the leg either with an ankle brace or with adhesive straps for 
skin traction. The amount of traction varies between 6 and 
23 kg for a period ranging between 3 and 19 min among 

different studies (51,54,55). 
Schmaranzer et al. (55) reported detection of acetabular/

femoral chondral injury with a sensitivity of 85–88%/81–
86% and specificity of 78–96%/91–94%, respectively  
(Table 2). The combination of contrast agent and additional 
space from distraction allows for improved visualization of 
the cartilage surfaces of the femoral head and acetabulum as 

A B

Figure 3 Direct arthro-magnetic resonance examination. Sagittal fat-suppressed proton-density sequence (A) and corresponding radial 
cut in Proton-Density (B). Red curved line represents CAM morphology assessed on the radial cut at 1:00 o’clock (B) and corresponding 
deformity in the sagittal plane extending from 11:30 to 3:00.

Figure 4 Measuring femoral torsion by MRI as a routine part of general hip workup. Femoral version is determined by the angle between 
the femoral neck axis and an axis parallel to the posterior aspect of the femoral condyles, measured in the transverse plane.
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Figure 5 A 44-year-old male undergoing hip preserving surgery. Multiplanar reformats based on isotropic T1-VIBE sequence of the 
whole pelvis. (A) Coronal reformat of the hip. A Cam morphology is depicted on the transition of the superior quadrants with an intact 
chondrolabral junction; (B) oblique axial reformat (long axis of the neck), showing normal offset of the femoral head-neck junction; (C) short 
neck axis reformat; (D) coronal pelvic reformat. 

Figure 6 A 23-year-old female undergoing hip preserving surgery. 3D Model reconstructed based on volumetric MRI sequence of the 
pelvis. (A) Lateral view of the acetabulum; (B) inferior view of the acetabulum, showing normal pelvic morphology; (C) femoral 3D model 
anterosuperior view, showing discrete convexity of the femoral head neck junction; (D) medial view of the same model.
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distinct entities.

Advanced cartilage imaging
Improved evaluation of articular cartilage status is 
imperative to allow both assessment of patients who may 
benefit from FAI surgery, as well as, long-term evaluation 
of clinical outcomes (26). Recognition of pre-existing 
degenerative changes at an early stage is therefore crucial. 
Although large defects can be confidently detected by 
conventional MRI, morphologic sequences lack crucial 
(quantitative) information on the pathophysiology of 
cartilage degeneration (36). Prior to structural damage 
of the cartilage, early changes can be evaluated using 
functional MRI techniques (1). This field remains an 
ongoing subject of research and future developments 
are necessary to allow its widespread use (1). Currently 
the main limitations include the narrow applicability of 
normative threshold standards (as they are dependent on 
multiple factors) and current indefinite clinical correlation. 
Challenges in quantitative imaging (17,23,41,58) presently 
include:

(I) Hardware related:
(i) Need for dedicated cartilage-specific sequences 

and high-MR field strengths;
(ii) High signal-to-noise (SNR) ratio and high-

spatial resolution;
(iii) Technical variations (changes in acquisition 

parameters can lead to limited comparability). 
(II) Anatomy related:

(i) Hip joint cartilage (deep location, thickness 
and its spherical shape);

(ii) Hip susceptibility to artifacts and volume 
averaging;

(iii) Mapping values represent the sum of the signal 
of joint fluid and both chondral surfaces;

(iv) Standard regional/sectorial differences in the 
biochemical composition of hip cartilage.

(III) Patient related:
(i) Cartilage loading (has an influence on the 

extracellular matrix). Current recommendation 

is that this technique should be performed in 
the unloaded state at the end of the MR scan;

(ii) Inter-subject anatomic variations (can lead 
to misinterpretations with added limited 
comparability; patient-driven normalization 
can compensate for deviations caused by 
technical changes and variations related to 
age and individual cartilage configuration).

