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Introduction

Immunotherapy is a type of treatment that stimulates the 
patient’s immune system to recognize and destroy cancer 
cells. In recent years, immunotherapy has become of great 
interest in its promise to treat breast cancer (1). Some 
clinical trials have been performed to investigate the agents 

that target immune pathways in breast cancer. Lymphocyte 
activation gene-3 (LAG-3) antibody (IMP321) has been 
used to treat metastatic breast cancer (2). The cytotoxic T 
lymphocyte antigen-4 (CTLA-4) antibody (tremelimumab) 
has been used to treat metastatic hormone responsive breast 
cancer (3). Anti-programmed cell death protein 1 (PD-1) 
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antibody (pembrolizumab) has been used to treat metastatic 
triple-negative breast cancer (4). A programmed cell death-
ligand 1 (PD-L1) antagonist (MPDL3280A) has been used 
to treat metastatic triple-negative breast cancer (5). Most 
clinical studies focused on the regulation of tumor-specific 
T cell activation.

We have reported that the innate immune system 
part ic ipates  in  the ini t iat ion and progress ion of 
breast cancer (6,7). Knowledge of the tumor immune 
microenvironment is  cr i t ical  for  developing new 
treatments targeting the immune system in breast cancer. 
In the past few years, de Melo Gagliato reported the role 
of lymphocyte infiltration in breast cancer prognosis 
and response to therapy (8). Hutloff reported that T 
follicular helper-like cells can drive the differentiation 
of B cells in breast cancer (9). Morrow et al. reported 
the role of gamma delta T lymphocytes in breast cancer 
and found that some subtypes can promote breast cancer 
growth and spread through immunosuppressive effects, 
while another subtype can suppress cancer growth 
through direct cytotoxicity (10). Aponte-López et al. 
reported the protumor and antitumor roles of mast cells 
in breast cancer (11). However, the complete atlas of the 
microenvironment of infiltrating immune cells in breast 
cancer has not been well investigated.

To investigate the tumor immune microenvironment, 
Newman et al. developed a method, CIBERSORT, to 
estimate the immune cell composition in a mixed cell 
population from cell gene expression profiles (12). Chen 
et al. confirmed that CIBERSORT can accurately estimate 
the immune composition of a tumor biopsy samples (13). 
CIBERSORT has been used to profile immune infiltration 
in early lung adenocarcinoma (14), non-small-cell lung 
cancer (15), microsatellite unstable colorectal cancer (16),  
hepatocellular carcinoma (17), and nasopharyngeal 
carcinoma (18). Ali et al. reported the patterns of immune 
infiltration in breast cancer and their clinical implications. 
However, their research focused on the influence of 
immune infiltrates on survival and treatment response. 
They did not provide a fundamental profile of immune cell 
infiltration in breast cancer (19).

The aim of this study is to illustrate the atlas of the 
immune cell microenvironment of breast cancer. We 
obtained data for breast cancer control samples from the 
TCGA database. The CIBERSORT algorithm was used 
to calculate the tumor-infiltrating immune cell (TIIC) 
composition. Furthermore, we performed correlation 
analysis of clinical information and tumor infiltrated 

immune cells.
We present the following article in accordance with 

the REMARK reporting checklist (available at https://abs.
amegroups.com/article/view/10.21037/abs-20-58/rc).

Methods

Data acquisition from the cancer genome atlas (TCGA)

The gene expression profiles of breast cancer patients and 
normal controls were downloaded from the official TCGA 
website in October 2019. The expression of genes in 
breast invasive carcinoma (BRCA) were analyzed. Clinical 
characteristics from the corresponding patients were 
downloaded as well. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 

Evaluation of TIICs

We used the CIBERSORT algorithm (http://cibersort.
stanford.edu/) to calculate the TIIC composition (12). 
The TIIC immune cells included B cells, plasma cells, 
T cells, NK cells, macrophages, monocytes, mast cells, 
dendritic cells, neutrophils and eosinophils. Perl (The Perl 
Programming Language, version 5.28.1, http://www.perl.
org) was conducted to convert IDs and group samples. 
The limma package of R (The R Project for Statistical 
Computing, version 3.5.3, https://www.r-project.org) 
was used to normalize the gene expression data. TIIC, 
P-value, root mean square error and Pearson’s correlation 
coefficient were quantified for each sample. Furthermore, 
we applied CIBERSORT to calculate the P value for the 
deconvolution.

Correlation analysis of clinical information and tumor 
infiltrated immune cells

Samples with P <0 .05 were included for the subsequent 
clinical analysis. The clinical information matrix was 
merged with filtered TIIC data. The survival package of 
R was used to perform the survival analysis and determine 
the correlations between the tumor stages and immune 
cells. The heat map, bar plot, and violin plot were drawn 
by using R.

