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Maintenance of genomic integrity is critical for the control 
of cell proliferation and survival. The genome is susceptible 
to DNA damage, which generates DNA lesions blocking 
the progression of DNA replication. Cells have multiple 
mechanisms to respond to DNA damage during replication; 
stabilization of the stalled replication fork, bypass the 
damage using specific DNA polymerases or recombination, 
or converting the damage into a second lesion. Responses 
by cells to DNA damage by these mechanisms can either 
activate DNA-repair pathway or programmed cell death (1). 
Failure or abnormal responses to DNA damage results in 
accumulation of mutations and promotes transformation of 
normal cells into cancer cells. 

A recent paper by Zhang et al. described a potential 
role of short circular form of the SHPRH (SNF2 histone 
linker PHD RING helicase) as a suppressor of glioma 
tumorigenesis (2). In this paper, authors characterized 
circular RNAs (circRNAs) from glioma and adjacent normal 
brain tissues by using deep RNA-seq with computational 
approaches. They found that a circular form of SHPRH 
gene encodes a novel short form of SHPRH protein 
(SHPRH-146aa), which was less expressed in glioblastoma 
patient samples compared to surrounding normal brain 
tissues. They showed that SHPRH-146aa affected the 
stability of a full-length SHPRH protein and suggested that 
it possibly acted as a tumor suppressor in brain. 

circRNAs are covalently closed RNAs generated by a 
back-splice event of pre-mRNA. A downstream 5’ splice 
donor site is ligated to an upstream 3’ acceptor site (3). 
Due to its absence of free 5’ and 3’ termini, circRNAs are 

resistant to degradation by RNA exonuclease and have long 
half-lives (4). Notably circRNAs are enriched in neural 
tissues especially in brain (5). The low proliferation rate of 
neuronal cells may account for the high level of circRNAs 
in brain as more stable circRNAs can accumulate without 
degradation. In contrast, the expression of circRNAs 
are shown to be less abundant in cancerous tissues with 
high proliferation rate underscoring the relation between 
circRNAs and proliferation (6). Recent studies have 
suggested functions of circRNAs in regulating gene 
expression; some circRNAs regulate gene expression 
by competing with host mRNAs for miRNA binding as 
miRNA sponges and other circRNAs has been reported 
to associate with RNA polymerase II and promote the 
transcription of their parental genes (7,8). Thus circRNAs 
can be functionally involved in carcinogenesis either 
by generating novel cancer promoting circRNAs or by 
regulating expression of oncogenic proteins (3). These 
features also make circRNAs as potential cancer biomarkers.

Zhang et al. provided evidence that the circSHPRH 
contained 440 nucleotides and the expression level was 
decreased in glioblastoma cells compared to adjacent 
normal brain tissues. For the detection of protein coding 
circRNAs, Zhang et al. used the approach with deep RNA 
sequencing with ribosomal RNA depletion. The authors 
further validated the circSHPRH was translated to a 
functional 144 amino acids of SHPRH (circSHPRH) by 
targeted mass spectrometry and LC-MS. The circSHPRH 
seems to protect the degradation or enhance the stability 
of the full length SHPRH since the expression of 
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full-length SHPRH protein was increased following 
overexpression of circSHPRH (2). These results imply 
that the circSHPRH contributes to genome stability 
from replication stress through regulating the full length 
SHPRH. 

Human SHPRH gene is located at the chromosome 6q 24 
and has been suggested as a putative tumor suppressor (9). It 
is a functional ortholog of S. cerevisiae Rad5, a DNA repair 
protein having Swi2/Snf2 chromatin remodeling and DNA 
dependent ATPase activity. Rad5 also contains a RING 
finger motif that mediates ubiquitin ligase activity and this 
activity is important for polyubiquitination of proliferating 
cell nuclear antigen (PCNA) in post replication repair (PRR) 
pathway (10-12). 

