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Background: Axillary lymph node (ALN) status is one of the most important prognostic factors. Staging 
based on tumor size and nodal status are good predictors of survival. Accurate preoperative assessment of 
nodal status currently could be improved. All current imaging analysis depends on the operator observation 
of a lesion. Radiomics utilizes assigning a characteristic to each pixel in a tumor and captures data not seen 
by the naked eye. Patterns within a tumor that make nodal metastasis possible are recognized. Therefore, we 
wanted to know if radiomics of a tumor on mammography could predict nodal status. There is a suggestion 
this can be done in female breast cancer (FBC). We wanted to ask this question in male breast cancer (MBC) 
patients.
Methods: We aim to test the feasibility of using radiomic analysis on diagnostic mammograms in MBC 
patients to predict axillary nodal status based upon imaging feature of the primary tumor alone. In this 
retrospective study, 60 MBC subjects (mean, 67.4 years) with mass lesions detected on digital mammography 
(tumor size range, 0.7–4.5 cm) were included. Twenty-seven subjects (45%) had pathologically proven node 
positive disease. All primary tumors were digitally segmented from digital mammograms and subsequent 
radiomic analysis was performed using The Cancer Imaging Phenomics Toolkit (CaPTk). Independent t-test 
or Wilcoxon rank sum test was conducted to filter signals associated with nodal status using an alpha value of 
0.05.
Results: A total of 276 out of 1,360 radiomic metrics were found to be significantly (P<0.05) different 
between the two groups. The best performing metrics were histogram and intensity based radiomic features 
(first-order texture approaches).
Conclusions: We conclude that it is feasible to use radiomics-based texture metrics in MBC patients to 
potentially differentiate patients with pathological node negative vs. pathologically node disease based upon 
analysis of the primary tumor lesion. If validated, this approach may help better select patients for lymph 
node dissection and/or neoadjuvant endocrine therapy.
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Introduction

Male breast cancer (MBC) is a rare disease, comprising 
less than 1% of all breast cancer cases in the USA and 
less than 0.1% of cancer related deaths in men (1). While 
the incidence of female breast cancer (FBC) has been 
decreasing since the year 2000, the juxtaposed incidence of 
MBC has risen by 26% over the last 25 years. Dedicated 
breast cancer research in males would be valuable (2). Some 
of the hurdles include the lack of sizable patient cohort 
from prospective studies owing to the rarity of MBC and 
the frequent exclusion of male patients from breast cancer 
clinical trials (1). Therefore, guidelines in the treatment of 
MBC are extrapolated from the data generated from FBC 
trials or based on small retrospective cohorts (2). Further, 
data derived from retrospective studies are observational 
and hence subjective (2). Nevertheless, nodal status appears 
to remain a key prognostic discriminant and is important 
for tailoring treatment in MBC (3).

Currently, imaging is used as a non-invasive method 
in a preoperative setting in the evaluation of MBC. 
Diagnostic mammography remains the mainstay of imaging 
but ultrasonography (US), computed tomography (CT), 
magnetic resonance imaging (MRI) and positron emission 
tomography (PET) can play a key role in diagnosis and 
staging.

Despite recent advances in imaging there remains a 
low diagnostic sensitivity for axillary lymph node (ALN) 
involvement resulting in understaging of the disease even 
when lymph nodes are visible on imaging (Figure 1) (4). 
A systematic review estimated the average sensitivity for 
positivity of US in patients with nonpalpable axillary nodes 
to be 44–61% and specificity for positivity at 75–86% in 
all patients (5). Currently, if clinical and US evaluation 
suggest nodal metastases on the basis of size or abnormal 
morphology, US-guided biopsy [fine-needle aspiration 
cytology (FNAC) or core biopsy] of abnormal nodes is 
undertaken, which detects 45% of metastases (5). However, 
there are a significant number of false negatives.

The current study evaluates only the primary tumor 
to identify radiomic metrics capturing a variety of tumor 
phenotypes such as size, shape and radiological texture from 
mammograms which could predict the presence of nodal 
metastases. We report a reasonable performance [area under 
the curve (AUC) =0.71] in discriminating pathologically 
node negative vs. node positive male patients. Currently, 
we are limited by no availability of nodal imaging in a large 
proportion of our retrospective cohort. However, we hope 

to address this in future and prospective studies. Therefore, 
any method that improves upon a more accurate detection 
of nodal disease would be important. Accurately assessing 
pathological nodal status prior to surgery can help clinicians 
optimize treatment strategies by identifying patients who 
may be eligible for neoadjuvant chemotherapy/endocrine 
therapy or even omission of sentinel node biopsy and 
enrollment in clinical trials.

