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Objective: This narrative review describes the recent developments and applications of machine learning 
(ML), a part of artificial intelligence, concerning breast cancer.
Background: The advent of new bioinformatic approaches and artificial intelligence-based computational 
technologies has led to a shift in the decision-making of oncologists regarding breast cancer diagnostics and 
treatment processes. Various successful applications of ML on image processing, especially the use of deep 
neural networks and convolutional neural networks, to detect tumor and lymph nodes regions have been 
reported. Recent high-throughput molecular quantifications, i.e., quantitative omics techniques have enabled 
simultaneous monitoring of thousands of molecules to understand the molecular-level pathology. These 
data, including gene expression, protein, metabolite, and methylation profiling, have been analyzed via 
deep learning, network analysis, clustering, and dimension reductions to explore intrinsic subtypes and new 
biomarkers. Clinical-pathological features have been conducted by multivariable analysis to predict various 
outcomes, e.g., the sensitivity of adjuvant therapy and prognosis. The quantitative relationships among 
their variables have been visualized as nomograms. To analyze complex structures of a larger number of 
variables, ML combining multiple clinical-pathological features has been developed to predict the prognosis, 
metastasis, and treatment outcomes of breast cancer.
Methods: We provided the narrative review of ML-related topics especially in the quantitative omics data 
and clinical-pathological prediction models.
Conclusions: ML-based prediction methods are powerful tools and contribute to realizing personalized 
medicine for breast cancer. 
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Introduction

Cancer is one of the major health problems, and 19.3 million 
new cases of cancer and almost 10 million deaths from 
cancer are estimated worldwide for 2020 (1). Among 
females, breast cancer is the most commonly diagnosed 
cancer with an estimated 2.3 million new cases, followed by 
colorectal and lung cancer in incidence, and vice versa in 
mortality (1). Among females in the United States, breast 
cancer is the most diagnosed cancer and the second cause 
of death among most of the cancer types in 2021. However, 
there is concern regarding the underestimation of new 
cases because of the coronavirus disease 2019 (COVID-19) 
pandemic (2). The development of new technology for 
automatic screening is needed for the early detection and 
treatment of breast cancer.

With advances in technology, the recent rapid increase in 
computational resources has yielded high-dimensional data, 
whereby accurate diagnosis and prediction of the prognosis 
and treatment outcome of breast cancers are possible. The 
capability of imaging breast lesions through techniques 
such as mammography (MMG), ultrasonography (US), 
and magnetic resonance imaging (MRI) contributes to 
characterizing the malignant region(s), which provides 
information complemental to biopsies for definitive 
diagnoses (3). Molecular-based profiling data, such as 
transcriptomics, proteomics, and metabolomics, have also 
been accumulated using omics technologies, and these data 
help decipher the molecular pathways dysregulated in breast 
cancer (4). To exploit the clinical utility and to understand 
tumorigenesis and progression of breast cancer from these 
types of big data, sophisticated computational analyses are 
necessary in addition to conventional statistical approaches.

As a computational analytical methodology, machine 
learning (ML), one of the branches of artificial intelligence (AI), 
has been implemented to analyze these data, for which there 
exist unsupervised and supervised methods. Unsupervised 
methods involve the extraction of repeatedly observed or 
implicit features without a pre-definition of the expected 
results. The clustering technique is one example thereof 
and is frequently employed in the analysis of quantitative 
omics data, such as the subtype-specific expression patterns 
of transcriptome data. Supervised methods, on the contrary, 
mimic given results by combining the observed features. 
Various ML methods have been used for this purpose, such as 
the artificial neural network (ANN), support vector machine 
(SVM), naïve Bayes algorithm, random forest (RF), and 
decision tree. Approximately 3,000 papers have been published 
in this area in the last five years (2015–2019) (5) owing to 

publicly available databases such as the Wisconsin Breast 
Cancer Database and Breast Cancer Coimbra Data Set, which 
have been repeatedly used for the development and validation 
of new methods (6,7). The benchmark tests to compare the 
prediction performance of ML methods have been reviewed 
using various datasets (8-10).

