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Introduction

Many clinical chemistry assays produce results that can be 
compared to a reference method procedure. This allows 
regulatory bodies such as Food and Drug Administration 
(FDA) to have acceptance protocols that require evaluation 
results between the candidate and reference assay to meet 
certain acceptability limits. Besides acceptability limits, 
most standards include a protocol, analysis, and reporting 
method. A generic 510(k) expectation from the FDA is that 
95% of results are within limits (1). This is a total error 
specification, which as shown below can be estimated by 
various means. The 510(k) standard refers to the CLSI 

EP21 (Clinical Laboratory Standards Institute, Evaluation 
Protocol) total analytical error standard (2) as an approved 
standard but does not require its use.

The problem with this acceptability stratagem is that if 
95% percent of results are within limits, then up to 5% of 
results can be outside of limits for an approved assay. If a 
result is far away from reference, then potentially serious 
patient harm exists. For example, if a glucose result is 
reported as 350 mg/dL when truth is 30 mg/dL, there is the 
danger that insulin will be given to an already hypoglycemic 
patient. If a blood lead assay reads 2.3 μg/dL when truth is 
75 μg/dL, emergency treatment for high lead exposure may 
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not be initiated due to a lead result below the cutoff limit.
This paper covers the problems arising from such 

acceptability standards including:
(I) A generic problem with the standards; 
(II) Protocols used to evaluate the standards;
(III) How the data are analyzed;
(IV) How often results are observed that potentially can 

cause serious patient harm; 
(V) Why people do not pay more attention to 

dangerous results.
Note that this paper does not apply to standards that 

require 100% agreement such as the recent FDA standard 
for COVID-19 molecular assays (3). I present the following 
article in accordance with the Narrative Review reporting 
checklist (available at http://dx.doi.org/10.21037/jlpm-21-3).

A hierarchy among performance standards

This article deals mainly with regulatory performance 
standards. One can view performance standards as 
belonging to different types. In the US, regulatory 
performance standards from the FDA are at the top of the 
hierarchy because the performance standards must be met 
for assays to be sold. Standards such as EP21 (or other CLSI 
performance standards such as precision and linearity) are 
quasi regulatory standards. They are accepted by the FDA 
although their use is not a requirement. EP21 suggests the 
protocol and analysis for method comparison studies but 
does not proscribe acceptable limits. While ISO 15197 is 
not adopted by the FDA, it is routinely used in publications 
to demonstrate acceptable performance for glucose meters.

The ISO 15189 standard,  based on ISO 9001, 
while largely an exercise in documentation does have a 
performance section as discussed below. It is in the process 
of becoming a regulatory standard by accreditation bodies 
such as CAP (College of American Pathologists). 

The ISO 15189 standard contains a measurement 
uncertainty estimation requirement (4,5). Measurement 
uncertainty provides a 95% confidence interval for the 
measurement, which is of course different from requiring 
95% of values to be contained by a set of limits. Whereas 
measurement uncertainty was originally estimated by an 
extremely complicated “bottoms-up” approach (6,7), a 
recently proposed “top-down” approach has been advocated 
(8,9). This top-down approach is a combination of 
measuring the precision of controls and assessing traceability. 
Unfortunately, it ignores any patient specific interference, 
user error, or other pre- and post-analytical error. A real 

top-down approach can be achieved using a fault tree and is 
as complicated as the bottoms-up approach (10).

Finally, there are performance standards which are 
largely academic as they have no regulatory status and do 
not inform whether as assay can be marketed. The most 
recent such performance standard is contained in an issue 
of Clinical Chemistry and Laboratory Medicine—the so-
called Milan conference (11). A hierarchy for acceptable 
performance was given as (I) the effect of measurement 
performance on clinical outcomes; (III) the biological 
variation; (III) or state-of-the-art. The only example 
provided of measurement performance on clinical outcomes 
was a computer simulation. The glucose meter error grid 
was not mentioned even though it was prepared specifically 
to describe the effect of measurement performance on 
clinical outcomes.

The problem with the acceptability limits 
provided by regulatory standards

Providing one set of acceptance limits for 95% of the results 
implies that all results within limits are identical in not 
causing patient harm and that all results outside of limits are 
identical in causing patient harm. But if one has two results, 
one just inside and the other just outside limits, the two 
results have nearly the same error (12). For many diseases, 
it is illogical to think that one result will not cause harm and 
the other will. Moreover, as stated above, for many diseases, 
large errors cause much more patient harm than small 
errors. The concept of harm dependence on the difference 
from reference is exemplified in a glucose meter error grid 
and error grids have been proposed for all assays (13,14).

Providing a percentage of acceptable results is foreign 
to most specifications in medicine. One would never see 
a specification that surgeries should be conducted on the 
correct patient and organ 95% of the time.