Quantitative MRI techniques (1) can probe the depletion 
and/or disorganization of proteoglycan and collagen/water 
(Table 3):
Delayed gadolinium-enhanced MRI of cartilage 
(dGEMRIC)
Glycosaminoglycan (GAG) are negatively charged 
polysaccharides (consist of NH and OH groups) that 
highly attract water and serve to resist compressive forces. 
High contents are found in the extracellular matrix of 
healthy cartilage (1). The dGEMRIC is used for assessing 
typical features of early-onset OA, namely GAG loss 
and collagen breakdown (41). It is based on the use of 
a contrast agent named gadopentetate dimeglumine 
[Gd(DTPA)2]. Gd(DTPA)2– is an anionic molecule and is 
negatively charged. In the case of depletion of GAGs due 
to arthritis, these GAG’s are replaced by Gd(DTPA)2– 
within the cartilage if given time. Consequently, the 
measurable Gd(DTPA)2– concentration is relatively low 
in native cartilage and relatively high in case of arthritis. 
The distribution of Gd(DTPA)2– in the cartilage can be 
measured by a T1 weighted sequence. By measuring the 
spatial variations between Gd(DTPA)2– and GAGs, the 
quality of cartilage can be determined (75,76).

This technique can either be used with direct intra-
articular or intravenous injection of a contrast agent (75), 
and a time delay separating contrast agent administration 
and image acquisition is used (intravenous: 30–90 min; 
intra-articular: 15–30 min) (76). The most widely used 
protocol of Burstein recommends 10–20 minutes of 
exercise (e.g., walking, climbing stairs, and cycling) 
immediately after the contrast administration. No exercise 
is recommended after intra-articular based protocol. It 
has been suggested that isolated T1Gd assessment of the 
hip joint cartilage is sufficient for the evaluation without 
the need for time consuming pre-contrast imaging (except 
in the setting of post-operative cartilage repair) (77). 
Baseline dGEMRIC was shown to be able to predict the 
development of radiographic OA (40). Similarly, the size 
and position of cam morphology determined the severity 
and location of progressive cartilage damage, supporting the 

Table 2 Sensitivity and specificity for detection of chondral damage 
according to different studies using magnetic resonance

MRI techniques Sensitivity (%) Specificity (%)

MRA (53,56,57) 40–83 41–91

MRA with traction (55) 81–88 78–96
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biomechanical etiology of FAI (18,78).
T2 and T2* mapping (Figures 7,8)
T2/T2* mapping have been shown to correlate with 
chondral matrix hydration and collagen integrity (1). Each 
tissue has a similar transverse relaxation time (T2) at a 
specified MR strength. Relaxation times are correlated 
to the speed by which nuclei lose phase after magnetic 
excitation. An additional de-phasing effect comes into 
play if gradient-echo MRI is performed, referred to as 
T2* mapping. T2 mapping is a well proven imaging  
modality (79). However, the orientation of collagen fibres 
influences the estimation of T2 relaxation values and 
reduces the accuracy of T2 mapping in certain regions 
of articular cartilage (magic angle effect). Due to the 
magic angle effect, T2 values of cartilage are influenced 
by its orientation relative to the static magnetic field (B0). 
Secondly, the acquisition times are relatively long. Thirdly, 
T2 mapping appears less sensitive for detecting early 
stages of cartilage lesions (80). T2* mapping has shorter 
acquisition times and higher resolution compared to T2 
mapping although it is more prone to magic angle effects 
and is more susceptible to artifact (70).
T1ρ (T1 rho)
Similar to dGEMRIC, T1rho (T1ρ) relaxation time 
mapping is sensitive to the GAG content of hyaline 
cartilage. In a T1ρ sequence the spins in the direction of the 
B0 magnetization are first flipped into the transverse plane 
by a 90-degree radiofrequency (RF) pulse. A second RF 
pulse, better known as spin-lock pulse, is applied parallel to 
the magnetization vector. This spin-locked magnetization 
will relax with a time constant T1ρ and is dependent on the 
frequency and duration of the spin-lock pulse (TSL). The 
spin-lock pulse is applied with variable TSLs, at least two, 
at certain intervals which are also depended on the spin-
lock frequency.