Image processing technologies have been improving 
rapidly and significantly, particularly the use of deep 
neural networks (DNNs) and convolutional neural 
network (CNN). The applications of ML for image 
processing have been frequently reviewed and are a topic 
of high research interest (11-16). A large-scale database 
including histopathological images of breast cancer is 
publicly available for these analyses (17). A combination 
of supervised and unsupervised CNN has been used for 
histopathological data (18). DNNs have been also employed 
in breast cancer risk assessment using whole genomic data 
(named polygenic risk scores), a technique that has been 
also well-reviewed (19,20). 

Thus, image processing is currently a hot topic in breast 
cancer diagnosis; therefore, various review papers are 
already available. This manuscript provides a review of the 
application of ML to the other types of data, especially for 
clinical-pathological features and quantitative molecular 
profiles. We present the following article in accordance with 
the Narrative Review reporting checklist (available at https://
abs.amegroups.com/article/view/10.21037/abs-21-63/rc).

Methods

Information used to write this paper was collected from 
PubMed and Google Scholar.

Clinical-pathological feature-based prediction

Index 

Combinations of clinical-pathological features have long 
been used to assess diseases and treatment responses in 
patients. For this purpose, the Nottingham prognostic 
index (NPI) was developed in 1982 (21) and involved 
three factors, namely tumor size, stage of the disease, 
and tumor grade, to predict the prognosis of primary 
and operable breast cancers (22). This index has been 
frequently validated and widely employed in the prognosis 
of breast cancer (23). Various other factors, such as the 
vascular endothelial growth factor (VEGF), are prognostic 
factors independent of the NPI for patients with node-
negative breast cancers (24,25). Lymphovascular invasion 

https://abs.amegroups.com/article/view/10.21037/abs-21-63/rc
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(LVI) and progesterone receptor (PgR) were also proposed 
as factors independent of NPI to predict the prognosis 
(26,27). Thus, the NPI cannot reveal the entire clinical 
and survival outcome of breast cancer heterogeneity, and a 
new index incorporating molecular-based biomarkers was 
developed. The Nottingham prognostic index plus (NPI+) 
was developed using an ANN to combine a large number 
of molecular expression levels in a non-linear manner (28). 
This approach has improved the predictive ability of each 
clinical-pathological feature, considering their complex and 
non-linear relationship.

Nomogram

The ability to visualize the relationships among the 
quantitative effects of each observed feature on the outcome 
would aid the decision-making process when selecting the 
treatment mode. Adjuvant! Online was first developed for 
this purpose (29). This graphical web tool visualizes the risk 
of cancer-related mortality or relapse without therapy and 
the reduction in risk with therapy. However, it is limited on 
several counts; for example, the human epidermal growth 
factor receptor 2 (HER2) status was not included. As similar 
approaches, various nomograms have since been developed 
to combine the predictive effect of each feature linearly. 
In this regard, PREDICT was developed in the United 
Kingdom to predict the overall survival and treatment effect 
of systemic therapy in patients with primary breast cancer 
using the factors of age, menopausal status, disease stage, 
estrogen receptor (ER), HER2, and Ki-67 labeling index 
(Ki-67) (30). Similar to Adjuvant! Online, PREDICT has 
been well-validated. Subsequently, Rouzier et al. developed 
two nomograms to predict the residual tumor size and 
the applicable probability of conservative surgery after 
neoadjuvant chemotherapy (31). 

In addition, nomograms for specific subtypes of breast 
cancer have been developed, such as for triple-negative, i.e., 
ER/PgR-negative and HER2-negative (32,33) as well as ER/
PgR-positive and HER2-negative patients (34). Recently, 
a systematic review was published, evaluating a total of 58 
mathematical prediction models for disease prognosis (35). 
Most of these models utilized Cox proportional hazards 
regression to predict mortality, recurrence, or both, and 
they were calibrated using the C-index or the area under 
the receiver operating curve (AUC). Moreover, nodal 
status, tumor size, tumor grade, age, and ER status were 
included as parameters. However, only 17 of the 58 models 
were validated in independent populations (i.e., external 

validation).
Some of these nomograms, validated previously, were 

used to aid the prognosis estimation. To enhance the 
generalization ability of the model, that is, the ability of 
the model to work accurately with independent data not 
included in the model development, independent minimum 
variables sets are usually selected (36). Thus, only a few 
variables can be incorporated into a single nomogram, 
which limits the accounts of heterogeneity as well as the 
accuracy of the predictions (Figure 1A).

