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Introduction

Recently,  the advent of cost-effective sequencing 
technologies has exposed the vast number of microbial 
communities hosted in the human body—comprising as 
many cells as those present in our body—and unveil them 
as an integral component of sustainable health (1). Gene 
products from these microorganisms are responsible for 
the breakdown of complex molecules in food, protection 
from pathogens and a healthy development of the 
immune system (1,2). The term “microbiome” refers 
to the collection of microorganisms, their genomes, 
and their interactions, in a given environment. Human 
microbiome research and datasets have expanded rapidly 
in recent years with a vast array of applications extending 
from forensic science to translational health opportunities 
and beyond. 

The human gut microbiota is by far the most studied 
ecosystem in relation to health and disease processes. Even 
if microbial communities are present at different body 
sites, the microbiome within the gastrointestinal tract has 
attracted the major focus of research efforts, as it contains 

high microbial density and its signature can be easily 
assessed from faecal material. Alterations in the human gut 
microbiome (GM) have been implicated in a wide range of 
diseases including Crohn’s disease, ulcerative colitis, type  
2 diabetes mellitus, asthma, obesity, autism, and rheumatoid 
arthritis (3,4). 

The adult GM has an average unique microbial signature 
that is largely stable over time; in other words, inter-individual 
differences are much larger than individual temporal 
microbiome variability. The extensive interpersonal GM 
variation has been linked to environmental factors (5-7) 
[especially diet (8)] and to host genetics (9,10). Yet, the 
complex interaction of host genetics, environment and 
gut microbiota determining human physiological diversity 
has not been fully elucidated and will be a fertile area for 
methods development and discovery in the upcoming years.

Specifically, in the field of bone health and disease, 
evidence is accumulating about the involvement of the 
GM in preserving bone homeostasis. In response to this 
steadily increase in knowledge, earlier this year, the term 
“Osteomicrobiology” has been coined to bridge the gaps 
between bone physiology, gastroenterology, immunology 
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and microbiology (11). The human skeleton plays an 
important role in the overall function of the body. Besides 
being a highly specialized supporting framework of the 
body, bones protect vital organs, provide an environment 
for marrow (both for blood-forming and fat storage), act 
as a mineral reservoir for calcium homeostasis and are a 
storehouse for growth factors and cytokines (12). Therefore, 
the interest in the interplay between the microbiome and 
the human skeleton goes beyond the function of bones as 
a structural organ to also characterize its role on the global 
health of individuals.

Here, I review the remarkable range of pre-clinical and 
clinical studies that support the role of gut microbiota in 
bone metabolism, placing special emphasis on the most 
recently published studies and on future directions the 
musculoskeletal field is taking, revitalized by this novel 
research dimension. 

Effects of the GM on bone metabolism

The microbiome-bone relationship is complex and involves 
several mechanisms including: 

(I) The regulation of nutrient absorption from the diet 
(e.g., calcium, phosphorus); 

(II) The translocation of microbial products across the 
gut endothelium [e.g., lipopolysaccharide (LPS), 
short-chain fatty acids (SCFAs), peptidoglycan];

(III) Regulation of immunomodulation (e.g., CD4+ T 
cell activation, control of osteoclastogenic cytokine 
production).

The impact of GM profiles in bone metabolism is being 
delineated by perturbation experiments primarily performed 
in mouse models (13-17). Germ-free (GF) mice, raised in 
sterile isolators and completely devoid of microbiota, are 
operational models to study the consequences of microbiota 
on physiology. GF mice can be used as a “test tube” 
to examine the effects inflicted by specific microbes or 
communities of microbes in their host. Depletion of the gut 
microbiota by antibiotic use has similarly been attempted as 
an alternative to GF animals but this approach is not free of 
caveats that have limited its use (18). 

