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Introduction

Malignant pleural mesothelioma (MPM) is a lethal form 
of cancer with an inferior prognosis (1). The outcomes of 
MPM patients can be improved by accurate and timely 
diagnosis (2). More than half of MPM patients visit the 
hospital with complaints of chest pain and dyspnea (3). 
However, these symptoms are not specific to MPM, and 

MPM’s diagnosis is challenging for clinicians. According 
to the recent guideline released by the British Thoracic 
Society (BTS), diagnostic pleural aspiration, image-guided 
cutting needle biopsy, and thoracoscopy are recommended 
for diagnosing MPM (3). However, these diagnostic tools 
are invasive and are not available in all centers. Therefore, 
it is of great value to develop diagnostic tools with reduced 
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invasiveness. Because pleural effusion (PE) is the most 
common sign for MPM, soluble biomarkers in PE have been 
proposed as a tool for diagnostic purposes. During the past 
decades, several PE biomarkers (4) [e.g., soluble mesothelin-
related peptide (SMRP) (5), fibulin-3 (6,7), osteopontin 
(8,9) and cytokeratin 19 fragment (CYFRA 21-1) (4,10)] 
have been verified, and their diagnostic accuracy has been 
evaluated in various studies. However, no biomarker has 
sufficient diagnostic accuracy for MPM when used alone, 
according to the guidelines (3,11,12). Therefore, a multiple 
biomarker approach may be a promising strategy to improve 
the diagnostic accuracy for MPM.

Machine learning is a type of artificial intelligence. It 
allows computers to learn with data and build a data model 
to support a given task with various mathematical and 
algorithmic approaches (13,14). Machine learning has been 
used for diagnostic aims in various settings, especially in 
cancer diagnosis (15). However, the study investigating PE 
markers’ diagnostic accuracy for MPM with machine learning 
approaches is rare. In this study, we hypothesized that 
machine learning could improve PE biomarkers’ diagnostic 
accuracy for MPM. We present the following article in 
accordance with the Standards for Reporting of Diagnostic 
Accuracy Studies (STARD) reporting checklist (Tables S1,S2) 
(available at http://dx.doi.org/10.21037/jlpm-20-90).

Methods

Subjects

This is a post hoc analysis of a previous study (16). We 
obtained the data of this study at the Dryad online 
repository (http://datadryad.org/review?doi=doi:10.5061/
dryad.fg0ft) (17). Briefly, the study mentioned above is 
a retrospective study performed in a hospital in Japan 
between September 2014 and August 2016. A total of 240 
consecutive patients with undiagnosed PE were enrolled. 
The diagnostic accuracy of PE SMRP, carcinoembryonic 
antigen (CEA), and CYRFA 21-1 was assessed using receiver 
operating characteristic (ROC) curve analysis. Our study 
excluded the patients with missing values for SMRP, CEA, 
and CYRFA 21-1. This study was performed with shared 
data, and we conducted this study following the Declaration 
of Helsinki (as revised in 2013). Informed consent from the 
subjects and ethical approval from the authors’ institution 
were waived because the data used in this work are from the 
internet.

Statistical analysis

In this study, we used machine learning algorithms to 
evaluate the diagnostic accuracy of PE biomarkers. Briefly, 
the study cohort was randomly categorized into training 
and test cohorts. The training cohort was used for model 
building, and the test cohort was used for validation. The 
machine learning algorithms used in this study were: 
logistic regression model (18), linear discriminant analysis 
(LDA) (19), multivariate adaptive regression splines  
(MARS) (20), k-nearest neighbor (KNN) (21), support 
vector machine (SVM) (22), gradient boosting machine 
(GBM), and random forest. We used the ROC curve to 
evaluate the diagnostic accuracy of a single biomarker 
and the machine learning model (23). All analyses were 
performed with the caret package of R (version 4.0.1), and 
statistical significance was set at P<0.05.

Results

Characteristics of the subjects

Figure 1 is a flowchart of the patient selection process. A 
total of 188 subjects, with 27 being diagnosed with MPM, 
were included in the present study. They were randomly 
categorized into training cohort (n=90) and test cohort 
(n=98). The characteristics of these two cohorts were listed 
in Table 1.

