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Introduction

Trillions of microbes inhabit the human gut, which affect 
human health and disease. The 16S rRNA gene sequencing 
and next generation sequencing (NGS) allow culture free 
detection of bacterium community in human gut, which 
speed up the advancement of gut microbiome research (1-4). 
The association between gut microbiome and cardiovascular 
disease (CVD) received attention during the past several 
years. Patients with CVD shows different gut microbiota 
community structure from healthy controls, which are 
related to CVD phenotypes and cohorts (5-8). 

Although there is no consistence in gut microbiota 
community with CVD among different groups in the world, 
a consensus has been reached that gut microbiota impacts 
cardiovascular health and disease via various metabolites, 
such as trimethylamine-N-oxide (TMAO), short-chain 
fatty acids and secondary bile acids (9-12). Host-microbes 
interaction plays crucial role in CVD pathophysiology, 
mechanistically via metaorganismal pathways. The TMAO 
metaorganismal pathway is the most deeply investigated 
one, which comprises trimethylamine precursors, such as 
choline, TMA lyase, TMA, host liver FMO3, TMAO, and 
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downstream effectors involving unfolded protein response 
(UPR), NF-κB and NLRP3 inflammasome (13-20) (Figure 1).

TMAO has been widely validated as a pro-atherogenic 
and pro-thrombotic microbe-host co-metabolite, causally 
linked to CVD (13-15,20-23), which affects one third of 
adults as the leading cause of death worldwide (24,25). 
TMAO is an oxidative product of TMA, catalyzed by 
hepatic flavin monooxygenases (FMOs) (26,27). Multiple 
nutrients with structural formula containing TMA group 
can be cleaved to produce free TMA by enzymes in 
microbes (28-30). Chronic red meat consumption results in 
an average of 3 times higher circulating TMAO than does 
non-meat or white meat (31). The two steps of TMAO 
production from nutrients constitute a metaorganismal 
pathway, linking to a number of complex diseases (19). 
Clinical investigations have highlighted the prognostic value 
of plasma TMAO levels in predicting prospective risk of 
complex diseases, including CVD, kidney diseases, diabetes 
and liver steatosis as well (32-35). Targeting this pathway 
holds great promise for CVD intervention as supported in 
preclinical models.

Gut microbiome and CVD

Initially gut microbiome was reported to contribute to 
metabolic diseases through the modulation of energy 
balance ( increased energy harvest)  and immunity 
(inflammation and autoimmunity) (36,37). Several years 
later our group reported that gut microbiota metabolism of 
dietary phosphatidylcholine (PC) promotes CVD (21) and 
the association between gut microbiome and CVD started 
to receive attention. The gut microbiome discrimination 
between patients with CVD and healthy controls were 
reported in several groups. Karlsson et al. used shotgun 
sequencing to analyze fecal microbiome from 12 patients 
with symptomatic atherosclerosis and 13 age and gender 
matched controls and found that the genus Collinsella was 
enriched in patients with symptomatic atherosclerosis, 
whereas Roseburia and Eubacterium were enriched in healthy 
controls (6). Yin et al. compared fecal microbiota community 
using 16S rRNA gene sequencing between 141 patients with 
stroke and transient ischemic attack and 94 asymptomatic 
controls and found more opportunistic pathogens, such as 
Enterobacter, Megasphaera, Oscillibacter, and Desulfovibrio, and 
fewer commensal or beneficial genera such as Bacteroides, 
Prevotella, and Faecalibacterium in patients (7). Emoto et al.  
compared fecal microbiota community by terminal 
restriction fragment length polymorphism (T-RFLP) of 16S 