In 2012, investigations by Sjogren et al. showed, for the 
first time, that bone density was regulated by the presence 
of gut microbiota (13). In this study, female GF mice had 
higher trabecular and cortical bone density when compared 
to control C57BL/6 mice raised in conventional conditions 
at 9 weeks of age (13). GF mice also presented with fewer 

CD4+ T cells and osteoclast precursors in the bone marrow. 
The authors attributed these observations to impaired 
osteoclastogenesis leading to reduced bone resorption (13). 
Favorable bone characteristics in GF C57BL/6 mice were 
also described later by the same research group (19) and by 
others (14,20). In addition, these studies showed that the 
gut microbiota modulates inflammatory responses caused 
by sex steroid deficiency and resulting in trabecular bone 
loss (14). Since these first reports, conflicting studies have 
emerged in the field. A recent study, also using C57BL/6 
mice, found no significant differences in bone parameters 
between GF females and females raised in conventional 
conditions at 4 weeks of age (15). Likewise, the same 
authors showed that the introduction of defined microbiota 
to GF Swiss Webster (SW) male or female mice did not 
significantly alter bone mass, osteoclast precursor and T 
cell populations, nor the expression of several inflammatory 
markers (15). Conversely, gut microbiota has been shown to 
have an anabolic (bone forming) rather than catabolic (bone 
resorption) effect on bone in 8-week-old conventionally 
raised male BALB/c mice. These mice had higher 
cortical and trabecular volume as compared to their GF 
counterparts (16). 

The discrepancy among these studies can be attributed 
to differences in the genetic background, age or sex 
of the mice. Importantly, Yan et al. demonstrated that 
both bone resorption and formation are promoted by 
microbiota colonization of GF mice and that the net effect 
of colonization is highly time-dependent (17). Despite 
an initial increment of bone resorption within the GF 
females colonized with microbiota from conventional 
mice as compared to GF siblings, bone formation rate 
increased, and at 8 months after colonization, the bone 
mass was similar among both groups of mice (17). Other 
factors, usually disregarded in these mechanistic studies, 
as the mode of transplantation of the microbiota or the 
vendor-location-specific mice characteristics, can result 
in selective colonization of the GF mice and affect the 
generalizability of the reported findings (15). Lastly, 
although not investigated yet in the context of the bone-
gut axis, it is known that the timing of the microbiota 
colonization has important effects on the future immune 
responses of the host (21), and therefore, should be taken 
into consideration in GF mice studies. Notwithstanding 
the limitations of GF models (22), these investigations 
have provided the backbone to disentangle the role of the 
gut microbiota in bone metabolism, as described below. 
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GM effect on bone growth

During childhood and adolescence, longitudinal bone 
growth occurs at the growth plates, where chondrocytes 
proliferate and undergo hypertrophy before endochondral 
ossification takes place. Insulin-like growth factor (IGF1) 
is a key regulator of growth plate maturation and also 
plays a role in the maintenance of bone in adults (23). 
The GM has also been shown to exert an effect on bone 
growth and development. Yang et al. demonstrated that 
IGF1 serum levels were increased in colonized mice 
compared to GF mice beyond any potential developmental 
impairment in GF mice (17). The authors also established 
that SCFAs (metabolites produced by the microbiota 
during fermentation of dietary fiber) were responsible 
for IGF1 induction by the microbiota (17). In line with 
these findings, SCFAs, more specifically, propionate and 
butyrate, were able to induce metabolic reprogramming 
of osteoclasts in vitro, leading to enhanced glycolysis at 
the expense of oxidative phosphorylation. This metabolic 
change was also shown to downregulate essential osteoclast 
genes such as TRAF6 and NFATc1 (24), and ultimately, to 
inhibit osteoclast differentiation and bone resorption. From 
these findings, it has been proposed that SCFAs therapeutic 
supplementation holds great potential to prevent bone 
resorption, particularly in elderly individuals (24). 

GM effect on calcium absorption

Another possible mechanism by which the GM could 
influence bone is through the enhancement of calcium 
absorption and other bone-related minerals critical for 
development (25). Calcium is absorbed by the intestinal 
mucosa and deposited as  calc ium hydroxyapati te 
(Ca10[PO4]6[OH]2) in bones and teeth, where it provides 
hard tissue with its strength (26). Calcium is particularly 
important during the process of bone accretion (27,28). 
It has been shown that fermentation to SCFAs by the gut 
microbiota results in higher calcium absorption (25) and 
therefore, constitute an alternative to correct calcium 
deficiency without the need of an increase in calcium-
rich foods or supplements. Studies in adolescents found 
increased levels of calcium absorption among those using 
different prebiotics (nutrients capable to modify the gut 
microbiota): galacto-oligosaccharides (GOS) and soluble 
corn fiber (SCF), both of which can be fermented to 
SCFA. Moreover, this increment correlated with relative 
abundances of Parabacteroides, Bifidobacterium, Bacteroides, 