Machine learning methods

ML methods can potentially enhance observable variables 
that predict outcomes, e.g., prognosis, diagnosis, and 
treatment sensitivity, by combining them in complicated 
structures. The objective of each method is to attempt 
to explore underlying data patterns and the relationship 
among the data, which would contribute to realizing 
accurate predictions. Various supervised ML methods have 
been used for this purpose.

The pathological complete response (pCR) of neoadjuvant 
chemotherapy (NAC) was predicted using various types of 
classification methods, such as the RF, naïve Bayes algorithm, 
SVM, and ANN; a cross-validation-based accuracy comparison 
concluded that RF yielded the best performance (37). An 
alternative decision tree (ADTree) was used to predict the pCR 
of NAC of patients with primary breast cancers (38) (Figure 1B).  
A prediction model was developed using training data 
collected from three institutions including Tokyo Metropolitan 
Cancer and Infection Diseases Centre Komagome Hospital, 
Osaka National Hospital, and Tsukuba University Hospital 
with cross-validation as a means of internal validation. 
The developed model was evaluated using independent 
validation data collected from the Organisation for Oncology 
and Translational Research (OOTR) N003 which is a 
randomized trial of patients with operable breast cancer 
treated with docetaxel with or without capecitabine after four 
cycles of NAC consisting of 5-fluorouracil, epirubicin, and 
cyclophosphamide (FEC) (UMIN ID: C000000322, http://
www.umin.ac.jp/ctr/index.htm) (Figure 2A).

ADTree-based prediction model also predicted the 
metastasis of the axillary lymph node in patients with breast 
cancer who had not received prior treatment (39). The 
training data included the breast cancer patients from the 
Tokyo Metropolitan Cancer and Infectious Diseases Centre 
Komagome Hospital and Kyoto University Hospital, whose 
maximum tumor size was ≤4 cm. The independent validation 

http://www.umin.ac.jp/ctr/index.htm
http://www.umin.ac.jp/ctr/index.htm
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Figure 1 The machine learning method using clinical-pathological features. (A) The relationship between the prediction accuracies and the 
number of features used for the prediction model. The prediction accuracies using training data increase along with the number of features uses, 
whereas those using validation data show a peak. The number of features at this peak should be selected to enhance the generalization ability of 
the model. (B) Examples of tree-type algorithms. Conventional decision tree (left) and alternative decision tree (right). LN, lymph node.

data was collected from Seoul National University Hospital, 
Korea, and consisted of the patients who underwent sentinel 
lymph node (SLN) biopsy and met the same eligibility 
criteria as the modeling dataset (Figure 2B).

ADTree model was also used to predict the disease-
free survival (DFS) and brain metastasis in patients with 
HER2-positive breast cancer who had received NAC plus 
trastuzumab in the Japan Breast Cancer Research Group 
(JBCRG)-03 study (40,41). These models involve an 
ensemble technique, whereby multiple prediction models 
can be developed and their predictions can be integrated 
to enhance the prediction accuracies. Notably, this method 
also showed robustness against missing values (42,43).

Quantitative omics data analysis

Commercially available gene expression analyses

Traditionally, transcriptional data based on gene expression 

have been analyzed. However, in recent times, other 
various omics data, such as proteomics and metabolites, 
have also been simultaneously analyzed to understand the 
molecular-based heterogeneity of cancers (44). The clinical 
utilities of several gene expression profiling tools such 
as Prediction Analysis of Microarray 50 (PAM50)® (45),  
MammaTyper® (46), MammaPrint® (47), Oncotype DX® (48), 
Endopredict® (49), and Genomic Grade Index® (50) have 
already been well-validated, and these tests are commercially 
available and widely used in clinical practice (51). 