rDNA amplicons in 39 patients with coronary artery disease 
(CAD), 30 age- and sex-matched no-CAD controls, and found 
that increased Frimicutes/Bacteroidetes ratio and Lactobacillus 
and decreased Bacteroides plus Preveotella in CAD (8).  
Jie et al. compared fecal microbiome in 218 patients with 
atherosclerotic CVD (ACVD) and 187 healthy controls 
and found that ACVD is rich in Enterobacteriaceae including 
Escherichia coli, Klebsiella spp., and Enterobacter aerogenes and 
Streptococcus spp., and Eubacterium eligens, Faecalibacterium 
prausnitzii, and Clostridiales sp and has diminished Bacteroides 
spp., Prevotella copri and Alistipes shahii (5). It seems that we 
cannot find a unique gut microbiome community structure 
that contributes to CVD, but a consensus was reached 
that gut microbiome contributes to CVD through gut 
microbiota derived metabolites including TMAO, aromatic 
acid metabolites, p-cresyl sulfate and indoxyl sulfate (19,38). 
Indoxyl sulfate contributes to CVD progression through 
stimulation of oxidative stress and inhibition of AMPK/
UCP2 signaling (39) and activation of multiple signaling 
pathways including mitogen activated protein kinase 
(MAPK) and nuclear factor-κB (NFκB) (40). P-cresyl 
sulfate mediates MCP-1 production in vascular smooth 
muscle cells through NF-kB pathway, contributing to the 
inflammatory response initiation involved in atherosclerosis 
lesion formation (41).

TMAO, a metaorganismal product

The role of TMAO in CVD was initially discovered by 
Wang et al. through untargeted mass spectrometry (MS) 
based metabolomics approach (21) that was applied to 
identify metabolites in human plasma to discriminate 
healthy controls from CVD patients in two cohorts, 
randomly selected from GeneBank, a large data/sample 
bank containing more than 10,000 human plasma samples 
from patients undergone left selective coronary angiography 
with outcome data monitored after enrollment (42). The 
learning cohort was comprised of 50 cases subjected to risk 
for non-fatal myocardial infarction (MI), stroke or death 
within 3 years versus 50 controls without risk for non-
fatal MI, stroke or death, and the validation cohort was 
comprised of 25 cases versus 25 controls (21). A metabolite 
with m/z =76 was found to have the smallest molecular 
weight while highly correlated to the other two analytes 
in the same metabolism pathway (21). The analyte with 
m/z =76 was eventually identified as TMAO via multiple 
MS and different liquid chromatography (LC) conditions 
by comparison with authentic compound (21). Because 
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Figure 1 The trimethylamine N-oxide (TMAO) metaorganismal pathway. Key components of this metaorganismal pathway are illustrated, 
including trimethylamine precursors, such as choline, trimethylamine lyase, trimethylamine, host liver FMOs, TMAO, and downstream 
effectors involving UPR, NF-κB and NLRP3 inflammasome. TMA, trimethylamine; TMAO, trimethylamine N-oxide; FMOs, flavin 
monooxygenase; ER, endoplasmic reticulum; PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK); OCT1, organic 
cation transporter 1; OCT2, organic cation transporter 2; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; NF-κB, Nuclear 
factor kappa B; ABCG2, ATP Binding Cassette Subfamily G Member 2. 
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the structural formula of TMAO contains TMA group, it 
was initially hypothesized that TMAO is the metabolite 
of dietary PC. This hypothesis was examined by feeding 
mice and humans with isotope labeled PC where 1H atoms 
were replaced with deuterium (2H) at the TMA functional 
group. The corresponding isotope labeled TMAO 
product, alongside two metabolism related metabolites, 
choline and betaine, was detected for de novo biosynthesis 
(21,43). These data also showed that the broad spectrum 
antibiotics treatment to deprive gut microbiota suppresses 
the production of TMAO while the TMAO production 
recovers after the removal of antibiotics (21,43). In parallel, 
if d9-PC was intraperitoneally injected, no d9-TMAO 
was detectable in the conventional mice (21). Thus, gut 
microbiota plays an obligatory role in the biosynthesis of 
TMAO (21,43).

While in the above challenge experiments PC was replaced 
with free choline, it was further confirmed that choline 
contributes to the production of TMAO, depending on gut 
microbiota (43). PC is the main choline source in diet (44,45). 
In the small intestine, PC can be digested by pancreatic 
phospholipase D, to release free choline (46). Meanwhile, 

commensal gut bacterium contains phospholipase D with 
PC as substrate to release free choline (47). In human gut, 
the endogenously synthesized PC can be released from 
bile (48). Choline can be then cleaved to produce TMA, 
which is catalyzed by choline TMA lyase, a glycyl radical 
enzyme in microbes (28). Choline TMA lyase encoding 
gene was found via sequence alignment with the operon 
encoding enzymes of the ethanolamine metabolism (28). 
The choline TMA lyase gene clusters contain at least two 
genes, cutC and cutD, encoding the two subunits of TMA 
lyase, respectively. The cutD protein activates cutC protein 
by forming a glycyl radical, which abstracts hydrogen atom 
from the cysteine residue to form cysteine radical followed 
by the cysteine radical abstracting hydrogen from choline to 
release free TMA (28,49).