Butyricicoccus, Oscillibacter, and Dialister measured in faeces 
(29-31). Also, a small clinical trial in post-menopausal 
women showed a dose-response effect in bone calcium 
retention with SCF dose. A significant increase in bone-
specific alkaline phosphatase was observed despite that bone 
turnover markers were not changed by the intervention (32). 
Yet, the direct link of these prebiotics and bone mass in 
humans is still lacking and the evidence from animal models 
is not conclusive. In growing male Sprague-Dawley rats, 
GOS feeding resulted in increased calcium and magnesium 
absorption and retention; as well as higher total and 
trabecular volumetric bone mineral density (vBMD) and 
bone area at the distal femur, and increased vBMD at the 
proximal tibia with consequently greater resistance strength 
to breaking at the femur and tibia (33). In contrast, it has 
been reported that GF mice have normal levels of serum 
calcium and hormones regulating calcium homeostasis and 
do not present any alteration in bone formation rate (13). 

GM effect on bone resorption

As described above, the gut microbiota is an important 
immunoregulator of osteoclast-osteoblast mediated bone 
remodeling processes in the healthy adult skeleton of 
mice. In humans, particular attention has been placed on 
the skeletal changes occurring during the menopausal 
transition, typically characterized by bone loss. Soon after 
the onset of menopause, the normal bone turnover cycle is 
impaired leading to a decline in bone mass. It is estimated 
that worldwide 1 in 3 women over age 50 will experience 
osteoporotic fractures as a consequence of menopause (34). 
Menopause triggers a rapid decline in circulating estrogen 
correlated with expansion of Th17 cells (osteoclastogenic 
population of CD4+ T cells) and increased serum levels 
of pro-inflammatory cytokines, including tumor necrosis 
factor α (TNFα), interleukin-1β (IL-1β), IL-8, and IL-6, 
as well as the osteoclastogenic cytokine receptor activator 
of nuclear factor-κB ligand (RANKL) (35). Major insight 
on age-related bone loss has been obtained from studies in 
ovariectomized mice (ovx), mimicking the post-menopausal 
status (36). Ovx mice present gut permeabilization, in 
addition to the above-mentioned immunogenic changes, 
resulting in severe translocation of microbial and/or 
microbial products (14,35). Strikingly, ovx rodents raised in 
GF conditions appear to be protected against bone loss, but 
microbial recolonization restores the capacity of sex steroid 
deficiency to induce bone loss (14). Nevertheless, other 
studies have demonstrated that specific microbes possess 
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immunomodulatory properties and can revert the effect 
of ovx-induced bone loss. Beneficial effects of probiotics 
(microorganisms which when administered in adequate 
amounts confer a health benefit on the host) have been 
demonstrated for Bacillus clausii (37), Lactobacillus reuteri (38), 
Lactobacillus acidophilus (39), Lactobacillus rhamnosus GG (14), 
Lactobacillus paracasei either alone or in combination with 
Lactobacillus plantarum (40), and Lactobacillus helveticus (41). 
These studies are summarized in Table 1.

GM effect on bone formation

Despite of its pivotal role in bone metabolism, evidence of 
an effect of GM on osteoblast formation and activity is not 

as substantial as that from osteoclasts. Yet, recent studies 
have established that GF mice present enhanced osteoblast 
activity (20,41,43). Cultured calvarial osteoblasts from 
conventionally raised mice showed significantly higher 
expression of osteocalcin, alkaline phosphatase, IGF1/2, and 
a decreased ratio of osteoprotegerin/receptor activator of 
nuclear factor-kappa B ligand (OPG/RANKL) as compared 
with GF mice. Simultaneously, osteoblasts of conventionally 
raised mice showed less mineralization, probably as a 
result of the inhibitory effect of osteocalcin (43). Reduced 
mineralization and decreased expression of Col2a1, Runx2, 
and Sp7 were also observed in bone marrow stromal cells 
(osteoblast-progenitors) from conventionally raised mice 
as compared to GF mice (20). The latter study also showed 

Table 1 Specific probiotics and prebiotics shown to modulate skeletal parameters

Bone modulation agent Effect Type of study Possible mechanism Reference

Probiotic

L. rahmnosus GG Inhibition of bone loss C57BL/6 mouse model Tightened gut epithelial barrier 
integrity and dampened the 
levels of osteoclastogenic 
cytokines

