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Background: Whether left ventricular (LV) global longitudinal systolic dysfunction refines risk 
stratification in sepsis/septic shock independent to shock index is unknown.
Methods: Shock index [(SI), heart rate (HR)/systolic blood pressure (BP), bpm/mmHg], LV global 
longitudinal strain (GLS, 2D-speckle-traking-based, %), ejection fraction (EF, by planimetry), Sepsis-related 
Organ Failure Assessment (SOFA) score, and blood tests were assessed in patients with sepsis/septic shock 
at the admission in the Emergency Department. Follow-up was performed at 7 and 28 days from admission, 
accounting for all-cause mortality, major co-morbidities and SOFA ≥2.
Results: In consecutive patients meeting inclusion criteria (n=123, 79% of the cohort), SI was <0.7 in 48 
patients (39%, i.e., without hemodynamic instability), 50 (41%) had possible hemodynamic instability by 
SI between 0.7 and 0.99, 25 (20%) had hemodynamic instability by a SI ≥1. More abnormal GLS, and not 
SI, predicted mortality day-28 follow-ups (adjusted hazard ratio 1.3 per 1% of GLS closer to 0, P<0.05) 
independently of age, comorbidities and SOFA ≥2; a consistent trend was found with mortality data at  
day-7 follow-up (adjusted hazard ratio=1.3, P=0.05). LV end-diastolic volume index, cardiac index, systemic 
vascular resistance index and the peak velocity of the mitral E wave did not differ according to SI-strata. Age, 
body mass index, GLS and EF did not differ among SI groups, whereas female gender tended to be higher 
with higher SI (all P>0.5). Prevalence of SOFA ≥2, of diabetes, coronary heart disease (CHD), and chronic 
kidney dysfunction were comparable among SI groups; prevalence of cancer was lowest in the group of 
patients with low SI, chronic obstructive pulmonary disease (COPD) was higher with high or low SI. Blood 
lactate at admission tended to be higher with SI ≥1 than <0.7 while troponin did not differ among SI groups. 
Conclusions: In sepsis/septic shock, LV GLS and not SI predicted all-cause mortality at day-28 follow-up 
independently of SOFA ≥2 and major co-morbidity.
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Introduction

Although sepsis is  a relatively infrequent clinical  
syndrome (1), sepsis (2) remains a challenging issue world-
wide (3), associated with high mortality rate (4,5), and 
elevated costs of medical management. In sepsis, fatal 
events may be accounted for by refractory cardiovascular 
failure in as many as 1 patient in 3, and myocardial injury 
can be found in approximately 1 patient in 2 in post-
mortem necropsy data (6). In septic patients, left ventricular 
(LV), ejection fraction (EF) and the shock-index (SI), a 
metric of hemodynamic instability as defined by the ration 
between heart rate (HR) and systolic blood pressure (BP), 
are often assessed for risk stratification. However, LV EF 
does not represent LV myocardial contractility in intact 
human hearts due to its high dependency from LV loading 
conditions and geometry (7-10), and the relationships of 
LV EF to outcome in sepsis and septic shock is inconsistent 
literature (11-20). Moreover, the prognostic importance of 
the SI in sepsis has been not consistent in literature (21-29). 

LV global peak systolic strain (GLS) is a measure of 
longitudinal myocardial contractility (30), found to be 
related to prognosis in sepsis in particular in short follow-
ups (19,20). We hypothesized that GLS may contribute to 
risk stratification in sepsis or septic shock independently of 
SI, because in sepsis, impaired myocardial systolic function 
may not be a simple manifestation of unstable coronary 
perfusion secondary to hemodynamic instability (31-34).