Radiomics is an emerging field of quantitative medical 
imaging that involves converting medical images into 
mineable and scalable high-dimensional data sets derived 
primarily from standard of care imaging. Predictive models 
based on the extracted datasets along with additional 
clinical, pathologic and laboratory data have been shown to 
improve upon the accuracy of cancer diagnosis, prognosis 
and prediction (6,7). The radiomic process involves lesion 
segmentation from clinically obtained imaging, feature 
extraction, and finally model building. The radiomic 
features that are extracted reflect the heterogeneity 
of the tumor by calculating pixel intensities and their 
spatial distribution over a region of interest (ROI). Both 
quantitative and mathematical descriptions of the spatial 
distribution of signal intensities are referred to as texture 
analysis.

Numerous radiomic studies in FBC using mammography 
and breast MRI have been published (8-11). Several 
studies have established MRI imaging features combined 
with radiomics can be used to predict molecular subtypes, 
luminal A (P=0.004), HER2/neu enriched (P=0.00277) and 
basal like (P=0.0117) (11) and predict imaging biomarkers 
predicting pathways associated with survival (6). Textural 
features obtained from mammograms have also been used 
to predict BRCA1/2 probability from textural parenchymal 
differences not detectable by standard radiologic 
interpretation (9).

There are several studies evaluating mammography, 
MRI and US to evaluate axillary node status in FBC. For 
example, Tan et al. (12) developed a mammogram-based 
radiomics nomogram by integrating radiomic metrics 
with clinical risk factors to predict preoperative axillary 
metastasis and reported an AUC 0.876 and 0.862 in the 
primary and validation cohorts. Dong et al. (13) showed 
that using radiomics in DWI and joint fat sat T2 MRI 
can preoperatively predict sentinel lymph node (SLN) 
metastasis in FBC with an AUC of 0.80 in the validation 
set. Using deep learning in combination with radiomic 
metrics from the US of 1,280 patients breast cancer patients 
Guo et al. (14) identified patients with positive sentinel node 

https://www.birpublications.org/author/Tan%2C+Hongna
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metastasis with a sensitivity of 98.4% and those without 
metastasis with a 97% negative predictive value. To our 
knowledge, there have been no studies evaluating omitting 
sentinel node biopsy based on radiomic nodal assessments.

Radiomic  fea tures  have  been  used  to  c la s s i fy 
mammographic breast parenchymal complexity. These 
radiomic features in combination with breast density and 
body mass index (BMI) have been shown to help stratify 
breast cancer risk assessment (15).

To our knowledge, there has been no published radiomic 
analysis in male patients with breast cancer. Therefore, the 
aim of this study was to develop a mammography-based 
radiomics platform by performing a retrospective evaluation 
of the radiomics (tumor texture, size and shape metrics) of 
primary lesions in subjects MBC. Specifically, we wanted to 
explore the feasibility of using radiomic signatures from the 
primary lesion to discriminate pathologically node positive 
vs. node negative MBC patients based upon diagnostic 
mammograms.

We present the following article in accordance with the 
Materials Design Analysis Reporting (MDAR) reporting 
checklist (available at http://dx.doi.org/10.21037/abs-20-103).

Methods

Patient data

The retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the Western Institutional Review Board to 
exempt the ethics review with the exemption number (B4-
Exemption-Moorthy). Informed consent was also waived. A 
total of 75 MBC patients, from our breast cancer database, 
who underwent surgical treatment at a single institution 
(Arizona Center for Cancer Care) between 2009–2020 were 
included in this study. The inclusion criteria included men 
diagnosed with a pathologically confirmed breast cancer 
with access to their 2D digital mammograms prior to their 
surgical intervention with complete pre surgical and surgical 
information. Patients in whom the mammograms were not 
available (n=15) were excluded. All digital mammography 
images were obtained from the picture archiving and 
communication systems (PACS). Clinicopathologic and 
immunohistochemical factors from core biopsy were 
acquired from the prospectively maintained center database. 
Demographic variables included age, sex, and ethnicity. 