Statistical analysis

All statistical analyses were performed using R software 

https://abs.amegroups.com/article/view/10.21037/abs-20-58/rc
https://abs.amegroups.com/article/view/10.21037/abs-20-58/rc
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
http://www.perl.org
http://www.perl.org
https://www.r-project.org
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(version 3.5.2, R Foundation). The association between 
clinical follow-ups and immune cells and survival curves 
were evaluated by log-rank test and Kaplan-Meier analysis. 
The correlations between TNM stage and immune cells 
were measured by the Wilcoxon test. Student’s t-test was 
used to examine the statistical relevance between two 
groups. All statistical tests were two-sided. P values <0.05 
were considered statistically significant. The cut off value of 
Figures 1 and 2 is P<0.05.

Results

Clinical characteristics

A total of 1,109 breast cancer samples and 113 control 
samples were downloaded for the TCGA database. After 
merging the clinical data with the TIIC data, 844 breast 
cancer samples were included in the following analysis. 
Detailed clinical characteristics are listed in Table 1. The 
average age at diagnosis was 57.57 years old.

Composition of TIICs: suppressed acquired immune system 
and activated innate immune system

We performed CIBERSORT and investigated the 
fractions of infiltrated immune cells between breast tumor 
and adjacent non-tumor tissues. A bar plot was drawn 
to visualize the proportions of infiltrating immune cells  
(Figure 3A).

The acquired immune system was suppressed in breast 
cancer tissue. Compared with normal tissues, breast cancer 
tissues had a higher fraction of memory B cells (P=0.003), 
CD4 naive T cells, memory activated CD4 T cells (P<0.001), 
follicular helper T cells (P<0.001), and regulatory T 
cells (Tregs, P<0.001). Breast cancer tissues had a lower 
fraction of naive B cells (P<0.001), plasma cells (P<0.001) 
and memory resting CD4 T cells (P=0.012) than normal 
controls.

The innate immune system was activated in breast 
cancer tissue. Compared with normal tissues, breast cancer 
tissues had a higher fraction of resting NK cells (P=0.001), 
M0 macrophages (P<0.001), M1 macrophages (P<0.001), 
monocytes (P<0.001), activated NK cells (P=0.002), and 
activated mast cells (P<0.001). Breast cancer tissues had a 
lower fraction of M2 macrophages (P<0.001) than normal 
controls.

Breast cancer tissue had higher activated dendritic cell 
counts (P=0.001). No statistically significant differences 

were found in CD8 T cells (P=0.093), gamma delta T cells 
(P=0.378), resting dendritic cells (P=0.335), resting mast 
cells (P=0.945), eosinophils (P=0.882) and neutrophils 
(P=0.492). No significant fraction of naive CD4 T cells was 
found in breast cancer or normal tissues (Figure 3B).

Correlation of TIICs in breast cancer tissues

We used the corrplot package of R to draw the correlation 
heat map to visualize the correlations of infiltrating immune 
cells (Figure 4). The five immune cell types that had the 
highest negative correlation with M0 macrophages were 
monocytes, naive B cells, plasma cells, resting memory CD4 
T cells and CD8 T cells. The three immune cells that were 
most positively correlated with M1 macrophages were CD8 
T cells, activated memory CD4 T cells, and follicular helper 
T cells.

Composition of TIICs in different breast cancer subtypes

We applied CIBERSORT to investigate the fractions 
of infiltrated immune cells between different subtypes 
of breast cancer and adjacent non-tumor tissues. Triple-
negative breast cancer tissue had more memory B cell and 
less resting mast cell infiltration than Her2+ and luminal 
subtype breast cancer. Luminal breast cancer had fewer 
activated dendritic cells than the other two subtypes  
(Figure 5A).

We used the vioplot package of R to draw violin plots 
to visualize the expression differences in infiltrating 
immune cells. Compared with normal tissues, the same 
trend was found in all three subtypes: breast cancer tissues 
had a higher fraction of memory B cells, CD4 naive T 
cells, memory activated CD4 T cells, follicular helper 
T cells, regulatory T cells (Tregs), resting NK cells, M0 
macrophages, M1 macrophages, activated dendritic cells, 
and activated mast cells. Breast cancer tissues had a lower 
fraction of naive B cells, plasma cells, memory resting 
CD4 T cells, activated NK cells, monocytes, and M2 
macrophages than normal controls (Figure 5B).

Correlation of the immune cells with primary tumor, 
lymph node and metastasis classifications and stage

We assessed the correlation of TIICs with the primary 
tumor, lymph node, metastasis, and stage.