Methods

In a time window going from October 2012 to June 
2015, consecutive patients not in dialysis, admitted to a 
High-Dependency-Observation Unit of the Emergency 
Department, with sepsis or septic shock by standard  
definition (2), were evaluated (n=155) for hemodynamic 
instability and assessment of LV structure and function (21% 
excluded from the current analyses due to poor quality of 
imaging). Outcome was evaluated in a prospective study 
design. Events comprised death by any cause, assessed in-
hospital by medical records, or by telephone and chart reviews 
after discharge. Re-hospitalizations were not accounted as 
events. Mortality rate was censored at day-7 (16%) as well 
as at day-28 (30%) from hospitalization. Time to event was 
defined as the difference between date of event and date of 
hospitalization, whereas for survivors, the observation time 
was set at 7 and 28 days by definition. No patient was lost at 
follow-up.

As reported previously (19,35), sepsis was defined by 
the coexistence of two or more of the following criteria: 
temperature >38 or <35 ℃, HR >90 beats/minute, respiratory 
rate >20 breaths/minute or arterial partial pressure of 
carbon dioxide <32 mmHg (<4.3 kPa), white cell count  
>12,000 cells/mm3, or <4,000 cells/mm3, or presence 
of immature forms >10%, with further evaluation of 
arterial blood lactate concentration. Sepsis-related Organ 
Failure Assessment (SOFA) score was used to assess sepsis  
severity (36), and to increase the sepsis-related inflammatory 
syndrome as recommended more recently (37-39). Shock was 
defined as systolic BP below 90 mmHg, or abrupt systolic BP 
drop of at least 40 mmHg from initial values, unresponsive to 
intravenous fluids and persisting for more than 20 minutes. 
Coronary heart disease (CHD) was defined based on medical 
history, charts review, ECG and echocardiographic findings 
as specified previously (19,40). History of chronic obstructive 
pulmonary disease (COPD) was defined based on medical 
charts review and therapy. History of chronic kidney disease 
(CKD) was defined by laboratory findings (serum creatinine 
above 1.2 mg/dL or 106.1 mmol/L) within a year from the 
hospitalization. History of cancer was assessed based on 
medical chart review. The study protocol was approved by 
the “Toscana – Area vasta - Centro” inter-institutional ethic 
committee (registration number OSS.13.031). 

Echocardiography was performed within 24 h from the 
admission by a standardized protocol (41-43) and settings 
(iE33, Philips Medical System, Andover, MA, USA) 
allowing acquisitions of digital loops of at least 2 cardiac 
cycles with frames per second (fps) of 45 or greater (mean 
value observed 57±5 fps). LV EF was assessed by ventricular 
planimetry (44). LV stroke volume was computed as 
the difference between end-diastolic and end-systolic 
volumes; stroke index was computed as stroke volume/
body surface area; cardiac index was computed as stroke 
index X HR and converted to L/min/m2. Systemic vascular 
resistance index was computed as mean BP*80/cardiac 
index (divided by 1,000, kdyne*s/cm5*m2). The early wave 
of the LV filling (E wave) was sampled by pulsed Doppler 
at the tips of the mitral valve. Speckle-tracking analysis 
was performed off-line days or weeks after the admission 
(Philips QLAB Advanced Quantification Software version 
8.1) in random sequence, and by experienced personnel 
(VP as final arbiter) blind to clinical data and outcome, by a 
methodology applied widely (19,43,45). Briefly, myocardial 
deformation was analyzed from two-dimensional gray-scale 
loops of the apical views of the left ventricle, by automatic 
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tracking of myocardial speckles, granted a manual selection 
of the region of interest. GLS was calculated averaging 
the negative peak of longitudinal strain from ventricular 
segments from the apical 4-chamber, 2-chamber views and 
apical-long axis. Subnormal LV GLS was defined by values 
>−15% (46); very depressed GLS was empirically defined 
based on GLS >−10%. In-house test-retest reproducibility 
analyses for assessment of LV EF and GLS have been tested 
and reported previously (19).