T1ρ—like T2 mapping—is founded on the motion 
of water molecules. T1ρ is widely considered to be 
sensitive to the protons of hydrogen molecules attached 
to proteoglycans of cartilage due to the second spin-lock 
pulse (64). Nevertheless, correlation with other factors, 
such as extracellular matrix, collagen content and collagen 
orientation were found too. The general consensus is that 
T1ρ may provide an imaging biomarker for the detection of 
cartilage degradation, based on the tissue’s macromolecular 
content (41). In the FAI setting, it has been shown that early 
femoral and acetabular chondral changes can be detected 
before macroscopic lesions are apparent, and displays 
differences in distribution patterns across the deeper and T
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Figure 7 Pre-operative imaging of a 35-year-old female with mixed type FAI. (A) Radial T2 mapping measurements at 3.0 Tesla show 
decreased T2 relaxation times in the central compartment; (B) on the corresponding proton density radial cut morphological sequence, no 
obvious cartilage lesions are depicted.

Figure 8 Pre-operative imaging of a 25-year-old male with CAM type FAI. (A) T2* radial cut morphological sequence; (B) radial T2* 
mapping measurements at 3.0 Tesla show decreased T2* relaxation times in the central compartment. 

A B

A B

superficial cartilage layers (64,81).
gagCEST
gagCEST has been used in the knee joint and conceptually 
is the only technique that directly measures GAG cartilage 
content (82). It is based on an asymmetry in the z-spectrum 
of cartilage created by hydroxyl groups in the GAG 
molecule. The application of this method in the hip has not 
yet been demonstrated.
Sodium
Sodium (23Na) cartilage imaging can be also performed in 
this setting. The rationale behind its use centers on the 
negatively charged GAG molecules in the cartilage binding 
of positively charged Na+ maintaining the electroneutrality 
of the extracellular matrix (83). Na molecules conceptually 
distribute in proportion to the GAG molecules in 
degenerated articular cartilage. As such, proteoglycan 

cartilage loss caused by cartilage degeneration can be 
visualized (84). 3D-Isotropic MRI mapping sodium using 
a 7.0 Tesla system was used for the assessment of the knee, 
showing promise as a feasible alternative for evaluating 
OA (39). Limitations of sodium mapping include the need 
for a high-field MRI and dedicated hardware as well as 
anatomical constraints due to the deep location of the hip 
chondral surfaces.

Near future perspectives

Knowledge of biomechanics and physiopathology of the 
hip evolves in parallel with the need for non-invasive 
strategies to further assess the joint. As such, it is imperative 
for simultaneous advances in both static and dynamic 
automated imaging techniques. Currently, the acquisition 
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Figure 9 A 25-year-old female with hip pain undergoing MRI work-up examination, showing discrete osteophytes of the left femoral head. (A) 
Coronal volumetric MRI based sequence; (B) corresponding 3D Model with cinematic rendering quality.

of XR and MRA are the cornerstone of hip imaging. 
Computer-assisted (CompAssist) techniques have been 
based on data derived from isotropic CT images, while 
some studies based segmentation of those datasets on 
alternative tools such as MRI (85,86). However, MRI-based 
automated segmentation (AutSeg) has not yet reached the 
clinical standard due to relatively low contrast differences 
between bone and soft tissues (85).  

The ideal future gold standard comprehensive all-in-one 
examination would comprise (23,87,88): 

(I) Tools for accurate diagnosis and cartilage mapping;
(II) Pre-operative treatment planning and virtual 

treatment performance;
(III) AutSeg algorithms as well as intra-operative non-

invasive registration methods such as statistical 
shape models (SM);

(IV) Intra-operative navigation (OpNav).
Developing OpNav tools to execute the pre-operative 

plan is currently a focus of expanding research, which 
has already seen clinical applications in hip and knee 
arthroplasty. These advances will hopefully lead to 
improved accuracy of intra-operative decision-making for 
both open and arthroscopic FAI procedures (89-91).