Choline TMA lyase encoding genes have been found 
in many bacteria. For instance, in the human microbiome 
project (HMP1), there are 19 strains with high abundance 
found in the oral cavity samples while 16 strains were found 
in the stool samples. Thus, it appears that the abundance 
of choline TMA lyase encoding bacterium is higher in 
oral cavity than stool (Figure 2). Choline TMA lyases are 

Figure 2 The distribution and abundance of cutC encoding bacteria in the samples of the human microbiome project 1(HMP1) (https://
www.hmpdacc.org/resources/). The cutC abundance in oral cavity (A) is much more than that of the stool cutC (B) as shown in bar plot 
of the maximum abundance (RPKB, strain numbers per billion reads) among all samples in the cohort. The cutC gene abundances were 
computed following the method described in Thomas et al. (50).
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associated with other diseases besides CVD, e.g., choline 
TMA-lyase gene was overabundant in colorectal cancer (50).

Besides choline TMA lyase CutC/D, other TMA lyases 
using different preferential substrates to produce TMA 
have been reported, including cntA/B (the same to yeaW/
X), betaine reductase and TMAO reductase (29,30,51,52). 
Multiple FMOs, including FMO1, FMO2 and FMO3, have 
the capacity to catalyze the oxidation of TMA to TMAO as 
shown in the HEK293Ad cell line transfected with human 
FMO1-5 constructs and incubated with d9-TMA with the 
readout of d9-TMAO monitored by LC/MS/MS (27). After 
normalization to the corresponding expressing FMO protein 
level, FMO3 has the highest specific activity (27). In humans, 
FMO3 genetic deficiency due to germline mutations cause 
fish odor syndrome characterized by the accumulation in 
TMA and excretion in the breath, urine, sweat, saliva and 
vaginal secretions (53-55).

Dissecting the TMAO metaorganismal pathway 
in rodent models

The potential causal relationship between plasm TMAO 
and CVD was examined extensively in mice models 
(32,33). We summarized functional studies of the TMAO 
metaorganismal pathway in rodent models in Table 1, with 
an emphasis on the association of TMAO metaorganismal 
pathway with CVD. Moreover,  we described key 
experimental results as follows, highlighting the complexity 
of TMAO effectors.

TMA precursors, such as choline, carnitine and 
-butyrobetaine, promote atherosclerosis via TMAO 
metaorganismal pathway. Apoe-/- mice are similar to humans 
in atherosclerosis progression (56). When Apoe-/- mice were 
fed choline or TMAO supplemented chow diet for 16 weeks  
to quantify aortic lesion with oil red O-hematoxylin staining, 
results showed that both choline and TMAO promote 
atherosclerosis. In the female mice, the aortic lesion is 
highly correlated to plasma TMAO (21). In order to test 
whether choline promoting atherosclerosis is mediated 
by TMAO, Apoe-/- mice were fed choline supplemented 
chow diet alongside drinking water containing broad 
spectrum antibiotics (vancomycin, neomycin, ampicillin, 
metronidazole), to suppress the gut microbiota production 
of TMAO. The quantification of aortic lesion suggests 
that gut microbiota plays an important role in choline 
promoting atherosclerosis and the effect of choline might 
be mediated through TMAO (21). Further, TMAO 
inhibits expressions of the key bile acid synthetic enzymes 

Cyp7a1 and Cyp27a1 in liver, resulting in decreased bile 
acid pool and cholesterol reverse transport (57). Besides 
choline promoting atherosclerosis, other TMA containing 
nutrients such as carnitine and -butyrobetaine, can also 
promote atherosclerosis via the TMAO metaorganismal  
pathway (30,57).

TMAO promotes platelet aggregation and thrombosis 
by inducing Ca2+ release. The Ldlr-/- mice show decreased 
plasma level of TMAO after Fmo3-knock down by 
intraperitoneal injection of Fmo3 antisense oligonucleotide. 
Further, atherosclerotic lesion area was decreased with 
the decreased plasma TMAO (58), suggesting the TMAO 
metaorganismal pathway is linked to atherosclerosis. 
TMAO increases platelet hyper-reactivity thereby 
promoting thrombosis (22). In platelet, TMAO induces 
Ca2+ release from intracellular calcium stores, leading to 
platelet aggregation and thrombosis (22).

