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Introduction

Invasive infections caused by opportunistic fungi have high 
morbidity and mortality, especially in immunocompromised 
patients. It is estimated that more than 1.6 million people 
die of fungal diseases annually (1). Therefore, accurate 
and timely identification of pathogenic fungi is essential 
for patient management and can significantly improve the 
prognosis. Conventional diagnostic tests include microscopy, 

culture (through biochemical phenotyping, matrix-assisted 
laser desorption/ionization (MALDI) time-of-flight mass 
spectrometry analysis, or nucleic acid probes), antigen and/or 
antibody immunology, and specific polymerase chain reaction 
(PCR) testing microbial nucleic acid (2,3). Among them, 
the molecular diagnostic analysis provides a fairly efficient 
and quick (usually less than 2 hours) way to diagnose the 
most common fungal infections (4,5). However, almost all 
traditional microbiological tests currently in use are able to 
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detect only one or a limited number of pathogens at a time or 
require a successful culture of microorganisms from clinical 
specimens. 

In recent  years ,  metagenomic next-generat ion 
sequencing technology (mNGS) has been increasingly 
used by clinicians as a culture-independent and hypothesis-
free method to diagnose pathogens (6,7). It can directly 
obtain the microbial nucleic acid from various samples, 
including sputum, bronchoalveolar lavage fluid (BALF), 
blood, cerebrospinal fluid (CSF), pleural fluid, ascites, 
pus, and tissue samples (5,8,9). All potential pathogens 
with known genomic sequences, such as bacteria, viruses, 
fungi, parasites, mycoplasma and leptospira, are unbiasedly 
detected in theory (6,10). At present, mNGS could release 
results on an average of 24 hours after sampling, generally 
no longer than 48 hours (11). The workflow of mNGS 
consists of two components including experimental 
operations (sample preprocessing, nucleic acid extraction, 
library preparation and sequencing) and bioinformatic 
analysis (database comparison, report generation and 
result interpretation), which demands a high level of the 
technical platform and personnel quality (7). Although this 
new technology greatly facilitates the clinical identification 
of pathogens, it remains a second-line option because of 
lengthy procedures and microbial contamination introduced 
during experimental operations. A recent advance has been 
achieved in mNGS, for example, shorter turnaround time, 
reduced exogenous contamination, improved workflow 
and sensitivity (12-15). The potency of the mNGS test 
using cell-free DNA from of 182 body fluids was evaluated 
using two sequencing platforms. The test sensitivity and 
specificity of identification were 91% and 89% for fungi, 
respectively, using Illumina sequencing assigned to the 
second-generation sequencing; and 91% and 100% for 
fungi, respectively, based on nanopore sequencing attributed 
to the third-generation sequencing (16). Moreover, an 
outstanding advantage of mNGS lies in that its detection 
rate is less likely to be affected by prior antimicrobial 
treatment than by traditional methods (17,18). Thus, it has 
a high potential value in accurately diagnosing and treating 
clinical infectious diseases. We present the following article 
in accordance with the Narrative Review reporting checklist 
(available at https://dx.doi.org/10.21037/jlpm-21-25).

Methods

To obtain information on mNGS testing for the diagnosis 
of fungal infections, we searched PubMed, Embase, CNKI 

and Wanfang, using the search terms (“fungi” OR “fungus” 
OR “fungal infection*” OR “fungal disease*”) AND 
(“mNGS” OR “metagenomic next-generation sequencing” 
OR “metagenomic NGS” OR (“cell free” AND (“NGS” 
OR “next-generation sequencing”))) without date (up to 
June 16, 2021). After carefully examining the title, abstract, 
and full text, we found a few articles related to this subject. 
Most evidence is primarily derived from case reports or 
small-scale retrospective studies (Table 1 and Table S1). In 
the diagnosis of IFDs, mNGS has been used for severe or 
difficult infections mainly caused by Pneumocystis jirovecii, 
Cryptococcus spp., Histoplasma capsulatum, Aspergillus spp. and 
Candida spp. Here, we reviewed the literature to explore 
the role of mNGS in the diagnosis of fungal infections by 
highlighting the species most commonly isolated in these 
studies.

mNGS for diagnosis of Pneumocystis jirovecii 

Pneumocystis jirovecii is an opportunistic pathogen that can 
cause fatal pneumocystis pneumonia (PCP). The incidence 
of PCP in patients with organ transplantation, autoimmune 
diseases, tumors, etc. is on the rise (35). Therefore, to 
reduce mortality, there is an urgent need for timely diagnosis 
and prompt PCP-specific treatment (36). The traditional 
diagnostic method for PCP detection is based on microscopic 
identification of cysts or trophozoites of Pneumocystis jirovecii 
in stained samples collected from the respiratory tract of 
patients. This method has low sensitivity and is affected by 
many factors, such as staining protocol, specimen collection, 
and pathogen load (37,38). Meanwhile, although the serum 
1,3-β-D-glucan (BDG) test has a certain sensitivity to 
Pneumocystis jirovecii, it lacks specificity (39).