3D modeling (Figure 9)

Traditionally, surgeons have relied on 2D imaging to 
pre-operatively assess the hip, before evaluating areas 
of impingement by means of intra-operative dynamic 
visualization and fluoroscopy. However, subject-tailored 
surgical planning is developing on the basis of 3D hip 
modeling (92).

Patients with FAI have abnormal complex 3D bone and 
soft-tissues morphology. As such, routine 3D modeling may 

provide the surgeon a better understanding of the abnormal 
bony pathomorphology that would otherwise be difficult 
to visualize on 2D images. Models based on biplanar (92), 
3D CT (30) or MRI (93) data sets (Figure 9) have been 
used to simulate specific individual bone morphology, 
define impingement-free range of motion (ROM), and to 
perform virtual functional analysis with different degrees of  
function (88). However, further clinical applicability and 
validation of these models for clinical diagnostics is still 
needed.

Automated image analysis 

Most of the previous AutSeg work has been performed 
using XR (92) or CT (94-96).  Advances in image 
processing have helped automate measurements, as well 
as, bone segmentation, thereby improving objectivity and 
reproducibility. Adding 3D anatomical information to 
the AutSeg (97) may be useful in reaching better imaging 
results that are less dependent on other parameters such as 
patient positioning.

MR imaging enables noninvasive, all-in-one, 3D 
assessment of the joint structure including biochemical 
changes with no ionizing radiation and optimal soft tissue 
contrast. Automated analysis using MR image sets (Figure 10) 
includes (85):

(I) An SM-based algorithm allows building 3D 
femoral and acetabular reconstructions;

(II) A coordinate system of the joint is generated to 
build a 2D shape map to project femoral head 
sphericity for calculation of specific parameters (for 
instance alpha angles);

(III) Automatically reformatted images using the 
constructed coordinate system;

A B
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(IV) Automated evaluation of desired parameters 
according to specified algorithm (Figure 10).

Advantages of 3D method analyzed MR images of the 
hip joint include (85,96,98):

(I) Allows for large-scale morphometric and clinical 
MR investigations of the hip region;

(II) High reliability and reproducibility;
(III) Improved analyses of cam-type morphology. 

Imaging-based dynamic ROM simulations and virtual 
surgery

3D data sets of volumetric imaging bear high potential 
for the dynamic assessment of FAI allowing to perform 
pre-operative simulation of ROM, collision detection and 
accurate visualization of impingement areas. In addition 
to virtual 3D reconstruction of the hip joint, dynamic 
manipulation of the image may be useful to the surgeon, 
when pre-operatively assessing the deformity and planning 
for surgical correction (90) (Figure 11). 

(I) “HipMotion” (86) constructs 3D representations 
of the femur and pelvis from CT. In addition, the 
model can be manipulated by the user, and pre-

operative virtual ROM for patients with FAI can 
be calculated based on contact or interference 
occurring at the point of impingement. 

(II) 3D software package Mimics (94) (Materialise, 
NV, Heverlee, Belgium). Automated morphologic 
analysis of the cam lesion can be conducted 
by MATLAB (Math Works, Natick, MA) and 
used to measure the clinical ROM of the hip 
joint. Measured motions are imposed on the 3D 
reconstructed anatomy, and the size and location of 
the abutting portion of the cam lesion are defined 
for each motion. 

(III) “Dionics PLAN Hip Impingement Planning 
System” (Smith & Nephew, Andover, MA) is a tool 
used to analyze patient-specific CT images. After 
automatic 3D rendering of the hip, dynamic ROM 
can be analyzed and areas of bony impingement 
defined on both the proximal femur and acetabular 
rim/pelvis. In addition, virtual surgical correction 
can be performed and dynamic impingement-free 
ROM reassessed. This tool also provides a platform 
for intra-operative assistance by performing virtual 
correction and creating an in vivo comparative 

Figure 10 Volumetric semi-automated MR evaluation of the femoral head-neck junction with corresponding 3D model. (A) Automated 
alpha-angle (α°) measurements made at different points around the femoral head-neck junction in steps of 1° starting at 9 o’clock (posterior); 
10, 11, and 12 o’clock (superior); and 1, 2, and 3 o’clock (anterior) (B). 3D Hip model (showing extension and location of a cam lesion 
represented on the corresponding 3D model (red arrow). Red and orange lines correspond to abnormal α°s; blue line represent normal α°s 
for a given α threshold. 