Figure 1 Example of MBC masses in the subareolar region of the right breast. Example of two patients with IDC. Panel (A) is a 48-year-
old male with palpable subareolar mass, core biopsy shows grade 3 IDC ER79%/PR12%/HER2/neu 0 clinical stage T2N0Mx. The patient 
underwent mastectomy with lymph node sampling. The pathology demonstrated a 4.1 cm IDC with negative margins, 1 positive SLN and 
completion axillary node dissection shows 14 nodes negative. Final pathological diagnosis was T2N1M0 grade 3 IDC. Panel (B) is 87-year-
old male with clinical history of subareolar mass and normal appearing lymph nodes (arrows). A core biopsy shows grade 3 IDC ER95%/
PR80% and HER2/neu 0 clinical stage T2N0M0. The patient underwent mastectomy with lymph node sampling which revealed a 3.3 cm  
negative margins and four sentinel nodes negative. Pathologic diagnosis was T2N0M0 grade 3 IDC. MBC, male breast cancer; IDC, 
invasive ductal carcinoma; SLN, sentinel lymph node.

BA

http://dx.doi.org/10.21037/abs-20-103
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Relevant prior clinical history of cancer was also recorded. 
Clinical and pathological factors such as clinical T stage, 
clinical nodal status, estrogen receptor (ER), progesterone 
receptor (PR), Ki67, human epidermal growth factor 
receptor (HER/2-neu), surgical management, adjuvant 
therapy, local regional recurrence rate, disease free survival 
and overall survival data were collected.

Mammography acquisition

All patients included in the analysis had 2D digital 
mammograms [craniocaudal (CC) and mediolateral oblique 
(MLO)]. All digital mammograms were acquired per the 
site’s standard of care procedures for exposure settings and 
the images were stored in PACS in DICOM format. De-
identified images were curated and archived onto an open 
source image segmentation software for segmentation and 
feature extraction as described below.

Mammographic inspection and tumor segmentation of 
tumor lesions

A single breast specialist (BM) with over 15 years of 
experience in mammography reviewed all images. The 
reader was NOT blinded to the side or the location of 
the tumor. The mammographic images (CC and MLO 
views) from all 60 subjects (10 were clinically node positive, 
while 50 were clinically node negative) were available 
for evaluation While a subset of patients (n=7) had a 3D 
mammogram, a 2D radiomic analysis was conducted to 
maximize the cohort sample size. Consequently, the ROI 
was marked on the 2D component of the mammogram 
or reconstructed 2D mammogram. All tumors were 
detectable on 2D mammograms. This cohort was acquired 
retrospectively before 3D mammo was widely available. 
Cancer Imaging Phenomics Toolkit (CaPTk) can be 
used to mark ROI on 3D images. A 3D dataset was not 
available for all the cases included in this cohort. Though 
3D tomosynthesis is the primary modality being used for 
screening in many centers, there are logistical issues that 
arise when using it in radiomics. As this was a multicenter 
study, there was no consistent imaging protocol that was 
adopted. While 3D evaluation may improve the accuracy of 
radiomic evaluation, in some instances 2D evaluation may 
produce similar accuracy (16-18).

All had the presence of the mass lesions (primary 
tumor) on mammography. Any features such as suspicious 
calcifications, skin thickening, or nipple retraction were not 

captured unless there was an overlap with the segmented 
primary tumor. Any mammographically suspicious lymph 
nodes were not included in the imaging. For each patient, a 
single lesion was identified on both the CC and MLO view 
mammograms for radiomic analysis.

The tumor lesions on the mammograms were segmented 
using a 2D ROI that was placed around the whole lesion 
in both the CC MLO view using ITK-SNAP (open 
source software; http://www.itk.snap.org) for image 
segmentation (19,20). The resultant ROIs from the ITK-
SNAP segmentations were saved for transfer, processing 
and radiomic analysis (Figure 2). According to Huang’s and 
Dong’s study (13,21), a radiomics signature was concluded 
by radiomics features that extracted from primary tumor, 
which was used to predict lymph nodes metastasis and show 
a significant performance. Therefore, it is reasonable that 
we choose the primary tumor as the segmentation region. 
In future and prospective studies when we have access to 
dedicated nodal imaging, we will address this specific issue.

The evaluation of the axilla by mammography can 
be limited due to the body habitus of most men, lack of 
the ability to identify the SLN amongst the number of 
potentially visualized nodes by mammagraphy and lack 
of specific guidelines to include the entire axilla during 
mammographic examinations. Therefore, we were unable 
to directly address this question from the reviewer. This 
topic may be better addressed in the future using MRI or 
US where the entire axilla could be visualized.