The problem with the method comparison 
protocols

Quoting from Cuthbert Daniel (15) regarding an 
experiment, “the observations must be a fair (representative, 
random) sample of the population about which inferences are 
desired.” The main experiment to determine if a regulatory 
standard is met is the method comparison protocol and 
most protocols do not meet the above quoted criteria and 
are therefore biased.

For example, to randomly sample representative reagents 
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would mean randomly selecting reagents from the population 
of reagents used throughout the lifetime of the assay. But 
for a newly developed assay, most reagents will exist only 
in the future—hence the reagents sampled are not random. 
This is an example of an unavoidable bias, but it is a bias 
nonetheless. An additional and avoidable bias is the removal 
of results from the method comparison. For example, 
EP21 Section 3.3 states that results should be discarded 
from errors due to a “wrong sample tested or a short sample, 
etc.” In the ISO 15197 standard for glucose meters (16),  
similar language is used whereby “If a measurement result is 
generated during a performance evaluation, it may be excluded 
from the data only in the following circumstances: —the blood-
glucose monitoring system user recognizes that an error was made 
and documents the details.”  

Thus, these protocols only evaluate the analytical error 
of the device and discard pre- and postanalytical errors. 
Now there is probably no clinical chemist who disagrees 
with eliminating a result caused by the wrong sample tested 
but consider the impact from a clinician’s standpoint.

Clinicians make decisions based in part on laboratory 
results and if a wrong sample tested in the method 
comparison protocol is representative of what would happen 
in routine testing, then an adequate assessment of potential 
patient harm can only be made if this error is retained (and 
this applies to all pre- and postanalytical errors).

Whereas these standards have a separate section devoted 
to user error, there is no attempt to consolidate the separate 
evaluations to arrive at overall acceptance criteria. And 
published evaluations cite only results from the analytical 
error evaluation as evidence of acceptability.

The problem with the analysis methods

A common analysis method to demonstrate that 95% of the 
results are within limits is to analyze method comparison 
data by regression to estimate average bias, perform a 
precision experiment to estimate precision and then to 
combine average bias and precision to estimate total error = 
average bias ± 2× the standard deviation. 

There are several problems with this approach. A high 
and low outlier will make the average bias zero, but if the 
high and low outliers are representative, then they will 
occur, and the total estimation analysis will be incorrect. 
The problem with using multiples of precision is that it 
gives an impression that the spread of the data is governed 
by a normal distribution. As an example, consider a glucose 
meter value of 100 mg/dL (reference value also 100 mg/dL)  

with a 2.4%-meter coefficient of variation (CV). This 
implies that 95% of the glucose values will be no more 
than 4.8 mg/dL from reference, and well within the 15% 
limit required by ISO 15197 standard. A glucose value of 
115 is 6.25 standard deviations away from 100 and would 
happen once every 5 billion results. Now if the reference 
value were 30 for the same glucose meter result (100 mg/
dL with a 2.4% CV); this implies the 100 mg/dL result is 
29 standard deviations away. This would occur once every 
5×10187 samples. But the problem is that results outside of 
limits often come from different distributions. For example, 
a common glucose meter error (17) is user error caused by 
an inadequate sample. These same problems apply to the 
popular Six Sigma method. In Six Sigma, a unitless number 
is calculated as [total error limit − (average) assay bias]/
standard deviation of assay. The above glucose meter gives 
Six Sigma =6.25. Hence, this would be a highly desirable 
assay although dangerous results could still be present since 
user errors and interferences are not included in Six Sigma.

The analysis method in the CLSI total error standard 
EP21 is a nonparametric method of estimating the central 
95% of results. The nonparametric method was chosen 
to not have to worry about non normal data. This is an 
improvement, yet the limits reported still comprise only 
95% of the results.

Whether a parametric or non-parametric is used to 
estimate the central 95% of data, virtually no analysis 
methods attempt to estimate the frequency of large errors. 
Each result in a method comparison can be considered to 
either yield a large error or not to yield a large error (18). 
For any sample size in the method comparison, one can 
estimate the 95% confidence interval for the frequency of 
large errors. For example, if the sample size in a method 
comparison is 300 and no large errors were observed, one 
can be 95% confident that no more than 1% of results 
contain large errors (19). The reality is that evaluations 
experiments are poor in proving that rare events do not 
occur.