There are studies taking advantage of mNGS to 
find Pneumocystis jirovecii in samples obtained from the 
respiratory tract (19,40-42). However, as Pneumocystis 
jirovecii colonizes the surface of human type I alveolar 
cells, it is difficult for mNGS to determine an appropriate 
threshold between infection and colonization when 
confronted with samples from the respiratory tract (40,43). 
Excitingly, Zhang et al. combined the sequencing order 
of Pneumocystis jirovecii (ranking top 15) with the relative 
sequencing proportion in fungi (higher than 85%) and 
speculated a promising cutoff value for mNGS in the 
diagnosis of PCP (20). More samples need to be collected 
to verify the validity and clinical significance of this value.

In addition, mNGS was used to detect Pneumocystis 
jirovecii in the peripheral blood samples of patients with 
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renal disease receiving immunosuppressive therapy, 
associated with the clinical manifestations and radiological 
features to determine the final diagnosis of PCP (21). 
Although studies have shown that blood mNGS is less 
sensitive than BALF mNGS in the detection of bacteria 
and fungi, it has unique advantages in certain circumstances 
(44,45). It is not only non-invasive, simple, and fast, but also 
free from the influence of Pneumocystis jirovecii colonizing 
the respiratory tract. Sensitivity and specificity are higher 
than those of the fungal G test in combination with the 
detection of lactate dehydrogenase detection (94.59% vs. 
89.19% and 100% vs. 56.0%) (21). Interestingly, of two 
mild PCP patients whose peripheral blood samples were 
initially negative, one became positive after a week, which 
indicated that Pneumocystis jirovecii could penetrate the local 
infection site into the peripheral blood when the immune 
system is damaged (20,21). This suggests that for seriously 
ill patients who cannot tolerate invasive procedures, 
future high-throughput sequencing of peripheral blood 
samples may be an alternative and, to some degree,  a 
marker for disease severity (22,23,46). Apart from simply 
identifying fungi, the application of mNGS also revealed 
mixed pulmonary infections in a single assay, and co-
pathogens, such as the new coronavirus SARS-CoV-2, 
Mycobacterium tuberculosis, and Human cytomegalovirus were 
previously detected with one or more fungal species by 
mNGS (24,25,47,48). Mover, the Human Cytomegalovirus 
is the most common co-infected pathogens of Pneumocystis 
jirovecii infections (19,24). Therefore, mNGS is a promising 
technology to detect co-pathogens of mixed infection and 
provides information to improve culture conditions and 
develop a reasonable antifungal plan.

mNGS for diagnosis of Cryptococcus spp.

Cryptococcal meningitis (CM) occurs primarily in 
immunocompromised individuals, particularly those 
infected with HIV. There are over one million new cases 
of CM every year globally, among which about 600,000 
people die within three months of infection (49). The 
Cryptococcus neoformans/Cryptococcus gattii species complexes 
dominate, leading to over 90% of human cryptococcosis 
cases. However, significant differences between the two are 
found in epidemiology, clinical manifestations, progression, 
and treatment strategies. In HIV-negative patients, C. gattii 
s.l. has a higher proportion of neurological complications, 
low response to antifungals, long-term therapies, and 
more surgical interventions (50,51). At present, traditional 

laboratory diagnostic methods, including India ink staining 
and cryptococcal antigen (CrAg) detection in CSF, cannot 
distinguish the two. Although l-Canavanine glycine 
bromothymol blue (CGB) agar and MALDI-TOF-MS can 
be used to differentiate C. neoformans and C. gattii, they 
must be based on a successful culture (52). The mNGS has 
been confirmed to be effective in identifying C. neoformans 
and C. gattii, which could reduce the misdiagnosis of CM 
in immunocompetent patients, promote the accurate 
treatment of central nervous system (CNS) infections, and 
considerably reduce the abuse of antifungal agents and 
resistance to fungi (26,53).