Radiomics analysis

CaPTk (22) is an open source software platform, (https://
www.med.upenn.edu/cbica/captk/) that was used for 
feature extraction of ROIs obtained following ITK-SNAP 
extraction of tumor lesions. These segmented ROIs were 
then transferred to CaPTk for radiomics analysis (Table 1).  
While CaPTk can perform both 2D and 3D radiomic 
analysis, we performed only 2D radiomic analysis. The 
radiomic metrics quantifies the characteristics of the 
region of the interest such as the spatial distribution of 
the grey-levels making the ROI (shape/size) and the 
complex relationship between pixels/voxels making up the 
ROI (texture) using sophisticated data characterization 
algorithms. Some of the key metrics featured within the 
CaPTk radiomics platform include first-order statistical 
metrics of texture such as intensity, histogram; first-order 
statistical metrics of morphology such as shape, size; 
second-order statistical metrics of texture such as grey 

https://www.med.upenn.edu/cbica/captk/
https://www.med.upenn.edu/cbica/captk/
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level co-occurrence matrix (GLCM), grey level size zone 
matrix (GLSZM), grey level run length matrix (GLRLM); 
and higher-order statistical metrics of texture such as 
local binary patterns (LBP), Lattice-transformation etc. 
First-order statistical metrics quantify only the intensity 
of the signal within a ROI. First order statistical features 
describe the distribution of individual voxel values without 
concern for spatial relationships. These are histogram-
based properties reporting the mean, median, maximum, 
minimum values of the voxel intensities on the image, as 
well as their skewness (asymmetry), kurtosis (flatness), 
uniformity, and randomness (entropy).

These radiomic features assess different imaging 
characteristics. They may be representative of or be 
surrogates for specific biologic processes but these would 
also be dependent on clinical and patient specific factors. 
Radiomics therefore may potentially enhance or nuance 
the clinical and pathological data available for treating 
physicians to make patient specific decisions.

Second-order statistical metrics take into consideration 
the intensity as well its spatial orientation, location within a 
ROI. Higher-order metrics transform the image to provide 
additional information regarding frequency, assessment 
at multiple levels (local versus global assessment). Post-
radiomics analysis, all results were exported in comma 
separated value (.csv) format for radiomic analysis and 
correlation with pathological node positive and node 
negative status in all 60 subjects with a confirmed diagnosis 
of invasive breast carcinoma.

Statistical analysis

An independent t-test or Wilcoxon rank sum test were used, 
depending on data normality, to compare radiomic metrics 
that would produce statistically notable differences between 
pN0 (node negative) and pNmic (node with a micromet 
defined as tumor <2 mm)/N1a (tumor spread to 1–3 lymph 
nodes) using MLO and CC mammograms, separately. 
Graphical approach was used to illustrate the pattern of 
radiomic signals with differences between clinical findings. 
Since the main purpose of this study is to discover signal 
patterns by radiomics categories, we have used unadjusted 
P value to filter features for graphical illustration. Percent 
of features with unadjusted P<0.05 under each radiomic 
categories were calculated. ElasticNet was used to further 
explore important predictors and the overall prediction 
accuracy. Leave-one-out (LOO) procedure was used to 
validate performance. The predicted probability from LOO 
was used to calculate AUC. We have counted number of 
times a feature been selected by ElasticNet as the important 
predictor from each iteration of LOO, and then rank all 
features by this count. SAS9.4 (SAS, NC, USA) was used 
for statistical analysis.

Results

A total of 60 patients met the inclusion criteria. The cohort 
characteristics are found in Tables 2,3. The final cohort 
included 28/60 (46%) patients who were pathologically node 

Figure 2 A typical radiomics workflow comprises of three main stages. Stage 1: image acquisition; stage 2: lesion segmentation and/or ROI 
marking (highlighted in red); stage 3: feature extraction 
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Table 1 Radiomic features evaluated on diagnostic mammograms in 60 MBC subjects

Family Metric What it measures

Morphologic (Shape) Elongation These features quantify geometric characteristics 
(shape) that are difficult to objectively express by 
visual assessment. These are first-order statistical 
metrics of radiological shape, as it accounts for 
only the spatial orientation of the grey-level in the 
image, and not its value in the image

Perimeter

Roundness

Eccentricity

Ellipse diameter in 2D

Ellipse diameter in 3D

Equivalent spherical radius

Intensity-based (texture) Minimum intensity These features quantify the distribution of the grey-
levels (histogram) making up the ROI. It provides 
descriptors for the shape and distribution of the 
histogram. These are first-order statistical metric 
of radiological texture, as it accounts for only the 
grey-level intensity in the image, and not its spatial 
orientation of the image