Li et al. (14)

L. plantarum WJL Increased femur length BALB/c mouse model Increase in serum IGF1 levels Schwarzer et al. (16)

B. clausii Inhibition of bone loss BALB/c mouse model Increased number Treg and 
decreased number of Th17 cells

Dar et al. (37)

L. reuteri ATCC PTA 6475 Inhibition of bone loss BALB/c mouse model Decreased osteoclastogenesis Britton et al. (38)

L. acidophilus ATCC 4356 Inhibition of bone loss and 
increase in bone heterogeneity

BALB/c mouse model Increased number Treg and 
decreased number of Th17 cells

Dar et al. (39)

L. paracasei DSM13434 Inhibition of bone loss C57BL/6 mouse model Decreased osteoclastogenesis Ohlsson et al. (40)

L. paracasei DSM13434,  
L. plantarum DSM 15312 
and DSM 15313

Inhibition of bone loss C57BL/6 mouse model Decreased osteoclastogenesis Ohlsson et al. (40)

L. helveticus ATCC 27558 Increased BMD levels and 
strength

Sprague-Dawley rat 
model

Increased osteoblast 
proliferation and bone formation 
activity

Parvaneh et al. (41)

L. reuteri 6475 Reduced bone loss Human clinical trial Unknown Nillson et al. (42)

Prebiotic

SCFA Acute increase in bone 
resorption

BALB/c mouse model Increase in serum IGF-1 levels Yan et al. (17)

SCFA Increased BMD levels C57BL/6 mouse model Change in the metabolic state 
of pre-osteoclasts

Lucas et al. (24)

GOS Increased BMD levels and 
bone strength

Sprague-Dawley rat 
model

Increased calcium and 
magnesium retention

Weaver et al. (33)

BMD, bone mineral density; SCFA, short-chain fatty acid; GOS, galacto-oligosaccharides.
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that commensal gut microbiota pro-osteoclastic actions are 
related to sustained alterations in RANKL signaling (20).  
Nevertheless ,  in  ovx rats ,  Lactobac i l lus  he lvet i cus 
supplementation resulted in an increment of the osteoblast 
surface, upregulated expression of Runx2 and Bmp2, 
increased serum osteocalcin, bone volume/total volume and 
trabecular thickness (41).

GM effect on bone strength

Bone strength, defined as the capacity of bone to respond 
to mechanical demands, is ultimately determined by its 
material composition, quantity and dimension, together 
with bone distribution and microarchitecture. Up to 
now, bone mineral density (BMD) has been the preferred 
phenotype to study the bone-gut axis. Nevertheless, BMD 
typically explains only 60–80% of bone strength when 
bone samples are compared in a laboratory setting under 
controlled loading conditions (44). Bone composition 
characteristics or bone geometrical parameters might 
explain why many individuals who fracture have BMD levels 
similar to those of individuals who do not. For instance, 
a low BMD can be offset by specific bone morphology or 
structural geometry or with no, or minimal compromise 
to mechanical strength. Here, the GM can also play a role 
shaping differences in bone strength not picked up by the 
BMD measurement. Interestingly, a recent investigation 
suggested that alterations to the GM for extended periods 
during growth may lead not only to changes in bone mass 
but to impaired bone biomechanical performance (45).  
These findings are consistent with changes in bone 
tissue properties beyond mass or geometry. Properties as 
collagen quality or non-collagenous proteins have been 
proposed as possible factors mediating the observed effect. 
There are several publications reporting altered collagen 
properties associated with fragile bones (46-48), whereby 
collagen orientation generated changes in fracture energy 
by two orders of magnitude (49). Consistent with a role 
of microbiota in bone morphology, the administration of 
Lactobacillus acidophilus to osteoporotic mice resulted in 
higher BMD levels and enhanced bone heterogeneity as 
evidenced by infrared spectroscopy (39). The significance 
of this work lies in the fact that most anti-resorptive drug 
candidates (bisphosphonates, calcitonin, cathepsin K 
inhibitors, estrogen) decrease bone heterogeneity, thus 
increasing its brittleness and risk of fracture (39). Another 
probiotic, Lactobacillus helveticus was also reported to 
improve bone strength in a three-point bending test of ovx 

10-week-old female Sprague-Dawley rats, although the 
authors attributed this improvement directly to an increase 
in bone density and a reduced bone porosity (41).