Given that TMAO is linked to inflammatory diseases, 
it is pivotal to understand the underlying molecular 
mechanisms of TMAO activating inflammasome, a group of 
protein complexes built around several proteins, including 
NLRP3, NLRC4, AIM2 and NLRP6, et al. (59-62). TMAO 
activates the NLRP3 inflammasomes, leading to endothelial 
dysfunction activation, putatively via pathways of mitogen-
activated protein kinase (MAPK) and nuclear factor-B (14,20). 
Accordingly, TMAO pre-incubated aortic endothelial cells 
show increased leukocyte adhesion (20). Monocyte adhesion 
to the vascular endothelial cell constitutes an important step 
of atherosclerosis progression (63). Importantly, TMAO is 
linked to UPR during endoplasmic reticulum stress; TMAO 
binds to PERK at physiologically relevant concentrations; 
selectively activates the PERK branch of the UPR; and 
induces the transcription factor FoxO1, a key driver of 
metabolic disease (18).

The molecular functions and associations with complex 
disease traits of TMAO metaorganismal pathway have been 
strengthened by using gnotobiotic models. Gut microbiota 
transplantation to germ free mice showed that choline diet-
induced TMAO production capability and atherosclerosis and 
thrombosis susceptibility are transmissible. Distinct plasma 
TMAO levels have been observed in the strains of the hybrid 
mouse diversity panel (HMDP) (64-66), in which the aortic 
lesion is positively correlated to plasma TMAO (67). The 
NZW/LacJ Apoe-/- mouse has the lowest plasma TMAO and 
the lowest aortic lesion, while the C57BL/6J Apoe-/- mouse has 
the highest plasma TMAO and the largest aortic lesion (67). 

In a gnotobiotic model, feces from NZW/LacJ Apoe-/- 
mice and from C57BL/6J Apoe-/- mice were used as donors 
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to transplant to germ free mice, acquired by subjecting 
conventional mice on drinking water with broad spectrum 
antibiotics for 3 weeks, initially orally gavaging every other 
day for 2 weeks, followed by weekly for 11 more weeks 
and the mice were fed choline supplemented chow diet. 
At an age of 20 weeks, mice were sacrificed and the aortic 
plaque was quantified. The germ free mice which received 
feces from NZW/LacJ Apoe-/- mice have a relatively lower 
plasma TMAO and lower aortic lesion than C57BL/6J 
Apoe-/- mice (67). Thus, this gnotobiotic model of gut 
microbial transplantation demonstrated that atherosclerosis 
susceptibility is transferrable via transmission of the choline 
diet-induced TMAO production.

Wild type Clostridium sporogenes in the mice gut 
contributes to the production of TMAO (68). Intriguingly, 
disruption of the cutC gene in Clostridium sporogenes caused 
the loss of commensal bacterium transmitting thrombotic 
property (69). Thus, human gut commensals containing 
cutC are sufficient to transmit enhanced platelet reactivity 
and thrombosis potential. 

The TMAO metaorganismal pathway has a molecular 
mechanism link to inflammation, thereby associated with a 
variety of inflammatory diseases, including atherosclerosis. 

Targeting choline TMA lyase to attenuate 
atherosclerosis and thrombosis

Multiple choline TMA lyase inhibitors have the capacity 
of decreasing plasma TMAO levels, thereby ameliorating 
atherosclerosis and thrombosis. The natural compound, 
3,3-dimethyl-1-butanol (DMB), which can be detected in 
some balsamic vinegars, red wines, and in some cold-pressed 
extra virgin olive oils and grape seed oils, has been shown 
to decrease plasma TMAO in mice fed choline or carnitine 
supplemented chow diet (70). Alongside decreasing plasma 
TMAO level, DMB can significantly ameliorate aortic 
lesions in Apoe-/- mice fed choline-supplemented chow diet 
via inhibition of enzymatic activities of multiple TMA 
lyases (70). In addition, DMB, a microbial choline TMA 
lyase inhibitor, attenuates choline diet-enhanced platelet 
responsiveness and in vivo rate of thrombus formation (71). 
In the FeCl3-induced carotid artery injury mice model, the 
time to cessation of flow appears to be significantly longer 
in the mice with DMB added to the drinking water when 
compared with regular water, which is in agreement with 
the decrease in plasma TMAO (71). 