Maximum intensity

Mean intensity

Standard deviation

Variance

Skewness

Kurtosis

Histogram-based (texture) Bin frequency & probability These features quantify the distribution of the grey-
levels (histogram) making up the ROI. These are 
first-order statistical metric of radiological texture

Intensity values (5th quantiles)

Intensity values (95th quantiles)

Bin-level statistics

GLRLM: grey level run 
length matrix (texture)

SRE: short run emphasis These metrics quantify the relationships between 
image pixels/voxels. In GLRLM analysis, texture is 
quantified as a pattern of grey-level intensity pixel 
in a fixed direction from a reference pixel. Run-
length is the number of adjacent pixels that have 
the same gray-level intensity in each direction. 
These are second-order statistical metric of 
radiological texture as it accounts for both the 
grey-level intensity and its spatial orientation of the 
image

LRE: long run emphasis

GLN: grey level non-uniformity

RLN: run length non-uniformity

LGRE: low grey level run emphasis

HGRE: high grey level run emphasis

SRLGE: short run low grey level emphasis

SRHGE: short run high grey level emphasis

LRLGE: long run low grey level emphasis

LRHGE: long run high grey level emphasis

GLCM: grey level co-
occurrence matrix (texture)

Energy These metrics quantify the relationships between 
image pixels/voxels. In GLCM analysis, texture 
is quantified as a tabulation of how often a 
combination of grey-level values in an image occur 
next to each other at a given distance in each 
direction. These are second-order statistical metric 
of radiological texture

Contrast

Entropy

Homogeneity

Correlation

Variance

Sum average

Variance

Autocorrelation

Table 1 (continued)
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positive and 32/60 (53%) patients who were pathologically 
node negative (Table 1). Among the tumors, 41/60 (68%) 
were low-grade (Bloom Richardson Score grades 1–2) and 
17/60 (28%) were high-grade (Bloom Richardson Score 
grade 3). Based on histopathology by IHC, 30/60 (50%) 

were luminal A and 25/60 (42%) were luminal type B. Five 
patients had indeterminate histopathology. Mean age was 
66.2 years (range, 40–91) years. Mean tumor size was 1.9 
(range, 0.7–4.5) cm. Node positive patients include patients 
who were pathologically N1mic, N1, N2, N3. Our cohort 

Table 1 (continued)

Family Metric What it measures

GLSZM: grey level size 
zone matrix (texture)

SZE: small zone emphasis These metrics quantify the relationships between 
image pixels/voxels. In GLSZM analysis, texture 
is quantified as a tabulation of how often a 
combination of grey-level values in an image 
occur next to each other at a given distance. 
Contrary to GLCM and GLRLM, GLSZM is direction 
independent. These are second-order statistical 
metric of radiological texture

LZE: large zone emphasis

GLN: gray level non-uniformity

ZSN: zone-size non-uniformity

LGZE: low gray level zone emphasis

HGZE: high gray level zone emphasis

SZLGE: small zone low gray level emphasis

SZHGE: small area high gray level emphasis

LZLGE: large zone low gray level emphasis

LZHGE: large zone high gray level emphasis

GLV: gray level variance

ZV: zone variance

Volumetric (size) Number of pixels (2D) These features quantify size characteristics 
that are difficult to objectively express by visual 
assessment. These are first-order statistical metrics 
of radiological shape

Number of voxels (3D)

Area (2D)

Volume (3D)

LBP: local binary patterns 
(texture)

Select first-order and second order texture metrics 
such as mean, median, standard deviation etc.

These metrics are computed using sampling points 
on a circle of a given radius and using mapping 
table. These are higher-order statistical metric of 
radiological texture

NGTDM: neighborhood 
grey tone difference matrix 
(texture)

Coarseness These metrics quantify the difference between 
a gray-level intensity and the average gray-
level intensity of its neighborhood within a given 
distance. These are second-order statistical metric 
of radiological texture

Busyness

Contrast

Complexity

Strength

Lattice-based (texture) Selected features and feature maps based on lattice 
approach

In the lattice approach, the features are extracted 
based on: (I) the distance between consecutive 
lattice points; (II) the size of the local region 
centered at each lattice point. These are higher-
order statistical metric of radiological texture

Radiomic features extracted by CaPTk (22). CaPTk provides quantitative imaging analytics for precision diagnostics and predictive 
modeling of clinical outcomes. All features of CapTk are in conformance with the IBSI, unless otherwise indicated within the 
documentation of CaPTk (23). Additional details on the definition equation and implementation of these metrics in CaPTk can be found 
here: https://cbica.github.io/CaPTk/tr_FeatureExtraction.html#tr_fe_defaults. From all the radiomic metrics available on CaPTk, only the 
2D radiomic metrics were calculated. MBC, male breast cancer; ROI, region of interest; CaPTk, Cancer Imaging Phenomics Toolkit; IBSI, 
Image Biomarker Standardization Initiative.

https://cbica.github.io/CaPTk/tr_FeatureExtraction.html#tr_fe_defaults
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included 5 patients with N1mic, 16 patients with N1, 3 
patients with N2 disease, and 4 patients with N3.