Cryptococcal osteomyelitis is very rare. Since X-rays 
are not specific and serum CrAg show low sensitivity, 
the diagnosis usually depends on culture or biopsy 
histopathology. However, negative culture results are not 
uncommon in clinical practice (54). Zhang et al. reported 
that an HIV-negative patient with an intact immune 
system, initially wrongly diagnosed as a  soft tissue tumor 
of ribs, was eventually identified as a case of cryptococcal 
osteomyelitis via mNGS (55). Given that mNGS is based 
on the unknown to the known screening process, it often 
provides significant diagnostic information when faced with 
an atypical clinical presentation. Yet, it is simply used as 
an auxiliary means for traditional pathogenic diagnosis at 
present, due to limited reporting of mNGS applications in 
cryptococcosis and small sample sizes (27,28,53,56).

mNGS for diagnosis of Histoplasma capsulatum 

Histoplasmosis is an endemic disease that mainly occurs in 
North America (especially the Midwest and Southeastern 
United States). It is generally asymptomatic or self-
limiting, but may also cause severe symptomatic disease. 
For example, disseminated histoplasmosis is a progressive 
extrapulmonary disease that can be life-threatening if not 
treated. Therefore, a rapid diagnosis will make it possible 
to detect and curb infectious outbreaks at an earlier stage, 
saving lives and reducing medical costs (57). However, when 
the disease occurs in non-endemic areas, clinicians are often 
unaware of it, leaving them neglected and misdiagnosed (58).

Although the microscopy and culture are  s t i l l 
recognized as the golden standards for the diagnosis of 
histoplasmosis, the morphology of H. capsulatum is similar 
to that of pathogens such as Talaromyces marneffei and 
Leishmania under a microscope, which frequently confuses 
inexperienced lab technicians (59). The detection of 
galactomannan antigen in body fluids provides a rapid and 
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sensitive method for the diagnosis of histoplasmosis and was 
included in the second edition of the WHO Basic in Vitro 
Diagnostic List in 2019 (60). The rate of antigen detection 
in patients with progressive disseminated histoplasmosis 
or acute pulmonary histoplasmosis is as high as 80% to 
95%, but cross-reactions occur most commonly in patients 
with blastomycosis (90%), penicilliosis marneffei (80%), 
coccidioidomycosis (60%), and aspergillosis (10%) (61). 

The mNGS is a valuable tool for detecting pathogens 
in non-endemic areas of endemic diseases such as 
histoplasmosis, and reducing the misdiagnosis and missed 
cases, especially in cases where clinicians are not initially 
aware of the disease. For example, mNGS was applied to 
BALF specimens from an individual originally diagnosed 
with tuberculosis in China, and ultimately identified as H. 
capsulatum (62). Recently, Zhang et al. performed mNGS 
on blood and bone marrow specimens from five patients 
infected with H. capsulatum, Leishmania, or T. marneffei 
but presenting similar clinical symptoms. They found 
that mNGS had 100% diagnostic accuracy, remarkably 
higher than that of traditional methods including bone 
marrow smear, microscopy, and culture (29). As well, direct 
pathogen identification from blood samples makes mNGS 
a less invasive option for patients with contraindications to 
bone marrow puncture. Moreover, during the follow-up 
period, it was detected in three patients that the decrease 
in the abundance of sequencing reads was consistent with 
the clinical recovery stage. In other words, mNGS would 
be expected to monitor disease progression and assess 
therapeutic effectiveness, a common practice in clinical 
work, despite limited data and the need for a lot of time to 
confirm (18,63,64).

mNGS for diagnosis of Aspergillus spp.

Invasive pulmonary aspergillosis (IPA) is a potentially fatal 
opportunistic infection that usually occurs in patients with 
hematological malignancies. The 2016 American Society 
of Infectious Diseases Diagnostic and Management 
Practice Guidelines for Aspergillosis stated that for certain 
adults and children (hematological malignancies, HSCT) 
patients, it is recommended to detect galactomannan (GM) 
in serum and bronchoalveolar lavage (BAL), as an accurate 
marker for the diagnosis of IPA (65). Recently, the number 
of cases of IPA in non-neutropenia patients, especially 
those with chronic obstructive pulmonary disease (COPD), 
has been increasing (66). Unfortunately, for this group 
of people, the diagnosis of IPA is usually more difficult, 