PCNA, the replicating sliding clamp is an evolutionary 
well conserved protein found in all eukaryotes and plays an 
essential role in DNA replication and repair. The proper 
control of replication process is crucial for genomic integrity 
and when replication forks encounter DNA damage, they 
can stall to repair DNA lesions by DNA damage response 
mechanisms. However, persistently stalled replication forks 
may fail to restart and collapse to cause severe genome 
instability (13). To suppress these detrimental effects, cells 
have evolved the PRR pathways; either translesion synthesis 
(TLS) bypassing DNA lesions by TLS polymerases or 
template switching (TS) to the nascent strand of sister 
chromatids (14). The posttranslational modifications of 
PCNA regulate the choice of the PRR pathways. Upon 
various DNA damage and replication stress, PCNA is 
either mono- or polyubiquitinated on the lysine 164 (K164) 
residue (15). Monoubiquitination of PCNA by Rad18 
and Rad6 promotes error-prone DNA lesion bypasses 
by recruiting TLS polymerases to the replication forks 
whereas Rad5 dependent K63-linked polyubiquitination 
of PCNA facilitates error-free TS pathway (15). The K63-
linked polyubiquitination of PCNA promotes the TS in a 
proteasome independent manner and this is different from 
canonical K48-linked polyubiquitination that leads protein 
degradation (16). 

Human SHPRH physically interacts with the human 
PCNA, RAD18, and ubiquitin-conjugating enzyme 
UBC13 and also promotes DNA damage induced PCNA 
polyubiquitination (17,18). Human Rad5 family includes 
SHPRH and helicase like transcription factor (HLTF). 
Both SHPRH and HLTF are involved in polyubiquitination 
of PCNA and loss of either SHPRH or HLTF increases 
genome instability following DNA damage suggesting they 

are functional homologs of Rad5 (17,19). The predicted 
functional domains in SHPRH include SWI2/SNF2, RING 
helicase and PHD domain (9,20). Zhang et al. showed a 
translated form of human circSHPRH is generated from 
exons 26–29 harboring helicase domain of SHPRH. They 
found that the overexpression of SHPRH-146aa increased 
the level of full length SHPRH protein without affecting 
the level of mRNA. The SHPRH-146aa also includes 
putative ubiquitination site that can be a target of ubiquitin 
ligase (2). The SHPRH-146aa may protect SHPRH from 
ubiquitination in vivo and enhance its stability, which could 
promote tumor suppressive functions of SHPRH through 
regulation of posttranslational modification of PCNA upon 
DNA damage. 

In addition to functions in DNA repair and PCNA 
polyubiquitination, SHPRH has been shown to regulate 
ribosomal RNA (rRNA) transcription through its plant 
homeodomain (PHD) (21). The PHD of SHPRH interacts 
with histone H3 in an mTOR-dependent manner and 
the presence of SHPRH is important to recruit RNA 
polymerase I to the rDNA promoter (21). Transcription of 
rRNA accounts for more than 50% of RNA synthesis in 
a cell and rRNA transcription is involved in many cellular 
processes including cell cycle regulation, differentiation, 
and metabolic processes (22-24). Due to its multiple 
physiological functions, abnormal rRNA transcription has 
been reported in many cancers (25). Several point mutations 
of SHPRH gene were found in multiple human cancer  
cells (17). Although it is still unclear which function of 
SHPRH has link to carcinogenesis, it is possible that 
the SHPRH-146aa secures the regulation of rRNA 
transcription by SHPRH to suppress tumorigenesis. 

Zhang et al. explored the potential clinical implications 
of SHPRH-146aa and observed down-regulation in 81% 
glioblastoma samples and patients with higher level of 
SHPRH146aa in their tumor survive longer. Moreover, 
overexpression of SHPRH-146aa resulted in lower 
tumorigenicity suggesting SHPRH-146aa as a potential 
prognostic biomarker of glioblastoma. 

The study provides a novel insight of potential role of 
circRNAs in carcinogenesis and the clinical implication of 
translated peptides. In additions, this study uncovers a new 
mechanism of regulation of SHPRH protein stability and its 
importance in glioblastoma. Further studies for molecular 
mechanism of SHPRH-146aa as a tumor suppressor 
will deepen our understandings of coding circRNAs and 
improve the prognosis of cancer. 
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