The ElasticNet based receiver operating characteristic 
(ROC) curves showed an AUC of 0.52; 95% CI (0.37–0.68) 
and 0.71 95% CI (0.57–0.85) in the testing cohort to 
differentiate patients with pathological node negative vs. 
pathologically node positive disease based upon analysis of 
the primary tumor lesion (Figure 3).

Radiomic results

The tumor characteristics using radiomic metrics available in 
CaPTk software of highest significance is shown in Table 4.  
These metrics were derived from the MLO and CC 
mammogram of each patient. For clarity purposes, we only 
reported those variables that were statistically significant 
(P<0.05). The violin plots in Figures 4,5 show different 
distributions in radiomic properties between pN0 and pN1, 
respectively, and these distributions are similarly illustrated 
with boxplots in Figures S1,S2.

Interestingly, all of them belonged to first-order texture 
metrics.

A total of 276 out of 1,360 radiomic metrics were found 
to be significantly (unadjusted P<0.05) different between the 
two groups. The best performing metrics were mostly (80%) 
based on first-order texture approaches i.e., histogram and 
intensity (Table 4).

Discussion

The incidence of MBC has been rising over the past 

Table 2 Characteristics of the patients collected, including race, side of cancer, location of the cancer, marital status, 1st degree relatives with 
cancers that could be related to a genetic mutation, genetic testing results and if the patients had recorded personal history of any cancer

Demographics Pathological lymph node metastasis negative Pathological lymph node metastasis positive

Race Caucasian =27; African American =1; Hispanic =2; 
unknown =2; Asian =0

Caucasian =24; African American =0; Hispanic =0; 
unknown =3; Asian =1

Side Left side =19, right =13 Left side =17, right =11

Marital status Married =25, single =5, unknown =2 Married =13, single =8, unknown =7

Family history None =13, breast cancer =8, other cancers =5, 
unknown =2

None =10, breast cancer =9, other cancers =2, 
unknown =6

Genetics BRCA+ = 2, VUS =3, unknown =22, negative =5 BRCA+ =2, VUS =2, unknown =16, negative =8

Personal history Unknown =2, none =22, prostate =3, other cancers =5 Unknown =6, none =16, prostate =2, other cancers =4

BMI Normal =3, overweight =13, obese =11, unknown =5 Normal =0, overweight =8, obese =15, unknown =5

BMI, body mass index; VUS, variants of uncertain significance.

Table 3 Patient characteristics of the final cohort of patients (n=60)

Factors
Pathological 

LN metastasis 
negative

Pathological 
LN metastasis 

positive

Age (mean ± SD) 68 66.8

Tumor size (pathological)

T1 15 10

T2 17 18

T3 0 0

T4 0 0

ER

Positive 32 27

Negative 0 1

PR

Positive 31 24

Negative 1 4

HER2

Negative 30 26

Positive 2 2

Ki67

Unspecified 49

Low <13.25% 1 2

High >13.25% 1 7

Mean age =66.2 years, tumor size =1.9 cm; median age  
=69.5 years, tumor size =2.2 cm. LN, lymph node; ER, estrogen 
receptor; PR, progesterone receptor.

https://cdn.amegroups.cn/static/public/ABS-20-103-supplementary.pdf
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Table 4 Radiomic signatures of significance that distinguish tumors from node + vs. node – disease†

Cranio caudal (CC) Mediolateral oblique (MLO)

Intensity_Mean_Skewness (***) Histogram_Uniformity_Median (***)

Intensity_Median_Skewness (***) Histogram_Range_StdDev (***)

Intensity_TenthPercentile_Skewness (***) Histogram_NinetyFifthPercentileMean_StdDev (***)

Histogram_Bin-19_Frequency_Median (***) Histogram_NinetyFifthPercentile_StdDev (***)

Histogram_Bin-19_Probability_Median (***) Histogram_NinetyFifthPercentile_Variance (***)

Histogram_FifthPercentileMean_Mean (***) GLSZM_GreyLevelNonUniformity_StdDev (***)