Statistical analysis

Statistical analyses were conducted using IBM SPSS® 
software package (version 22). Data in table are mean 
values ± 1 standard deviation of the mean, or counts 
and percent. Cases with missing data (<1% of the study 
sample) were excluded analysis by analysis. Patients were 
stratified in three groups according to SI values <0.7 or 
≥0.7 but <1, or ≥1 bpm/mmHg (26). For continuous 
variables, the null hypothesis was tested using the Student’s 
t test for independent groups, employing log-transformed 
variables in the case of excessively skewed distribution; 
Fisher’s exact test was used to compare counts in cross-
tables (47). Receiver operating characteristic (ROC) curve 
was employed to evaluate the performance of classification 
of events, and the area under the curve of positive rate 
(sensitivity) versus false positive rate (1-specificity) for 
values of single variables was assumed as indicator of 
accuracy of variable-specific performance of classification. 
According to current recommendations (48,49), based on 
day-28 mortality rate, Cox’s proportional hazard function 
was employed to explore whether SI and GLS predicted 
time-dependent mortality accounting for age, SI, and 
history of CHD, CKD, COPD, SOFA ≥2, diabetes and 
of cancer, using a stepwise selection method with entry 
testing based on the significance of the score statistic (for 
P<0.05), and removal testing based on the probability of 
a likelihood-ratio statistic based on the maximum partial 
likelihood estimates (for P>0.1) (50). Time-varying effects 
of SI, GLS and EF on prognosis were tested by time-
varying Cox’ proportional hazard models, generating 
separate interaction terms of time with SI, GLS and 
EF, added to the models along with primary variables. 
Correlates of prognosis at day-7 follow-up were also 
provided as pathophysiologically relevant in severe sepsis. 
Two-tailed P<0.05 was used to reject null hypotheses.

Results

Among the 123 patients, not mechanically ventilated, 
who comprised the study sample (21% excluded due to 
poor quality of echocardiographic imaging), 48 (39%) 
showed a SI below 0.7 bpm/mmHg, and 25 (20%) a SI  
≥1 bpm/mmHg; hence, 50 participants had a SI comprised 
between 0.7 and 0.99 bpm/mmHg (Table 1, missing 
laboratory data <1% of the sample). In univariate analyses, 
age did not differ among groups of patients stratified based 
on SI; female gender tended to be more frequent among 
the patients with higher SI values; prevalence of diabetes 
and proportion of those with history of CKD did not differ 
between groups; history of CHD showed a not statistically 
significant trend toward lower prevalence with higher SI. 
History of COPD was lowest with SI comprised between 
0.7 and 0.99 bpm/mmHg while history of cancer was lowest 
in the group of patients with SI <0.7 bpm/mmHg. BMI was 
comparable among the three groups. Almost by definition, 
mean BP was lower and HR was higher in patients with 
higher SI. Differences in blood lactate concentration 
showed a trend toward higher values with SI ≥1 vs. <0.7 
while differences in troponin I did not reach the statistical 
significance across SI strata. Proportion of subjects with 
SOFA ≥2 did not differ significantly across the SI groups.

As reported in Table 2 (no missing data), LV end-
diastolic volume index and E wave peak velocity were 
comparable among groups by SI; stroke index was slightly 
lower with SI ≥1 vs. SI <0.7 (P<0.01), whereas cardiac index 
was comparable among groups according to SI; systemic 
vascular resistance index tended to be lower with higher SI 
without reaching the statistical significance. Percent change 
in inferior vena cava with a single rapid deep breath did not 
differ among groups (35% vs. 33% vs. 30% according to SI 
groups as in Table 2, P>0.1).

In univariate analysis, LV EF (Figure 1) and LV GSL 
(Figure 2) did not differ across groups of patients according 
to SI. Mean duration of follow-up was of 23 days (range, 
1–28 days). Mortality by day-7 (n=19, 16%) showed a 
trend toward higher incidence with higher SI without 
reaching the statistical significance in univariate analyses, 
whereas at day-28 follow-up, the mortality (n=37, 30%) was 
comparable among the SI strata at admission. 