For example, MammaPrint® is an FDA-approved test 
for in vitro diagnostic multivariate index assays. This test 
previously involved the use of frozen samples, whereas 
it currently involves formalin-fixed, paraffin-embedded 
(FFPE) blocks for the analysis of 70 gene signatures using a 
microarray (52). Notably, this test showed better prognosis 
prediction ability than that of Adjuvant! Online (53). 
In MINDACT (a prospective study), patients with ER-
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Figure 2 Web site to predict the response of neoadjuvant chemotherapy (A) and axillary lymph node metastasis (B) of primary breast cancer. 
http://www.brca.jp/index.html. The account is issued upon request to the corresponding author. ADTree, alternative decision tree.

B

A

positive disease, who were at high clinical risk as defined 
by Adjuvant! Online and low genomic risk as defined by 
MammaPrint, showed an excellent prognosis without having 
received chemotherapy (54). Oncotype DXTM extracts RNA 
from FFPE blocks and quantifies 21 gene profiles via RT-
PCR (55). The 21 genes include 16 tumor-related and 5 
reference genes for the prediction of the recurrence score 

(RS). This test was validated via tamoxifen-treated breast 
cancer patients with ER+/node-negative and showed a 
significantly different prognosis among high- and low-
risk groups (48). Validation via these patients also showed 
prognostic value (56), and the test showed the predictive 
ability for the case of adjuvant therapy of tamoxifen + 
chemotherapy for breast cancer patients with ER+/node-
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Figure 3 ANN-based data analysis of high-dimensional data, e.g., microarray gene expression. (A) A typical supervised learning method. 
CNN tries to predict a phenotype, e.g., good/poor prognosis, from observed data. The CNN evaluates the difference between the prediction 
and training data and tries to minimize this difference. (B) A typical unsupervised method. AE tries to produce lower-dimensional features 
from the observed data (encoding) and also reproduces the original data from the encoded features (decoding). AE tries to minimize the 
difference between the observed and decoded data. AE, autoencoder; ANN, artificial neural network; CNN, convolutional neural network.

negative (57). The clinical utility of Oncotype DXTM was 
evaluated in large prospective trials. In the TAILORx trial, 
adjuvant endocrine therapy and chemoendocrine therapy 
showed similar efficacies in patients with RS of 11–25 (58). 
In another study, PAM50 was used to analyze 50 gene 
expression profiles to classify breast cancer into intrinsic 
subtypes (45). MammaPrint involved the use of profiles 
of 70 gene expressions for prediction of recurrence (59) 
and PAM50 involved clustering to calculate the distance 
of gene expression patterns for evaluation of the distances 
among the given and intrinsic subtypes (60). All these assays 
utilized relatively simple data analytical methods, such as 
multiple logistic regression (MLR) and clustering.

Multi-gene assay with ML

To consider more complex relationships among genes, ML 
methods have been used instead of the aforementioned 
established methods. The genes considered for PAM50 on 
RNA-sequence data were also analyzed via ML methods 
for evaluating the similarity among the given data and pre-
defined subtypes. Moreover, CNN (Figure 3A) was used to 
analyze gene expression profiles collected from The Cancer 
Genome Atlas (TCGA) database (61); DNNs were used to 
explore the subtype-specific expression pattern, whereby six 
new subtypes of triple-negative breast cancer were found (62).

It should be noted that there exist several difficulties 

in analyzing high-dimensional gene expression data. For 
example, various genes show positive correlations (multi 
co-linearity among the observed features), which prevent 
important genes with higher effects on the other molecules 
from being found. Instead, network analyses are used 
to visualize their relationship using quantitative criteria 
between two genes, including the correlation of expression 
profiles (in most cases) to explore hub genes (63). The 
edges of the gene co-expression network have been used 
as features to predict the metastasis of breast cancer (64).  
Through co-expression networks and clustering, the 
hypoxia-related dysregulation of mRNA and microRNAs 
were identified using the TCGA database to predict the 
breast cancer prognosis (65). Moreover, intra-chromosomal 
and inter-chromosomal interactions among genes were 
analyzed for each subtype to understand the subtype-
specific imbalance of these relationships (66). 