Histogram_FifthPercentileMean_Median (***) GLSZM_GreyLevelNonUniformity_Variance (***)

Histogram_TenthPercentile_Median (***) GLSZM_GreyLevelNonUniformity_Max (***)

Intensity_TenthPercentile_Median (***) Histogram_SeventyFifthPercentile_StdDev (***)

LBP_LBP_Mean (***) Intensity_Maximum_StdDev (***)

List of top 10 radiomic metrics that showed significant difference between pN0 and other nodes on the MLO and CC mammograms, 
respectively. The definition and further representation of these features can be found in the technical references in CaPTk’s online 
repositories. †, The significance value is provided in brackets, https://cbica.github.io/CaPTk/tr_FeatureExtraction.html. P<0.001 is denoted 
as ***. CC, craniocaudal; MLO, mediolateral oblique; CaPTk, Cancer Imaging Phenomics Toolkit.

few decades (24). There is an increasing appreciation of 
differences in the tumor biology of FBC versus MBC (25), 
thereby highlighting the need for studies focused on this 
unique population. Currently, there is a lack of studies 
supporting the treatment recommendations for MBC. 
What is clear is that after correcting for confounding 

features, MBC patients have a worse prognosis, stage for 
stage (1). Therefore, it is imperative to focus on this subset 
of breast cancer patients and consider tailored strategies 
such as neoadjuvant therapy or omitting sentinel nodes 
evaluation, if feasible. ALN status is an important factor 
in developing a personalized treatment plan for female 
patients with breast cancer (7), and since 40% of MBCs 
have pathological detected nodal involvement (1), it would 
optimize management to reliably know nodal status at the 
time of diagnosis.

Non-invasive prediction of ALN metastasis preoperatively 
has significant clinical impact. Currently, ultrasound has a 
specificity for positivity of 75–86% in all patients and is non-
invasive. However, an US study identifying a suspicious node 
would prompt a US guided biopsy which requires additional 
time delay due to the need for another appointment and a 
false negative rate up to 30% (16).

Surgery is still needed to definitively confirm the status 
of the ALN if preoperative nodal status is not established. 
These are invasive procedures and associated with sequelae 
such as seroma, arm pain, infection and lymphedema (26,27). 
Sonographically guided biopsy of nodes has variable 
reliability (28). Since mammography is already used as a 
diagnostic tool and current workflow would be enhanced, 
we chose mammography for our study.

This study explored the radiomic differences between 
tumors in pN0 vs. non-pN0 subjects. We identified 276 

Figure 3 The ROC curve for the ElasticNet model run for the 
MLO view features, and the AUC of the curve is around 0.71. 
ROC, receiver operating characteristic; AUC, area under the curve.
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Figure 4 Sample plots of radiomic metrics extracted from CC mammogram that showed significant (unadjusted P<0.05) differences between 
pN0 and other nodes. CC, craniocaudal.

out of 1,360 radiomic metrics to be significantly (P<0.05) 
between these two groups of patients. These radiomic 
features indicates that the distribution of grey levels within 
a ROI (indicative of radiological texture) is different in 
primary tumors that are node negative versus those that 
are node positive. We have reported the predictive value 
of radiomics in terms of the AUC metric in Figure 3. We 
report an AUC of 0.71 in discriminating pathologically 
node negative vs. node positive male patients using 
radiomic-metrics derived from mammograms. Genomic 
information was not available for this cohort of patients 
therefore not evaluated in this study.

Of the 276 radiomic metrics that were found to be 
significantly (P<0.05) different between the pN0 and non-
pN0 subjects, the best performing metrics were based on 

first-order texture histogram and intensity. The observation 
of first-order metrics to be significantly different between 
the two groups i.e., pN0 vs. non-pN0 nodes is encouraging, 
as first order metrics are easy to implement in the existing 
clinical workflow without any additional computational 
or technical complications. A number of clinical imaging 
software by default provides histograms or ROIs from 
where these metrics can be easily derived.