SI did not correlate with GLS (r=0.14, P=0.13) as well as 
with EF (r=−0.17, P=0.07). Figure 3 showed that GLS may 
vary widely per unit of SI; moreover, deaths by day-7 (n=18, 
15%) tended to cluster according GLS >−15% more than 
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Table 1 Clinical characteristics and mortality by presentation according to the shock index

Characteristics
Shock index (SI), bpm/mmHg P

Groups (cut-point) <0.7 (A) Groups (cut-point) 0.7–0.99 (B) Groups (cut-point) ≥1 (C) A vs. B A vs. C B vs. C

N [% of total] 48 [39] 50 [41] 25 [20] – – –

Age, years 73±12 75±13 71±14 NS NS NS

Female gender, % 29 46 58 0.04

Diabetes, % 42 24 28 NS

History of CHD, % 19 16 8 NS

History of CKD, % 25 22 24 NS

History of COPD, % 25 6 16 0.03

Cancer, % 13 42 36 0.003

BMI, kg/m2 25.5±5.0 23.4±3.6 23.4±4.3 NS NS NS

Mean BP, mmHg 86±14 79±11 66±10 0.016 0.000 0.003

HR, bpm 78±13 96±16 110±14 0.000 0.000 0.000

Lactate, mmoL/L 1.25±0.71 2.17±2.6 3.19±2.27 NS* 0.001* NS*

Troponin I, ng/dL 1.86±9.4 0.99±2.5 1.93±4.6 NS* NS* NS*

SOFA ≥2, % 38 41 20 NS (P=0.4)

Deceased by day-7 
follow-up, n [%]

5 [11] 8 [16] 7 [28] NS (P=0.1)

Deceased by day-28 
follow-up, n [%]

12 [28] 15 [31] 9 [36] NS (P=0.5)

Shock Index: heart rate (HR, bpm)/systolic blood pressure (SBP, mmHg), with higher values indicative of greater hemodynamic instability. *, 
after log-transformation. CHD, coronary heart disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; BMI, 
body mass index; BP, blood pressure; HR, heart rate; SOFA, Sepsis-related Organ Failure Assessment score (higher values indicative of 
more severe multi-organ failure); NS, not statistically significant.

Table 2 Echocardiographic characteristics by Shock Index

Characteristics

Shock index (SI), bpm/mmHg P

Groups (cut-point) 
<0.7 (A)

Groups (cut-point) 
0.7–0.99 (B)

Groups (cut-point) 
≥1 (C)

A vs. B A vs. C B vs. C

N [% of total] 48 [39] 50 [41] 25 [20] – – –

EDV index, mL/m2 46±17 47±21 41±16 NS NS NS

E wave peak velocity, cm/s 86±28 84±30 79±19 NS NS NS

Stroke index, mL/m2 24±9 21±9 17±6 NS <0.01 NS

Cardiac index, L/min/m2 1.8±0.7 1.9±0.9 1.9±0.7 NS NS NS

Systemic vascular resistance 
index, kdyne*s/cm5*m2

4.4±1.7 3.8±1.9 3.5±1.8 NS NS NS

EDV index, left ventricular end diastolic volume/body surface area. NS, not statistically significant.
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according to SI, as demonstrated by the fact that events 
were recorded over a large interval of SI values, but almost 
never in the case of GLS <−15%, even for SI ≥1. Mortality 
data by day-28 follow-up (n=36, 30%) were consistent with 
those reported by day-7 follow-up (Figure 4).

By ROC curves, less negative GLS showed a statistically 
significant accuracy of the performance of classification 
of events by day 28 follow-up (area under the curve 0.68, 
95% confidence interval 0.58–0.79, P=0.001), followed by 
lower LV EF (area under the curve 0.63; 95% CI, 0.51–0.75; 