Other GM effects on bone 

Although out of the scope of this review, there is now 
cumulative evidence linking the human microbiome 
with alterations in other musculoskeletal tissues as joints 
(50,51) and muscles (52,53). It is well established that the 
musculoskeletal system is complex, displaying mechanical, 
biochemical and molecular interaction among cells within 
different tissues. Given these interactions, it is plausible 
that the human microbiome exerts both direct and indirect 
effects in bone homeostasis via the different constituents 
of the musculoskeletal system. Mechanically, muscle-
derived forces drive an adaptive response in bone, affecting 
its morphology, structure and strength as portrayed by the 
mechanostat theory (54). Therefore, an increase in muscle 
mass and strength, as reported in response to Lactobacillus 
species in mice, will definitely result in changes in bone 
mass and distribution. 

Furthermore, the role of the human microbiome on 
local bone tissue damage has also been investigated. While 
the gut microbiota has been implicated in the development 
of osteomyelitis (55), the oral microbiome is a key factor 
in the localized T-cell-induced bone damage in chronic 
periodontitis (56,57). Besides, even if it seems not to play a 
causative role on bisphosphonate-related osteonecrosis of 
the jaw, the oral microbiome could be a contributing factor 
in the host response (58,59). 

Translational potential of GM studies

Despite the remarkable number of pre-clinical studies in 
animal models included in this review, only now, these 
findings are being translated into clinical practice. Earlier 
this year, Nilsson et al. reported that supplementation with 
Lactobacillus reuteri 6475 resulted in a reduced bone loss in 
older women with incipient osteoporosis after following a 
randomized controlled trial for one year (42). The positive 
effect of Lactobacillus reuteri 6475 on the BMD of estrogen-
deficient (38) and active-inflammation (60) mouse models 
was already documented, but it was in this clinical trial, 
that it was demonstrated for the first time that probiotics 
can be used to affect the human skeleton. From the 90 
postmenopausal women enrolled in the study, those in the 
treatment group showed reduced volumetric BMD loss at 
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the tibia (mean difference between groups =1.02%; 95% 
CI: 0.02–2.03%), a site rich on trabecular bone, after one 
year (42). While animal models have contributed much 
to our understanding of pathophysiological mechanisms, 
in general, their value in predicting the effectiveness of 
treatment strategies in clinical trials is less striking (61). 
Therefore, Nilsson et al. results are a milestone for the 
emerging discipline of osteomicrobiology, particularly in the 
search of targets for therapies that can improve bone structure 
and quality, and ultimately effectively prevent osteoporosis. 

Future directions and concluding remarks

There is ample literature supporting the effect of the GM 
in bone metabolism based on mechanistic studies in animal 
models as herein reviewed. Nevertheless, robust data from 
human studies are still lacking. Encouragingly, besides the 
successful Lactobacillus reuteri clinical trial (42), preliminary 
results from both, clinical trials and large population-
based studies, are starting to be presented at international 
meetings of bone research with increasing frequency. The 
steadily growing interest of the scientific community in 
microbiome studies warrants that resources will be allocated 
to the generation of this data fomenting the generation 
of answers and new research questions in the field of 
osteomicrobiology. 

Beyond its mechanical and scaffolding properties, the 
skeleton has important endocrine functions independent 
of mineral metabolism. Osteocalcin, produced by the 
osteoblasts and modulated by the GM (20,43), plays a crucial 
role in regulating insulin metabolism in a hormonal manner, 
and also induces testosterone production (62). Moreover, 
recent studies have discovered that this hormone is necessary 
for both brain development and brain function in the 
mouse, implicating osteocalcin in the biology of aging (63).  
Another protein secreted by osteoblasts, lipocalin 2, 
which can cross the blood-brain barrier, has recently 
been shown to possess important metabolic regulatory 
effects and to control appetite (64). As there is evidence 
of a l ink between the GM and osteoblast activity 
(20,41,43), the described discoveries open a wholly 
new approach to the treatment of metabolic disorders. 
Conversely, it is well established that the brain regulates 
bone homeostasis  by controll ing the secretion of 
hypothalamic (e.g., oxytocin and vasopressin) or pituitary 
hormones (e.g., growth hormone, thyroid stimulating 
hormone, and follicle-stimulating hormone) (65) .  
In addition, the skeleton is a highly innervated tissue with 