A B
Alpha angles

12:00 h

9:00 h

3:00 h
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Figure 11 MRI based 3D modelling and dynamic virtual assessment. (A) Virtual ROM detects impingement areas at specific degrees of 
motion represented on the right. In this 30-year-old male with a cam deformity there was impingement noted at 22° of internal rotation 
with 90° of flexion and 20° adduction; (B) pre-operative planning allows depiction of areas of impingement on the virtual model (blue and 
green dots on the femoral head-neck junction). 

virtual fluoroscopic image. 
(IV) Hip Analysis/semi-AutSeg using “ArticulisTM” 

(Clinical Graphics, The Netherlands) has been 
validated and tested for reliability (30). Multiple 
studies have successfully used this software for 
research and clinical purposes in asymptomatic and 
symptomatic populations from CT and MRI data 
sets (22,23,99,100).

Computer-based navigation 

3D imaging and computer navigation could play a major 

role in the planning of HPS. Furthermore, these advances 
could improve patient outcomes and lessen intra-operative 
and postoperative complications, such as under resection 
and over resection (88). For instance, it has been used in 
different hip pathologies, such has:

(I) FAI (88): a modified version of BrainLAB Hip-
CT, which has primarily been used to assist with 
total hip arthroplasty (91) has been applied to 
arthroscopic FAI surgery. A C-arm adapter (Fluoro 
3D, Vector Vision) can be used to synchronize the 
3D CT dataset with intra-operative fluoroscopy 
allowing real-time feedback of surgical instrument 

A

B
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placement in relation to the FHN (101). Planning 
and conduction of navigated osteochondroplasty 
using a surgical milling device was feasible and 
accurate (91).

(II) PAO (89): Pflugi et al. used two measurement units 
attached to the pelvis and peri-acetabular fragment. 
Registration of the patient was obtained with a pre-
operatively acquired SM (considering the anterior 
pelvic plane) and a specific device used to include 
that orientation in the reference coordinate system. 
After registration, the two sensors are applied and 
orientation is displayed. A patient-SM generated 
from a pre-operatively acquired 3D data-set is 
used to monitor in real-time the re-orientation of 
the peri-acetabular fragment to improve femoral 
coverage.

Real-time functional imaging

Biomechanical knowledge on hip impingement has been 
limited from research using intra-operative observation (13)  
and computer models (86,102).  Real-time  in vivo 
impingement under conditions of physiologic joint 
loading would be ideal and hopefully lead to an improved 
understanding of which hips and morphologies become 
symptomatic.

Open MRI with ROM testing in vivo has significant 
advantages compared to computer simulations, image-based 
model tracking, intra-operative observation, and ex vivo 
studies as it permits (103):

(I) Assessment of impingement in hips during 
functional postures;

(II) Evaluating the effect  of  posture and cam/
pincer morphology size on clinically meaningful 
impingement;

(III)  Visualization of differences in cam morphology 
“behavior” between symptomatic and non-
symptomatic cohorts.

Having virtual simulations as a starting point, one can 
easily appreciate the advantage of combined in vivo imaging 
and real time functional analysis.

3D printing

A long way was seen from radiographs to 3D printing 
(3Dpr), but undoubtedly computerization of radiology 
and orthopedics is an inescapable fact. 3D imaging and 
printing might be a step forward for patient-centric tailored 

approach, from individual anatomy to treatment planning 
and building specific hardware needed for each patient (99). 
3Dpr might be applied in subject-specific tools and surgical 
device building (100,104), as well as, in complex clinical 
settings such as pelvic osteotomies (105).