P=0.03), whereas increasing values of SI (area under the 

curve 0.57; 95% CI, 0.46–0.69; P=0.1) did not appear a 

significant and accurate predictor events. The interaction 
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Figure 1 Black bars represent mean values of left ventricular 
ejection fraction with 1 standard deviation of the mean represented 
by the black lines over each bar, by shock index values as indicated 
on the horizontal axis. Higher values of ejection fraction are 
indicative of better ventricular systolic performance. NS, not 
statistically significant.
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Figure 2 Black bars represent mean values of left ventricular 
global longitudinal strain with 1 standard deviation of the mean 
represented by the black lines over each bar, by shock index values 
as indicated on the horizontal axis. More negative values of Global 
Longitudinal Strain are indicative of better longitudinal myocardial 
systolic performance. NS, not statistically significant.
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Figure 3 Deceased by day-7 follow-up according to the global 
longitudinal strain (GLS, vertical axis) plotted against stroke index 
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Figure 4 Deceased by day-28 follow-up according to the global 
longitudinal strain (GLS, vertical axis) plotted against stroke index 
(SI, horizontal axis).
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of GLS with SI (GLS*SI, %*bpm/mmHg) showed an 
accuracy of the performance of classification of events by 
day 28 follow-up not superior to GLS alone (area under the 
curve 0.60; 95% CI, 0.48–0.71; P=0.09). Data using day-7 
mortality were consistent (data not shown). In multivariable 
analyses, mortality rate at day-28 follow-ups was predicted 
by GLS and not by the SI, independent of covariates and 
cofounders (Table 3) while survival analysis considering day-
7 follow-up showed a consistent trend despite a smaller 
number of events recorded by the follow-up. Results did not 
change when interaction terms of time and GLS, EF as well 
as SI were generated and added to the Cox’s proportional 
hazard models (data not shown).

Discussion

In patients with sepsis or septic shock, we provided novel 
information, as we showed that LV GLS is prognostically 
relevant at day-28 follow-up beyond the SI independently 
of a number of clinical confounders including history of 
cancer and of ischemic heart disease, and independently of 
SOFA score ≥2. Furthermore, we showed that in sepsis or 
septic shock, LV systolic function, either assessed by EF or 
GLS, cannot be inferred by assessing SI, which is consistent 
with the notion that LV dysfunction in sepsis is not the 
simple result of myocardial ischemia (31,32). Therefore, 
assessment of LV GLS may add useful short-term prognostic 
information in the early phase of the risk stratification in 
sepsis/septic shock independent to the assessment of SI, 
and may be useful for triaging patients in the Emergency 
Department. Nevertheless, further studies are required to 
assessment whether LV GLS, and its change over time, 
may guide or influence treatment options, and contribute 
to change outcomes in sepsis as to date vasopressors/
inotropes have been unable to change prognosis in septic  
shock (28,51-53). 

SI has been indicated as useful tool for triaging patients 
with potentially critical clinical conditions requiring intensive 

surveillance (21). Current guidelines suggest the use of 
SOFA to increase specificity of sepsis-related inflammation 
and prognosis (37). Adding a SOFA score equal or greater 
than 2 to the survival models did not impact the correlation 
of GLS with prognosis. SI and SOFA did not show strong 
inter-correlation in our study. In a previous study in a large 
cohort of patients with sepsis, SI ≥1 showed high specificity 
(80%) and negative predictive value (88%) with regard to 
outcome in the mid-term (28-day follow-up mortality) (27), 
but also showed relatively poor sensitivity (37%) and positive 
predictive value (23%); SI ≥0.7 had a negative predictive 
value as high as 95%, suggesting that such a simple, bed-
side no-cost index could be used in sepsis for early patient’s 
characterization. Nevertheless, the most recent Protocol-
Based Care for Early Septic Shock (ProCESS) study failed 
to reach the specific goal to change prognosis in group 
of patients with severe sepsis/septic shock specifically 
characterized by their hemodynamic conditions as expressed 
by the SI (28). Our study added new information by showing 
that the early assessment LV GLS predict all-cause death 
while SI was not prognostically relevant in patients with 
sepsis, in particular in the very short term. Interesting, LV 
end-diastolic volume, the peak velocity of the mitral E wave, 
cardiac index and systemic vascular resistance index did not 
differ significantly among SI-strata, suggesting that central 
hemodynamics was not the main player in determining the 
ratio between HR and systolic BP.