These networks are frequently categorized as scale-free 
networks that sometimes do not yield independent multiple 
clusters (67). Another drawback is that the constructed 
network is sensitive to the threshold pre-defined by analysts, 
and more robust methods needed to be developed. To solve 
these problems, the weighted gene correlation network 
analysis (WGCNA) that implements the soft-threshold 
has been developed, and this method yielded independent 
clusters and robust analytical results (68,69). The 
WGCNA was then explored to find hub genes that possess 
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different biological functions to predict the breast cancer  
prognosis (70), and it was also used to find independent 
hub genes to predict breast cancer of the triple-negative 
subtype (71). Although these results should be validated 
using various datasets during the comprehensive molecule 
profiling, these analytical methods do contribute to the 
determination of independent features to characterize 
breast cancers.

Another approach for microarray data analysis is 
dimensional reduction, involved in techniques such as 
principal component analysis (PCA). This method does not 
identify a single molecule but instead enables the extraction 
of gene patterns that contribute to discriminating the 
defined phenotypes. For example, the combination of PCA 
and PAM50 was used for subtyping breast cancers, and 
consistent subtype-specific gene clusters were yielded in 
multiple datasets (72). The autoencoder (AE) (Figure 3B), 
a substream of an ANN, is another dimension reduction 
method part of which prominent lower-dimensional 
features are extracted from high-dimensional datasets (73). 
DNA methylation data were analyzed using the AE to 
identify the CpG site enabling the prognosis prediction for 
breast cancer (74). The AE was also used to extract gene 
features enabling the prognosis prediction of the luminal 
A subtype of breast cancer (75). Denoising the AE, which 
results in more robustness against data noise than AE, was 
developed and used to extract gene patterns to predict the 
breast cancer prognosis (76). These unsupervised methods 
have displayed the potential to extract multiple features 
showing independent biological functions and prediction of 
the breast cancer prognosis.

More recently, different molecular data were simultaneously 
analyzed to further explore the understanding of breast 
cancer biology. For example, gene expression and copy 
number alternations were analyzed via a modified DNN 
algorithm, and six subgroups in HER2-positive groups 
were found (77). Another customized DNN was used to 
analyze gene expression data, and the identified biomarkers 
for each subtype were visualized using PCA to access their 
heterogeneity (78). Additionally, a hybrid method involving 
both clustering and DNN was used to analyze RNA-seq  
data (79). As conveyed in this section, these high-dimensional 
data were analyzed using AI-based computational approaches, 
which enable the extraction of biological knowledge.

Other quantitative omics data

Through proteomics, hundreds of proteins can be profiled; 

therefore, this technique has become popular upon the 
advent of high-throughput mass spectrometry. Protein-
based biomarkers have been identified to detect breast 
cancers at early stages (80). A supervised ML method 
was used to integrate quantified levels of 16 proteins 
to distinguish breast cancer tissues with and without 
metastasis (81).

Metabolomics is the newest approach in omics science 
for the identification and quantification of hundreds of 
metabolites in biological samples. The concentration 
pattern of the observed metabolites is  named the 
metabolomic profile and it  has been analyzed via 
multivariate analysis methods, such as PCA and partial 
least squares-discriminant analysis (PLS-DA), and pathway 
analysis (82). The metabolomic profiles of breast cancer 
tissues with ER+ and ER− revealed significant differences 
in terms of the beta-alanine and glutamine pathways (83). 
A DNN was used for the analysis of this dataset and new 
findings were obtained, such as the difference in adenosine 
triphosphate (ATP)-binding cassette transporter pathways, 
based on the estrogen receptors (84). Biofluid samples have 
been frequently analyzed, and classification methods have 
been developed to utilize their molecular patterns. We 
previously quantified salivary metabolites and developed 
an ADTree-based model to distinguish patients with 
breast cancer from healthy controls (85). The dimension 
of the observed data produced via a single measurement 
instrument is less than that of gene expression data; 
however, the combination of these data and AI showed the 
potential to enable the combination of the prediction ability 
using multiple markers and also for extraction of biological 
information in various pathways.

Notably, most ML methods require feature selection, 
wherein only the observed variables relevant to the 
outcome are selected upon elimination of the lower 
informative variables. Feature ranking (86), Markov blanket  
filtering (87), and the variance inflation factor (VIF) are 
commonly used to assess the dependence of features to 
reduce multicollinearity among the observed features (88). 
We used them in combination to select the minimum 
feature sets to predict the breast cancer prognosis (89). 
This combination of feature selection and prediction 
models significantly improves the accuracy, generalization 
ability, and robustness against noise frequently observed in 
quantitative omics data.