The primary tumor (T) classification was associated with 
regulatory T cells, M0 macrophages, M1 macrophages, M2 
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Figure 1 Association between tumor-infiltrating immune cells and clinical characteristics. Association between immune cell types and the 
tumor (A), node (B), metastasis (C) classification and stages (D). The bubble bars on the left side show the P value of the association. The 
red color indicates a low P value. The bar chart of immune cells with P<0.05 is listed on the right.
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Figure 2 Kaplan-Meier survival curves of tumor-infiltrating immune cells in breast cancer samples. The bubble bars on the left side show 
the P value of the association. The red color indicates a low P value. A low fraction of M2 macrophages and a high fraction of naive B cells 
were risk factors for predicting the survival rate.

macrophages, activated memory CD4 T cells, follicular 
helper T cells, naive B cells, activated mast cells, plasma 
cells, monocytes, activated NK cells, resting dendritic 
cells, memory B cells, CD8 T cells, resting NK cells, 
activated dendritic cells, and resting memory CD4 T cells  
(Figure 1A).

The lymph node (N) classification was associated with 
M0 macrophages, regulatory T cells, M1 macrophages, M2 
macrophages, activated memory CD4 T cells, follicular 
helper T cells, monocytes, plasma cells, naive B cells, 

activated mast cells, activated NK cells, resting memory 
CD4 T cells, activated Dendritic cells, resting NK cells, 
CD8 T cells, and memory B cells (Figure 1B).

The metastasis (M) classification was associated with 
regulatory T cells, M1 macrophages, M0 macrophages, 
M2 macrophages, activated memory CD4T cells, follicular 
helper T cells, activated mast cells, plasma cells, naive B 
cells, monocytes, memory B cells, activated dendritic cells, 
activated NK cells, resting NK cells, and memory resting 
CD4 T cells (Figure 1C).
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Tumor stage was associated with regulatory T cells, M0 
macrophages, M1 macrophages, M2 macrophages, memory-
activated CD4 T cells, follicular helper T cells, monocytes, 
activated mast cells, resting memory CD4 T cells, activated 
dendritic cells, activated NK cells, resting NK cells, resting 
mast cells, and resting dendritic cells (Figure 1D).

High M2 macrophage and low native B cell counts were 
associated with poor survival

Furthermore, we investigated the correlation of immune 
cells with survival rate. M2 macrophages and naive B cells 
could predict the survival rate. M2 macrophages are a risk 
factor for breast cancer. A low fraction of M2 macrophages 
was associated with a high survival rate (P=0.037). Naive B 
cells are protective factors. A high fraction of naive B cells 

was associated with a high survival rate (P=0.036) (Figure 2).

Discussion

In this study, we illustrated an atlas of the immune cell 
microenvironment of breast cancer. Our findings suggest 
that the adaptive immune system is suppressed, while the 
innate immune system is activated in breast cancer tissue. 
The same trends were found in all three (Her2+, luminal 
and triple-negative) subtypes. Furthermore, we found that 
high M2 macrophage and low native B cell counts were 
associated with poor survival.

The adaptive immune system, also known as the acquired 
immune system, was suppressed in breast cancer tissues. 
Adaptive immunity provides an antigen-specific response 
following exposure to a microbial pathogen or antigen. The 
adaptive immune system mainly involves B cells and T cells. 
B cells were suppressed in this study, as breast cancer tissue 
had a low fraction of plasma cells and a high fraction of 
memory B cells. Most previous studies supported that the 
infiltration of plasma cells (activated B cells) could predict 
better survival (20,21). Furthermore, regulatory T cells, 
which can suppress antitumor immunity, had a high fraction 
in breast cancer tissue. Plitas et al. found that regulatory 
T cells contribute to cancer progression (22,23). High 
regulatory T cells suppress the local antitumor immune 
reaction. Moreover, although not statistically significant, 
CD8+ T cells generally had a low fraction in breast cancer 
tissue. Savas et al. reported that CD8+ T cells contribute 
to improved patient survival in early-stage triple-negative 
breast cancer (24). Huang et al. reported that CD8+ T cells 
mediate antitumor immunity (25). Our findings suggested 
that breast cancer cells suppress the human adaptive 
immune system.