Although in experimental models in sepsis, cardiac output 
has being found to be increased and myocardial perfusion 
decreased (34), an increase in cardiac output may contribute 
to an increase in LV external myocardial work and oxygen 
consumption (34). Because SI tend to be higher with 
higher HR and with lower systolic BP, higher LV external 
work cannot be inferred by higher SI. In fact, in our study, 
cardiac index was not higher with higher SI while mean BP 
was lower with higher SI. Moreover, LV external work is 
proportional to stroke volume and to mean aortic pressure 
(54-56), as well as to systolic tension (or stress) applied to 

Table 3 Prediction of mortality in sepsis and septic shock: the Cox proportional hazard models

Parameters
Adjusted* hazards (95% confidence intervals, P)

Mortality at day 7, n=19 Mortality at day 28, n=37

Shock index (per bpm/mmHg) 11 (0.7–174, 0.09) 3 (0.5–20, 0.3)

GLS (per %) 1.4 (1.0–1.7, 0.05) 1.3 (1.0–1.6, 0.03) 

*, covariates in the model: age, left ventricular ejection fraction, sepsis related organ failure score ≥2 vs. <2, history of coronary heart 
disease, kidney disease, chronic obstruction pulmonary disease, cancer. GLS, global longitudinal strain.
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the left ventricle (57). Of note, systolic BP is one of the 
determinants of systolic wall stress and of myocardial blood 
flow (58). In our study, stroke index was only marginally 
lower with higher SI, cardiac index was comparable among 
SI-based groups, and mean BP was lower with higher SI. 
Those results may explain at least in part the reason why SI 
did not correlate with GLS or with EF, along with the fact 
that LV systolic function is not the simple manifestation of 
myocardial under-perfusion (32-34). Myocardial injury in 
sepsis is associated with myocardial edema, inflammatory 
cell infiltration, cytokines-mediated damage and micro-
vascular disease, and is more likely associated with impaired 
longitudinal LV myocardial contractility (6,59-62) rather 
than SI. A weak relationship between SI and GLS while the 
latter emerges as an important predictor of events in sepsis 
and septic shock, may help explaining the relatively low 
power of SI as prognostic factor in sepsis.

The present study has a number of limitations. Initial 
definition of sepsis was based on criteria (2), which have 
been considered not sufficiently specific as they are 
excessively oriented to account for the inflammatory 
response. More recently, new criteria for definition of sepsis 
have focused on more infection-related life-threatening 
inflammation (37). Retrospective analyses of current 
databases in the research field on sepsis suggest that the 
new definition including SOFA (36) is able to increase 
the specificity of sepsis-related inflammatory syndrome 
and predict greater mortality (38,39). At least in part, we 
accounted for the issue of the impact of sepsis definition 
on findings by considering a SOFA ≥2 as covariate in 
the survival analyses. The study focused on patients not 
mechanically ventilated, which may have contributed to the 
high feasibility of LV function quantification in our study, 
and could have characterized patients with less severe sepsis 
and shock; nevertheless, mortality rate by day-7 and day-28 
was in line with expectations from a more general source of 
patients (27). Moreover, the study focused on data collected 
at the admission in the High-Dependency Observational 
Unit, without accounting for their changes over-time and 
initial scenarios in the emergency ward at first medical 
contact. History of CHD and of diabetes did not impact 
the relationship between LV GLS and prognosis, which 
suggests that values of LV GLS at admission in the 
Emergency Department are largely determined by sepsis. 
We did not assess circumferential strain systematically in 
the study population, which could be used to characterize 
the disease process involving differently oriented 
myocardial fibers in the LV wall (63); nevertheless, in our 

hands, test-re-test variability was higher for circumferential 
than longitudinal strain, and early impairment of the LV 
longitudinal function compared to the relatively preserved 
circumferential function and LV EF in the early phase 
of the myocardial disease process has been reported  
previously (63). 

In conclusion, in sepsis or septic shock, depressed 
LV longitudinal systolic performance, and not high 
SI, may predict all-cause mortality in short follow-ups 
independently of comorbidities including cancer, CAD, 
CKD and SOFA ≥2.
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