Evaluating the diagnostic accuracy of CEA
,
 SMRP

,
 and 

CYFRA 21-1 with machine learning algorithms

The diagnostic accuracy of s ingle biomarker and 
machine learning algorithms was summarized in Table 2.  
When specificity was fixed at 0.94, the sensitivities of 
CEA, CYFRA 21-1, and SMRP were 0.22, 0.33, and 0.22, 
respectively. The logistic regression model increased the 
sensitivity (0.55) without decreasing specificity. Notably, the 
area under the ROC curve (AUC) of the logistic regression 
model was higher than that of a single marker and the other 
machine learning approaches.

Discussion

This study used machine learning approaches to evaluate 
the diagnostic accuracy of three conventional tumor 
markers, CEA, SMRP, and CYFRA 21-1, for MPM. The 
major finding of the present study is that combinational use 
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of these three biomarkers with a logistic regression model 
can greatly improve the diagnostic accuracy, while other 
machine learning approaches had limited ability to improve 
the diagnostic accuracy. Therefore, the logistic regression 
model represents a potential machine learning algorithm to 
improve PE tumor markers’ diagnostic accuracy for MPM.

This is the second study investigating the diagnostic 
accuracy of PE tumor markers for MPM, to the best of 
our knowledge. In the previous study (24), the authors 
used a logic learning machine (LLM), KNN, artificial 
neural network (ANN), and decision tree (DT) to evaluate 
the diagnostic accuracy of PE CEA, SMRP, and CYFRA 
21-1 for MPM. They found that the LLM, KNN, ANN, 
and DT sensitivities were 0.77, 0.56, 0.60, and 0.75, 
respectively, and the specificities were 0.91, 0.81, 0.86, and 
0.92, respectively. Some new machine learning algorithms 
were used in our study, such as the logistic regression model 
and random forest. The specificities concluded in our 
study are generally higher than those of the previous study; 
however, sensitivities are relatively low. The inconsistency 
between the present and previous study may be due to the 
clinical characteristics of MPM and disease profiles of the 

study cohorts.
Sensitivity and specificity are two primary diagnostic 

test measures, but their clinical interpretation is not 
straightforward. The same degree of decrease in sensitivity 
and specificity can lead to a different number of missed 
diagnoses and misdiagnoses, which depends on the 
prevalence of the target disease in the study cohort. By 
contrast, the positive likelihood ratio (PLR) and negative 
likelihood ratio (NLR) represent two statistics that are 
not affected by the target disease’s prevalence (25). It is 
generally accepted that NLR <0.1 or PLR >10 provides 
strong evidence to rule out or rule in target disease (25). 
In our study, a PLR of 9.88 was observed in the logistic 
regression model, suggesting that the positive result of 
logistic regression is an evidence of MPM. Therefore, the 
logistic regression model represents a practical algorithm 
to rule in or out of MPM. AUC is a threshold independent 
indicator that reflects the overall diagnostic accuracy of an 
index test. The AUC of the logistic regression model is 0.97, 
indicating that the logistic regression model is a promising 
strategy for MPM diagnosis.

This study has two limitations. One limitation is the 
small sample size in the training and test cohort, and only 
three markers were considered. The other limitation is the 
retrospective design, which may introduce patients selection 
bias. In addition, the results of study have not been validated 
by other centers. Therefore, further prospective studies 
with large sample sizes are needed to validate the findings 
of this study.

Taken together, with three tumor markers in PE, we 
evaluated the diagnostic accuracy of some machine learning 
algorithms for MPM. Our results indicate that some 
machine learning algorithms, such as the logistic regression 
model, can improve PE tumor markers’ diagnostic accuracy. 

Figure 1 A flowchart of patients selection. PE, pleural effusion.