The innate immune system was activated in breast 
cancer tissue. Innate immunity refers to the nonspecific 
defense against tumors. Tumoricidal M1 macrophages, 
monocytes, and activated mast cells were present at higher 
fractions in breast cancer tissues. M1macrophages have 
proinflammatory and anticancer functions. A high number 
of M1 macrophages was significantly associated with 
improved breast cancer survival (26). Human monocytes 
predicted a better survival rate (27). The role of mast cells 
in breast cancer is complex. It may exert both protumor 
and antitumor effects. Furthermore, tumor-promoting 
M2 macrophages were present at a lower fraction in breast 
cancer tissues. M2 macrophages are immunosuppressive 
and contribute to matrix remodeling, hence favoring 

Table 1 Clinical characteristics of breast cancer patients who had 
tumor-infiltrating immune cells data

Clinical characteristics Case (n=844) (%)

TNM-T

T1 215 (25.47)

T2 493 (58.41)

T2 106 (12.56)

T4 28 (3.32)

NA 2 (0.24)

TNM-N

N0 395 (46.80)

N1 297 (35.19)

N2 98 (11.61)

N3 64 (7.58)

NA 11 (1.30)

TNM-M

M0 709 (84.00)

M1 16 (1.90)

NA 119 (14.10)

Stage

I 137 (16.23)

II 475 (56.28)

III 199 (23.58)

NA, not available.
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Figure 3 Profile of immune cell proportions in normal controls and in breast cancer samples. (A) Heat map of immune cell proportions 
of breast cancer and normal samples. The blue horizontal bar indicates the normal control, while the red horizontal bar represents breast 
cancer samples. (B) The violin plot of the proportion of each immune cell in normal and breast cancer tissues. Blue represents normal 
samples and red indicates breast cancer samples.
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tumor growth. Sousa et al. found that high numbers of 
M2 macrophages were strongly associated with poor 
differentiation, fast proliferation and estrogen receptor 
negativity in primary breast tumors (28). Our results 
supported that breast cancer activated the innate immune 
system.

Antigen-presenting cells (APC) were activated in breast 
cancer tissue. APCs can present antigen to appropriate T 

cell receptors. In this study, we found that breast cancer 
tissue had a high fraction of activated dendritic cells. 
Dendritic cells are necessary for T cell-mediated cancer 
immunity (29). Our findings suggested that the suppression 
of the adaptive immune system does not occur through the 
suppression of APCs. 

A high M2 macrophage fraction was associated 
with poor survival is this study. M2 macrophages are 
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Figure 4 Correlation matrix of tumor-infiltrating immune cells in breast cancer samples. The blue color indicates a negative correlation, 
and the red color represents a positive correlation.
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alternatively activated macrophages that are associated with 
tissue repair and wound healing. M2 macrophages have 
tumor-promoting effect in many cancers (30). Increased 
macrophage infiltration is associated with poor prognosis in 
breast, cervical, lung, thyroid, hepatocellular, and ovarian 

cancers (30). Inhibition of M2 macrophage differentiation 
suppressed established tumors and increased survival (31). 
However, an interesting finding is that the proportion 
of M2 macrophage is lower in all three sub-types and in 
all four stages of tumor samples compared with control 
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Figure 5 Profile of tumor-infiltrating immune cells in three breast cancer subtypes. (A) The bubble chart of immune cell proportions in 
Her2+, luminal and triple-negative subtypes. The horizontal axis indicates the fold change relative to the controls. The size of the bubble 
represents the proportion. The color of the bubbles indicate the different cell types. (B) The violin plot of the proportion of each immune 
cell in normal control, Her2+, luminal and triple-negative subtypes. HER2+, human epidermal growth factor receptor 2 positive.
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Figure 6 Breast cancer immune cell environment. Breast cancer tissues suppress the adaptive immune system and activate the innate 
immune system. 
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samples. This may depend on the microenvironmental 
signals. Macrophages are polarized into M1 macrophages 
or M2 macrophages in different microenvironments. Based 
on our study, it seems that the microenvironment in breast 
cancer tissue triggers macrophages polarize into M1, 
instead of M2. That’s why tumoricidal M1 macrophages 
were present at higher fractions in breast cancer tissues, 
while tumor-promoting M2 macrophages were present at a 
lower fraction in breast cancer tissues. Another interesting 
finding of M2 macrophages is that the lines of red and 
blue are crossing in survival analysis. The worse outcome 
is observed in low M2 infiltrated tumor group after about  
10 years. One possibility is that the sample size is low after 
10 years follow up. Another possibility is M2 macrophages 
may play complex roles in breast cancer microenvironment.

A low fraction of naive B cells was associated with poor 
survival in the present study. Naive B cells are a type of B 
cells that have not been exposed to any antigen. A naive 
B cell may become a plasma cell or a memory B cell once 
exposed to an antigen. A high fraction of naive B cells 
suggests few activated B cells. Activated B cell infiltration 
predicts better response to therapy and longer survival (32). 

In conclusion, breast cancer tissues suppress the adaptive 
immune system and activate the innate immune system 
(Figure 6). High M2 macrophage and low native B cell 

counts are associated with poor survival.
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