Mice fed western diet developed impaired cardiac 
systolic and diastolic function by echocardiography 

accompanied by increased circulating TMAO, the addition 
of DMB to mice drinking water can decrease plasma 
TMAO, therefore prevent cardiac systolic and diastolic 
dysfunction (72). Series choline analogues, including 
f luromethylcholine (FMC), chloromethylcholine, 
bromomethylcholine, iodomethylcholine (IMC), were 
tested as more potent inhibitors to choline TMA lyase. 
These lead compounds can effectively decrease plasma 
TMAO to a nearly non-detectable level either fed chow 
diet or choline supplemented chow diet. FMC and IMC 
were further functionally tested and both decreased platelet 
responsiveness from mice fed choline-supplemented chow 
diet compared with chow diet and increased the time 
of cessation of flow (71). Inhibitory effects of bacterium 
growth or changed liver and renal functions have not been 
observed in the mice administrated with DMB, FMC, or 
IMC, indicating little potential side effects for these lead 
compounds (70,71). In addition, some nutraceutical, such 
as resveratrol, appeared to decrease circulatory TMAO, 
putatively due to gut microbiota remodeling (73). 

TMAO metaorganismal pathway and CVD

Following Wang et al. in 2011, measurement of plasma 
TMAO from subsequent human plasma samples in the 
GeneBank cohort (4,007 patients) showed that increased 
plasma TMAO was correlated with increased prospective 
risk for major adverse cardiac events (MACE, MI, stroke 
and death) within 3 years (43). In addition, it was reported 
that high levels of plasma TMAO are independently 
correlated with plaque rupture in patients with ST-
segment—elevation MI (74). 

In human gut, there are trillions of microbes, which play 
important roles in human health, including production 
of vitamins, such as vitamin K and biotin, serotonin, and 
fermentation of dietary fiber to produce short chain fatty 
acids and modulation of immunity as well (75-78). The 
LifeLines-DEEP population cohort data showed the 
variance of microbiota can explain 4.5% of the variance 
in body mass index, 6% in triglycerides, and 4% in high-
density lipoproteins, after adjusting for age, sex and genetic 
risk factors (79). These findings support the concept that 
gut microbiota contributes to CVD.

The prognostic values of multiple TMA nutrients 
are dependent on gut microbial metabolite, TMAO

Circulating choline and betaine are significantly correlated 
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to the prevalence of CVD, and also predict future risk 
for MACE (80). However, if adjusted with TMAO, the 
significant differences were not observed (80). The plasma 
TMAO levels can be stratified into two ranges by the 
median value, i.e., below median value (LOW) and above 
median value (HIGH), and the same method was applied 
to choline or betaine. In the GeneBank cohort, the LOW 
TMAO, HIGH choline or betaine plasma levels did not 
show significantly higher prognostic value in predicting 
risk for future MACE when compared with LOW choline 
or betaine, while the HIGH TMAO, HIGH choline or 
betaine levels showed significantly higher prognostic value 
in predicting risk for future MACE compared with LOW 
choline or betaine (80). Similarly, for carnitine, another 
TMAO precursor, the LOW TMAO, HIGH carnitine 
levels did not show significantly higher prognostic value 
than LOW carnitine, while the HIGH TMAO, HIGH 
carnitine levels showed significantly higher prognostic value 
than LOW carnitine (57). Thus, the prognostic values of 
multiple TMA nutrients are dependent on gut microbial 
metabolite, TMAO. Intriguingly, trimethyllysine (TML), 
a TMA containing compound in structural formula, can 
be cleaved to produce TMA and further contribute to the 
production of TMAO. However, the prognostic incident 
CVD risks of TML is independent of TMAO (81). 

Future perspective

Since TMAO is mechanistically linked to CVD and 
can predict prospective risk for future MACE, the early 
monitoring of plasma TMAO is predictive to cardiac 
events. Furthermore, the administration of inibitors 
to block TMAO production as well as gut microbial 
transplantation has the potential to mitigate the progression 
of atherosclerosis and thrombosis. Taken together, TMAO 
takes the center stage in modulating the processes leading to 
the development of CVD. Several promising interventions 
targeting the TMAO metaorganismal pathway could be 
further investigated and ultimately be applied to patients 
with CVD.
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