To improve the generalization ability and optimize the 
model, we used the ElasticNet method in conjunction with 
LOO cross-validation to build a prediction model. Our 
findings indicated that our prediction model has a moderate 
discrimination power (AUC =0.71) to distinguish between 
patients with pathological node negative vs. pathologically 
node disease based on radiomic analysis of the primary 
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Figure 5 Sample plots of radiomic metrics extracted from MLO mammogram that showed significant (unadjusted P<0.05) differences 
between pN0 and other nodes. Interestingly, all of them belonged to first-order texture metrics. MLO, mediolateral oblique.
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tumor lesion using their MLO view, the performance of 
the prediction mode using the CC view was comparatively 
lower (AUC =0.52). Interestingly, all the CC and MLO-
based radiomic metrics that showed significant difference 
between pN0 and other nodes on the MLO and CC 
mammograms, respectively (Table 4), also were highly 
ranked as important variables that dictated the performance 
of the ElasticNet -based prediction model. This observation 
increases our confidence in the reliability of important 
predictors to discriminate patients with pathological node 
negative vs. pathologically node disease based on radiomic 
analysis of the primary tumor lesion.

There were different radiomic features in the tumors 
between the CC and MLO views which can be explained 
by the fact that imaging features can be different in CC 
and MLO views influencing the textural features that are 
significant. In their study (29), exploring mammographic 

structural features (texture/parenchymal pattern) jointly for 
the improved risk segregation of screening women, Winkel 
et al., reported that a more precise density measures were 
achieved when mentally fusing two projections (CC and 
MLO) compared with assessing only a single projection 
of the breast, which aided in improved risk assessment. 
Therefore, it is possible that the significant texture metrics 
assessed from the two different views may be different, 
due to the variation in the breast tissue orientation in the 
different views. Further, creating a separate model using 
CC and MLO data separately had the increased impact of 
our study, as researchers with only CC or MLO view could 
still benefit from our results.

Zheng et al. demonstrated that deep learning radiomics 
could yield a 90% accuracy of predicting metastatic ALN 
in early stage FBC using ultrasound and shear wave 
elastography via deep learning approaches (8). Using a 
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radiomics signature of 10 radiomic metrics, one non-
wavelet feature and nine wavelet features, which were 
significantly related to lymph node metastasis, Yang et al., 
showed the feasibility of using mammogram-derived texture 
metrics in preoperatively predicting lymph node status (30). 
It is encouraging to see the similar observations in MBC in 
our current study as well.

For MBC, standard treatment has been mastectomy with 
axillary node dissection for clinically node positive patients 
or sentinel node biopsy with selective axillary dissection 
based on the results of the sentinel node biopsy (1). There 
is no data on the role of neoadjuvant chemotherapy in MBC 
patients due to the small number of cases in individual 
centers. Hypothetically, accurate nodal status could allow 
consideration of downstaging the axilla in clinically node 
positive patients leading to limited axillary surgery with 
less morbidity if the negative predictive value was high. 
Neoadjuvant endocrine therapy and its role is unknown in 
males; however, accurate nodal information preoperatively 
could increase the opportunity for such a clinical trial. 
Further validation would be needed in patients who had 
negative axilla by radiomics if sentinel node biopsy could 
be omitted. As 50% of MBC patients are node negative, 
only 18–25% of MBC patients undergo SLN surgery alone 
or prior to axillary node dissection. Therefore, having 
an adjunct tool to predict nodal involvement that is non-
invasive which can establish nodal status would be desirable.

There are limitations to our study as it is based on 
retrospective data. The mammography images are from 
three different centers however their acquisition protocol 
comparable. The distribution of images is 43% from facility 
1, 33% from facility 2 and finally 23% from facility 3. Again, 
with MBC being such a rare disease, pooling data becomes 
essential. Some differences may be attributed to differences 
in imaging technique. Additionally, segmenting lesions 
manually can be another source of subjectivity that can affect 
the analysis. Since this study is a retrospective study, there 
was some demographic information that was not procured. 
Finally, due to the rarity of MBC, the number of cases are 
small compared to a study that would assess FBC.

Conclusions

Our pilot study suggests that a radiomics-based texture 
signature of the primary tumor is different between 
pathologically node negative vs. node positive male 
patients. Following validation radiomic features of the 
primary tumor could be a surrogate for nodal status. Our 

data merits further investigation in a larger sample size to 
confirm which patients could forego sentinel node biopsy 
and identifying additional biological-radiomic correlations 
to predict early on which MBC patients might be good 
candidates for neoadjuvant therapy.
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Supplementary 

Figure S1 Sample plots of radiomic metrics extracted from CC mammogram that showed significant (P<0.05) differences between pN0 and 
other nodes. Interestingly, all of them belonged to first-order texture metrics. CC, craniocaudal.

Figure S2 Sample plots of radiomic metrics extracted from MLO mammogram that showed significant (P<0.05) differences between pN0 
and other nodes. Interestingly, all of them belonged to first-order texture metrics. MLO, mediolateral oblique.