The frequency of harmful results 

Since up to 5% unacceptable results are allowed one can 
ask how many large errors actually occur? In the US, the 
FDA has a database of adverse events (20) commonly 
called MAUDE (Manufacturer and User Facility Device 
Experience). Unfortunately, useful rate information 
(number of events/usage) is often not available because 
usage figures of interest (such as by brand or time) are 
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unavailable. Nevertheless, the rates must be exceedingly 
small due to the large number of observations. For example, 
the number of adverse events in 2020 for continuous 
glucose monitors (CGM) was 228,073 (21). The number of 
annual CGM results in the US is estimated as 233.4 billion  
(12/hour × 24 × 365 × 30% CGM users of 7.4 million 
insulin users) which gives a rate of 9.8E−07. Yet, if one 
constructs a rate based on (number of events/people that 
use CGM), rates are much larger. For example, in 2020, 
based on 30% CGM users of the 7.4 million people with 
diabetes that use insulin (=2.2 million), the rate of CGM 
adverse events is 10.3%. Another way of looking at the data 
is that in 2020, there were 625 CGM adverse events each 
day. Thus, the percentage of adverse events is well below 
the allowed 5%, but the percentage of people that have 
adverse events is alarming. 

Other assays also appear in MAUDE. For example, 
in 2019, Table 1 shows the most frequent adverse events 
classified by the MAUDE term GENERIC_NAME. Of 
course, not all events are reported.

The problem when assays fail acceptance 
criteria

For any assay that fails the acceptance criteria, the logical 
conclusion is that the corresponding regulatory body should 
not allow that assay to be used (or to remove an assay that 
is in use). However, if an assay is not allowed to be used, 
the benefit of not having wrong results must be weighed 

against the harm caused by the lack of information from 
the assay. For example, consider a new glucose meter that 
is by far less expensive than any other meter but has failed 
the ISO 15197 acceptance standard. If a cohort of people 
with diabetes was not using glucose meters due to cost, yet 
wanted to use the failed meter, they would likely be better 
off using the failed meter than not using any meter.

The psychology of acceptability

An assay deemed acceptable has had it results reviewed by 
a regulatory body often based on a standard that has been 
prepared by a panel of experts. Companies market these 
assays not as having met a standard but rather having results 
that have exceeded the standard. For an assay judged to be 
acceptable, one does not expect unacceptable results and 
more importantly, one is unlikely to question the results. An 
example of this occurred at the University of Washington 
where a patient was treated for suspected trophoblastic 
carcinoma including a hysterectomy and the partial 
removal of one lung, based on 45 elevated human chorionic 
gonadotropin (hCG) tests. But finally, by performing a 
different hCG assay on the sample, it was determined that 
all the previous hCG tests were false positives—the patient 
never had cancer (22). Nor was this an isolated instance (23).

Why people do not pay more attention to 
dangerous results

No one wants to see dangerous results and there is no 
magic bullet to prevent them. Yet, subtle factors exist. 
Since acceptable assays according to regulatory standards 
require 95% of results within limits, there is less focus on 
the very small rate of unacceptable results that may occur. 
When such results are found to be caused by instrument or 
reagent problems, companies will feverishly work to solve 
those problems. However, as mentioned for glucose meters, 
many problems are caused by user error and this error 
source receives less focus (in adverse event reporting, user 
error must be reported as an adverse event for the device 
being used). And publications using adverse events as a data 
source are rare. Some unacceptable results are caused by 
interferences and it is difficult to evaluate every possible 
candidate interfering substance. Reliability tools such as 
Failure Mode Effects Analysis (FMEA), fault trees and 
Failure Reporting And Corrective Action System (FRACAS) 
(24-26) help prevent errors but they are not employed as 
vigorously as in other industries such as aerospace and 

Table 1 List of adverse events for assays from MAUDE 2019

Test N

Glucose meters and continuous glucose monitors 159,330

Prothrombin time 2,282

Clinical chemistry analyzer 1,606

Immunochemistry analyzer 667

hCG pregnancy test 456

Radioimmunoassay, free thyroxine 162

Radioimmunoassay, total triiodothyronine 128

Immunoassay method, troponin subunit 126

Automated hematology analyzer 119

Radioimmunoassay, TSH 114

hCG, human chorionic gonadotropin; TSH, thyroid stimulating 
hormone.
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automotive. Finally, there is a long history of evaluating 
only the analytical performance of assays.

Recommendations 

Specifications should better reflect the harm when the 
magnitude of error increases. This could be achieved by 
using error grids instead of a single acceptance limit. 

Despite the problems with method comparison protocol 
and analyses, they still provide valuable information 
because one wants to know the location of most results 
from reference. Total error for 95% of results should be 
calculated nonparametrically as described in EP21. Most 
protocols provide analytical performance only (without 
pre- and post-analytical error). However, results should 
never be discarded. The performance of an assay under 
ideal conditions and stripped of pre- and post-analytical 
error is misleading. Hence, results should be provided with 
and without pre- and post-analytical error. For assays on 
the market, the MAUDE database should be examined for 
adverse events.

More focus is needed on tools that prevent large errors, 
especially if pre- and post-analytical errors are detected. 
These include improved user training, FMEA, fault trees 
and FRACAS.

Conclusions

There will always be standards with limits for acceptable 
results. But we need to add tools to these standards that 
minimize the probability of large errors.
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