A combination of 3Dpr and CompAssist virtual surgical 
planning has also been used for pre-operative planning of 
acetabular fracture reduction (106). The authors stated 
that 3Dpr technology combined with virtual surgery for 
acetabular fractures is feasible, accurate, and effective 
leading to improved patient-specific pre-operative planning 
and outcome of real surgery. 

Future trends in MSK radiology

MRI in 2050 

In brief, the future of MRI will include comprehensive 3D 
joint imaging, done within fractions of the time currently 
spent and multiparametric in nature, allowing for automated 
biochemical cartilage analysis. Undoubtedly MRI trends 
include:

(I) Field strengths greater than 3.0 Tesla will be the 
new standard;

(II) 3D MRI acquisitions with potential for secondary 
multiplanar reconstructions performed in any 
desired sequence weighting;

(III) hR non-contrast imaging will replace MRA, with 
improved hR 3D cartilage assessment;

(IV) Implementation of quantitative imaging biomarkers 
in clinical routine imaging;

(V) Semiautomated or fully automated diagnostic 
examinations (with the aid of artificial intelligence 
algorithms to diagnose and automatically quantify 
specific parameters).

Magnetic resonance fingerprinting (MRF) (107) 

MRF uses a pseudorandomized acquisition that prompts 
the characteristics from different tissues to have a unique 
signal or “fingerprint” that is dependent of the unique 
multi-dimensional material properties under analysis. This 
technique permits a noninvasive quantification of multiple 
properties of a material or tissue simultaneously through 
a new approach to data acquisition, post-processing and 
visualization. These can then be translated into quantitative 
maps of the MR parameters of interest. This technique 
would be useful to:
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(I) Provide a novel approach to analyze, quantify and 
diagnose simple and complex changes that can 
represent disease surrogates on early/preventable 
disease;

(II) Accurately identify the presence of targeted 
molecules/tissue-specific material, which will 
increase the diagnostic and prognostic capability 
of MRI;

(III) Substantially decrease measurement errors and 
improve accuracy when coupled with a specific 
pattern recognition algorithm.

Big data and artificial intelligence

Understanding the advantages and limitations associated 
with large databases, particularly in the era of value-
based health care is paramount. The implementation of 
standardized national orthopedic registries in conjunction 
with readily programmable and adaptable programs tailored 
to radiologists and orthopedic surgeons will ultimately 
improve patient outcomes while minimizing the economic 
burden (108,109).

One promising new technology with the potential 
to launch the next stage of progress in medical image 
is artificial intelligence (AI), which is the science of 
engineering intelligent machines and computer programs. 
Machine learning (ML) derives from AI and is defined as 
a set of methods that automatically detect patterns in data, 
and then utilize those patterns to predict future data or 
enable decision making under uncertain conditions (110). 
Applications in medical imaging include (111) (I) automatic 
labeling and captioning; (II) image segmentation and 
registration; (III) computer-aided detection and diagnosis; 
(IV) acting as a reading assistant and automatic dictation; (V) 
integration with healthcare big data. 

Personalized medicine and biobanks

Personalized medicine will transform radiology and the 
health system within the next 50 years. The original 
concept of precision medicine involves the prevention 
and implementation of treatment strategies that consider 
individual variability by assessing large sets of data, 
including patient information, medical imaging, and 
genomic sequences (112). Patient-based imaging data will 
be implemented and cross-linked to population based–data 
already acquired in biobanks. These biological databanks 
are designed to identify early environmental and genetic 

causes of normal and abnormal growth, development and 
health from fetal life until young adulthood. They are 
already well underway and established as a comprehensive 
population-based health knowledge (112).

Conclusions

Technological innovation was essential for the recent 
transformation of MSK imaging. State-of-the-art 
contemporary joint imaging has allowed for improved 
diagnostic accuracy of most conditions that affect the 
hip and surrounding structures. Imaging the hip in the 
future will permit an ultra-fast, near perfect, noninvasive 
automated quantification of clinically relevant bone and 
soft tissue pathology through data acquisition, post-
processing and visualization. Conceptually, this will involve 
a personalized approach and population-specific matching 
to standardize data from healthy and diseased individuals.
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