Recently, the concept of sparseness is introduced to 
identify only a few features showing predictivities among 
a large number of observed features. Gene expression data 
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were analyzed using sparse k-means to subgroups analyses of 
breast cancer data (90). The least absolute shrinkage selector 
operator (LASSO) and Ridge regression techniques were 
used to analyze gene expression data of breast cancer (91).  
The improvement in omics technologies enables the 
observation of a larger number of features, whereas these 
analytical technologies would contribute to reducing the 
problem of multicollinearity.

Discussion

This paper reviewed the recent application of ML-based 
technologies in clinicopathological prediction and the 
analyses of quantitative omics data. ML provides an evident 
advantage for the development of classification models: 
classification and regression via statistical methods are 
limited on several counts. Colinearity limits the number 
of variables that can be used in multiple logistic regression 
and multiple linear regressions. Moreover, these methods 
linearly integrate the predictable features. ML methods, 
however, have the potential to capture the non-linear 
structure of the observed data. Several classification 
methods, such as ANNs, also suffer from collinearity; 
therefore, appropriate feature selection before the use of 
these classification methods is necessary. 

Notably, several technical issues have been raised 
during rigorous evaluations of the training of supervised 
methods. Although various performance comparisons have 
been reviewed, the performance ultimately depends on 
the parameters considered for each method, such as the 
number of layers and nodes in an ANN model. To optimize 
these parameters, the enhancement of the generalization 
ability should be a primary goal. Combinations of the 
best parameters must also be searched in large parameter 
space with global parameter optimization, such as via a 
genetic algorithm (92). However, the performance of such 
algorithms also depends on their parameters, and empirical 
optimizations are currently practical, despite the induction 
of subjective training risk in the model. Therefore, more 
rigorous validation of the developed model should be 
employed as compared to that in the case of conventional 
statistical analysis methods. In conclusion, the improvement 
of automatic training and validation algorithm of each ML 
method is still necessary but enough validated ML models 
have shown the potential to contribute to the diagnosis and 
decision of treatment of breast cancers.

This review focuses on the application of ML to clinical-
pathological features and quantitative molecular profiles. 

However, wider applications of AI, such as natural language 
processing, have been developed to help the decision-
making of oncologists for diagnosis and treatment. A recent 
review in this field pointed out the need for standardization 
of benchmark tests and a variety of processed reporting 
before the use of developed methods in the clinical  
setting (15). Another review to introduce the application of 
ML on chronic diseases also requires the standardization of 
the evaluation metrics to determine ML performance and 
also data governance which realizes unbiased and objective 
data storage from the patients (13). A review of DL-based 
image-processing also claimed the need for reporting 
standardization even though the accuracy performance is 
equivalent to that of healthcare professionals (14). These 
problems are common for the topics dealt with in this 
review; accuracy and validation of ML algorithms, data 
management, objective evaluation criteria, and informative 
reporting, are necessary to assist the clinicians.

As a limitation, we did not cover all AI topics for 
breast cancer diagnosis and prognosis prediction in this 
review. The topics were limited to the application of ML 
on clinical-pathological features and quantitative omics. 
Especially, multi-gene assays have been already evaluated in 
the prospective clinical trials. Oncotype DX was validated 
in TAILORx, RxPONDER, and MINDACT clinical trials 
and analyzed to identify the beneficial patients to adjuvant 
chemotherapy (58,93-95). For example, the integrated 
use of clinical features based on tumor size and histologic 
grade to Oncotype DX enabled more precise identification 
of beneficial patients to adjuvant chemotherapy (96). 
Accumulation of these analytical results enables these 
tools to influence clinical decision-making in breast cancer 
treatment (97). However, the recent AI-based electronic 
health records found the need for standardizing the 
eligibility criteria on cancer trial population and there are 
still difficulties in obtaining robust analytical results for non-
cancer diseases (98). Currently, real-world populations are 
unable to participate in clinical trials because of stringent 
exclusion criteria, but many patients receive treatment (98). 
Thus, the development of robust and versatile ML-based 
analytical tools is still necessary to fill in the gap so the 
wider patient base would receive the benefit of diagnosis 
and treatment therapy.
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