sensory and autonomic neurons (66). SCFAs from bacteria 
have been shown to influence the blood-brain-barrier 
development and maintenance, and Lactobacillus reuteri to 
increase oxytocin production (67). These factors could thus 
alter the secretion of endocrine factors and efferent neural 
outflow to the bone tissue. Although our understanding of 
the interactions between our gut microbes and the nervous 
system is in the early stages, advances in this field will enlighten 
the neuroendocrine regulation of our skeletal system 

As already mentioned, the human microbiome is 
shaped by the action of both environmental factors and 
host genetics, but also by the ecological networks of these 
microbial communities and their dynamic interaction. In 
other words, the effect of a particular bacteria can, and 
most likely will, be mediated by the presence of other 
external perturbations (i.e., the presence of other bacteria 
or host individual characteristics). Nevertheless, most of 
the current approaches consider bacterial communities as 
a mere collection of independent organisms. Neglecting 
that these bacteria communicate, cross-feed, recombine and 
coevolve (68) would compromise the success and stability of 
microbiome-based therapies to prevent or combat disease. 
Bayesian statistics and machine learning algorithms are 
among the new methodologies proposed to map microbial 
networks and its use will certainly lead to new discoveries.

This review provides a synopsis of studies supporting the 
influence of gut bacterial communities on bone physiology. 
Nevertheless, it is important to emphasize that the GM 
comprises not only bacteria, but also archaea, protozoa, 
fungi, and viruses that coexist in a dynamic equilibrium. 
These communities offer an additional dimension to the 
investigation of host-microorganism interactions. For 
instance, bacteriophages (i.e., viruses that infect bacteria) 
are the most abundant biological entities in the human 
gut ecosystem (ten times more abundant than bacterial 
cells) (69). Phages play a key role in shaping microbial 
communities and exert direct immunomodulatory effects on 
the host by translocating across the mucosal barrier of the 
gut into lymph, blood and tissues (70). Yet, there has been 
paucity in the study of phages given the challenges imposed 
by their vast diversity and lack of a genetic universal marker 
that allows profiling, such as the bacterial 16S rRNA genes, 
in order to facilitate their investigation (71). Therefore, 
even if in its infancy, the incorporation of non-bacterial 
communities residing in the human body will potentially 
be the treasure trove for advancing our understanding of 
human health and disease processes, particularly of the 
musculoskeletal system. 
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Besides our developments in the analysis of microbiome 
data, the last decade has also provided us with substantial 
evidence of genetic (72) and epigenetic (73) factors 
influencing the bone tissue. The mechanisms by which 
our genetic information shape our gut microbiota (74), 
whose metabolites, in turn, can influence levels of gene 
expression (75) and modulate host epigenetic processes (76) 
are still to be elucidated. Even if it is rather evident that the 
performance of large exploratory integrative studies is too 
ambitious based on our current knowledge; it is important 
to keep in mind that these layers of information describing 
multiple levels of cell regulation ultimately generate the 
observable phenotypic variability and reflect the integral 
complexity of living systems.

In conclusion, pre-clinical studies have already provided 
remarkable mechanistic evidence of the influence of the 
human GM on bone physiology. These studies have shown 
that bacteria and bacterial products can modulate processes 
of bone gain and bone loss via effects on both osteoblasts 
and osteoclasts. On top of these discoveries, the GM seems 
to also modulate bone morphology, ultimately affecting 
bone strength and consequently fracture risk. Recently, 
a probiotic has been shown, for the first time, to inhibit 
bone loss in post-menopausal women, strengthening the 
hopes about the potential of the osteomicrobiology field. 
However, more studies in humans are needed. Microbiome, 
genetic and metabolic studies in large populations are 
underway and will provide the basis of understanding how 
the microbiome determine skeletal health. The field still 
needs to go beyond the simplistic assessment of independent 
bacterial associations and implement analyses able to model 
the underlying complexity of the microbiome interactions 
(i.e., using ecological networks, multi-omics and integrative 
algorithms) in order to bring the field closer to medical 
interventions and preventive strategies directed to modulate 
the human microbiome. 
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