Patients with undiagnosed PE: n=240 

Patients included: n=188 

Training cohort: n=90 Test cohort: n=98 

Exclude: patients with missed 

value: n=52 

Table 1 Characteristics of training cohort and test cohort

Characteristics Training cohort (n=90) Test cohort (n=98)

Age, years 73 [66–82] 74 [68–82]

CYFRA 21-1 (ng/mL) 32.2 (6.6–112.8) 35.7 (6.5–136.4)

CEA (ng/mL) 1.8 (1.0–3.6) 3.6 (1.3–41.1)

SMRP (nmol/L) 6.3 (3.5–13.8) 5.5 (3.2–9.7)

Data were expressed as median (quartile). SMRP, soluble 
mesothelin-related peptide; CEA, carcinoembryonic antigen; 
CYFRA 21-1, cytokeratin 19 fragment.
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Give the small sample size and retrospective study design, 
and future studies are needed to validate our study’s 
findings.
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Supplementary

Table S1 The STARD checklist

Section & topic No. Item Reported on page #

Title or abstract 1 Identification as a study of diagnostic accuracy using at least one measure of accuracy (such as sensitivity, specificity, predictive values, or AUC) Page 1, line 1

Abstract 2 Structured summary of study design, methods, results, and conclusions (for specific guidance, see STARD for Abstracts) Page 2, line 18 to 37

Introduction 3 Scientific and clinical background, including the intended use and clinical role of the index test Page 3, line 41 to 60

4 Study objectives and hypotheses Page 3, line 60 to 61

Methods

Study design 5 Whether data collection was planned before the index test and reference standard were performed (prospective study) or after (retrospective study) Page 3, line 67 to 68

Participants 6 Eligibility criteria Page 3, line 68

7 On what basis potentially eligible participants were identified (such as symptoms, results from previous tests, inclusion in registry) Page 3, line 68

8 Where and when potentially eligible participants were identified (setting, location and dates) Page 3, line 68

9 Whether participants formed a consecutive, random or convenience series Page 3, line 68

Test methods 10a Index test, in sufficient detail to allow replication Page 3, line 69 to 70

10b Reference standard, in sufficient detail to allow replication Page 3, line 65

11 Rationale for choosing the reference standard (if alternatives exist) NA

12a Definition of and rationale for test positivity cut-offs or result categories of the index test, distinguishing pre-specified from exploratory NA

12b Definition of and rationale for test positivity cut-offs or result categories of the reference standard, distinguishing pre-specified from exploratory NA

13a Whether clinical information and reference standard results were available to the performers/readers of the index test NA

13b Whether clinical information and index test results were available to the assessors of the reference standard NA

Analysis 14 Methods for estimating or comparing measures of diagnostic accuracy Page 4, line 77 to 83

15 How indeterminate index test or reference standard results were handled NA

16 How missing data on the index test and reference standard were handled NA

17 Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory NA

18 Intended sample size and how it was determined NA

Results

Participants 19 Flow of participants, using a diagram NA

20 Baseline demographic and clinical characteristics of participants Table 1

21a Distribution of severity of disease in those with the target condition NA

21b Distribution of alternative diagnoses in those without the target condition NA

22 Time interval and any clinical interventions between index test and reference standard NA

Test results 23 Cross tabulation of the index test results (or their distribution) by the results of the reference standard Table 2

24 Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals) Table 2

25 Any adverse events from performing the index test or the reference standard NA

Discussion 26 Study limitations, including sources of potential bias, statistical uncertainty, and generalisability Page 6, line 132 to 135

27 Implications for practice, including the intended use and clinical role of the index test Page 5, line 122 to 131

Other information 28 Registration number and name of registry NA

29 Where the full study protocol can be accessed NA

30 Sources of funding and other support; role of funders Page 6, line 153 to 154

AUC, area under the receiver operating characteristic curve; NA, not applicable.
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Table S2 STARD for “Abstracts”: essential items for reporting diagnostic accuracy studies in journal or conference abstracts

Section Item

– Identification as a study of diagnostic accuracy using at least one measure of accuracy (such as sensitivity, 
specificity, predictive values, or AUC)

Background Study objectives

Methods Data collection: whether this was a prospective or retrospective study

Eligibility criteria for participants and settings where the data were collected

Whether participants formed a consecutive, random, or convenience series

Description of the index test and reference standard

Results Number of participants with and without the target condition included in the analysis

Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)

Discussion General interpretation of the results

Implications for practice, including the intended use of the index test

Registration Registration number and name of registry

AUC, area under the receiver operating characteristic curve.
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