because circulating biomarkers show a relatively low 
sensitivity (67). Three cases of severe pneumonia, two of 
which had a history of COPD and asthma, were reported 
and identified as Aspergillus fumigatus by mNGS in BALF 
samples, further emphasizing the diagnostic role of 
mNGS in non-neutropenic IPA (68). Interestingly, Ge 
et al. described a patient whose clinal and radiological 
characteristics overlapped with the IPA, serum β-D-glucan 
was positive, and sputum culture mimicked Aspergillus 
fumigatus, but who was eventually identified as Nocardia 
Gelsenkirchen in both the bronchoalveolar lavage culture 
and mNGS results (69). It has been shown that mNGS can 
sometimes assist in differentially diagnosing IPA when the 
results of traditional tools appear confusing (30,31,70).

In addition, mNGS has important advantages in 
identifying unknown, rare, and atypical pathogenic 
microorganisms, which facilitates the discovery of novel 
disease-causing fungi in humans. For the first time, mNGS 
helped Dai et al. to save a 36-year-old woman by the 
timely detection of Aspergillus flavus leading to a rare but 
lethal fungal endocarditis (71). Wilson and his colleagues 
successfully resolved seven cases with diagnostic challenges 
for chronic meningitis with the help of mNGS and reported 
the first case of CNS vasculitis resulting from Aspergillus 
oryzae (27). Furthermore, in thirty Bell’s palsy (BP) cases, 
Chang et al. discovered human herpesvirus 7 (HHV-7) 
and Aspergillus through analyzing the results generated 
by mNGS in samples obtained from the facial nerve 
epithelium, suggesting that more attention be paid to both 
pathogens in the pathogenesis of BP (32).

mNGS for diagnosis of Candida spp.

Invasive candidiasis is the most common fungal disease in 
intensive care unit (ICU), accounting for 70–90% (72). 
Once considering fungal infections, they often use specific 
diagnostic methods to screen Candida species at first. 
Moreover, the rapid development of diagnostic technology 
based on the genetic sequence of known pathogens 
often works well. Consequently, the need for mNGS in 
candidiasis may be less urgent. Candida spp. are often 
reported as strains of colonization or mixed infection strains 
occurring in the preliminary report generated by mNGS, 
which requires further interpretation by clinicians. When 
conventional diagnostic tools fail to identify the pathogen, 
clinicians can turn to mNGS for help in diagnosis. For 
instance, when confronted with a negative culture result 
in a chronic disseminated candidiasis case, Jin et al. 
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successfully identified the pathogen-Candida tropicalis via 
mNGS and it was further confirmed by calcofluor white 
staining (73). Additionally, Wilson et al. reported the fourth 
case of meningitis caused by Candida dubliniensis using 
mNGS technology, whereas the two 18S rRNA and 16S 
rRNA PCR tests in cerebrospinal fluid were negative (27). 
Importantly, mNGS is written into the Chinese consensus 
on the diagnosis and management of adult candidiasis, 
providing a basis for the etiological diagnosis of difficult or 
rare infectious diseases (74). 

Challenges for mNGS in the diagnosis of IFDs

While many studies and case reports have confirmed that 
the success of mNGS in improving the diagnosis of IFDs, 
mNGS has not been included in the revised EORTC/MSG 
definitions (75,76) because of its limited standardization 
and validation. Several challenges remain in the routine 
implementation of mNGS technology in IFDs. Firstly, 
mNGS assays cost several hundreds to thousands of dollars 
per analytical sample, more than that for many other 
clinical tests, which is one of the main factors limiting their 
widespread use in the clinic (4). Secondly, although it has 
been reported that mNGS has superior fungal sensitivity 
and specificity to culture and histopathology (33,41,77), the 
sensitivity of mNGS depends heavily on the background 
and decreases in the high background, mostly from the 
human host or microbiome (4,67). In human samples, 
pathogen sequencing reads account for only a small portion 
of all mNGS results, while over 95% of sequencing results 
indicate human reads (11,78). As a result, removing human 
DNA sequences to enrich pathogen reads is a major 
direction in mNGS for microbial diagnosis (79). Ji et al. 
proposed an approach to effectively reduce host DNA 
contamination in CSF samples by collecting saponin-treated 
supernatant for DNA extraction, which has greatly improved 
the unique mNGS reads of Cryptococcus (P<0.01) (80).  
Meanwhile, the specificity of mNGS is commonly limited 
by contamination with DNA fragments from various 
microorganisms on the surfaces of reagents and consumables 
(10,12,48). A more stringent reporting threshold would be 
appropriate to increase specificity. Scoring algorithms such 
as Z-SCORE or SIQ-SCORE were designed in an attempt 
to separate sequences from the pathogen from those of 
environmental microbial sequences, which greatly simplifies 
the data interpretation (27,81,82). Thirdly, mNGS showed 
poor efficiency in extracting nucleic acid from pathogenic 
microorganisms with thicker cell walls, such as fungi (83). 

The efficient extraction method is a key step in achieving 
truly impartial sequencing of a sample because fungi need 
significant disruption of the cell walls to efficiently lyse 
the organisms for nucleic acid release. Some researchers 
have optimized the extraction conditions of Aspergillus 
RNA, while preserving the detection of bacterial and viral 
nucleic acid by mNGS (34). Lee et al. reported a simple 
and reproducible method extracting high molecular weight 
(∼20 kb) genomic DNA from filamentous fungi for use in 
next-generation sequencing (NGS) (84). Last but not least, 
detection of nucleic acids by the mNGS itself does not 
prove that an identified microorganism is responsible for 
the disease, and results should be interpreted in the clinical 
context (4,7,77). When using the mNGS test, it is best to 
consider the findings in conjunction with other diagnostic 
tests and clinical feature.

Summary

mNGS can be used for samples from multiple sources, 
identifying unknown, rare, and newly emerging pathogens, 
distinguishing mixed pathogenic microorganisms, and 
subsequently narrowing them down to a certain level 
of genus. It could help guide treatment decisions for a 
group of people who are intolerant to invasive operations, 
immunosuppressed, or critically ill. An ideal diagnostic 
method should include the following characteristics: the use 
of non-invasive biological specimens, high precision, good 
reproducibility, and short processing time. Furthermore, 
the related technology should be easily available and low-
cost, thus it can be promoted in many places. However, 
mNGS has certain limitations in terms of the diagnosis of 
IFDs, so it is only used as an auxiliary diagnostic tool for 
traditional detection methods. In the near future, with the 
gradual determination of unified standard procedures or 
interpretation standards, improved nucleic acid extraction 
schemes, reduced turnaround time, and substantial cost 
reductions, mNGS is expected to become a routine 
diagnostic method of fungal infections.
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Table S1 Single case of IFDs reported using mNGS

Year Species Samples Types mNGS platform Traditional methods Results No. of reads, median
Most common co-infecting 

pathogens 
Ref.

2020 Pneumocystis jirovecii BALF n/a Blood and sputum culture, nasopharyngeal aspirate respiratory virus 
antigen and PCR detection

Only mNGS was positive 1,007 None (40)

2020 Pneumocystis jirovecii BALF BGISEQ-50 Smear, culture, GM test, G test Only mNGS was positive 66 Aspergillus fumigatus, 
Rhizopus oryzae

(41)

2020 Pneumocystis jirovecii BALF MGISeq 2000 Microscopy of stained sputum, BALF smear specimens, various 
antibody and culture

The mNGS and Gomori methe-namine-sliver staining of 
the lung biopsy were positive

1,665,693 None (42)

2019 Cryptococcus neoformans Biopsy of the rib n/a G test and GM test, T-SPOT, HIV test, culture, Gram staining and 
acid-fast staining smear, CrAg detection, pathology with staining

CrAg detection and pathology were conducted after the 
positive mNGS results

47 None (55)

2020 Histoplasma capsulatum Epiglottis tissues, BALF n/a Culture, microscopy, serology tests for HIV and Mycobacterium 
tuberculosis, T-SPOT.TB, Xpert MTB/RIF assay

Only mNGS was positive n/a None (62)

2021 Aspergillus fumigatus Serum n/a MRI, blood cultue, CT, serum GM, CrAg detection m NGS was the first positive n/a None (70)

2021 Aspergillus flavus Blood Nextseq550 platform Culture, histopathology mNGS and culture were positive n/a n/a (71)

2021 Candida tropicalis Liver puncture n/a G test, culture, histopathology, calcofluor white staining G test, calcofluor white staining and mNGS were positive 50 None (73)

IFDs, invasive fungal diseases; n/a, not available; BALF, bronchoalveolar lavage fluid; CrAg, cryptococcal-antigen; G, 1,3-beta-D-glucan; GM, galactomannan.
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