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Introduction

The exploration of iron metabolism is of interest in many 
fields and pathologies. Iron is essential for oxygen transport 
through the heme of hemoglobin contained in red blood 
cells, cellular respiration like electron transport chain, 
DNA synthesis, and many other metabolic pathways. Iron 
is involved in the severity of diseases such as heart failure. 
The numerous modifications of the parameters depending 
on the patient’s condition lead to difficulties interpreting 
the iron balance. Exploration of iron metabolism is a 
routine test that most laboratories should be able to 
perform. For example, iron deficiency (ID) is the most 
common micronutrient deficiency worldwide, with >20% of 
women experiencing it during their reproductive lives (1). 

Most etiologies of ID occur in the digestive tract, in men 
and postmenopausal women, and justify a morphological 
examination of the gut (2). Its prevalence is high, especially 
in children, women of childbearing age, pregnant women, 
and chronic pathologies such as kidney failure or cancer (3). 
Authors have suggested the role of ID anemia in worsening 
the clinical course of patients (4-6). Iron is involved in 
neurodevelopment (7,8), recovery after surgery (9), and 
survival in intensive care unit (ICU) (10,11). Furthermore, 
anemia could coexist with inflammatory bowel disease (IBD) 
in up to two-thirds of patients whose primary etiology is ID 
(prevalence ranging from 36% to 76% of patients) (2). 

The exploration of iron metabolism is also of interest in 
some genetic diseases such as hereditary hemochromatosis (12)  
or sideroblastic anemia (13).
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Investigations

Biomarkers

The better non-invasive laboratory tests for diagnosing 
ID are serum ferritin concentration and the transferrin 
saturation coefficient (TSAT). Other parameters can be 
used to interpret the iron balance, especially in multiple 
pathologies leading to difficulties in interpreting the basic 
parameters. The commonly used units are presented in 
Table 1.

Ferritin
Ferritin reflects the body’s iron stores. Ferritin blood 
concentration is proportional to the total body iron stores (14).  
Its decrease is the hallmark of an ID (with or without 
anemia), unlike its increase, which is not necessarily the 
reflection of an iron overload (15).

Ferritin is usually quantified by immuno-enzymology, 
c h e m i l u m i n e s c e n c e ,  i m m u n o n e p h e l o m e t r y,  o r 

immunoturbidimetry. Circulating isoferritins are rich in L 
subunits and strongly glycosylated.

Transferrin
Transferrin is the main transport protein of reduced iron in 
the body. The body’s iron stores partly regulate the hepatic 
synthesis of transferrin through the iron-responsive element 
(IRE)/iron regulatory protein (IRP) system (16). The 
synthesis of transferrin is induced by estrogen (pregnancy, 
estrogen-progestogen).

Therefore, transferrin concentration is inversely 
proportional to the serum iron concentration. The synthesis 
of transferrin increases, and the saturation of transferrin 
with iron decreases when the body’s iron stores are low. 
Conversely, the synthesis of transferrin decreases, and the 
saturation of transferrin with iron increases when the body’s 
iron stores are high.

Immunochemical techniques assay for transferrin 
includes mainly immunoturbidimetry. The reference 
material, CMR 470, makes it possible to standardize 
the antibody of the assay due to the variable degree of 
sialylation of the molecule.

Hypertransferrinemia results from increased liver 
synthesis; it could be due to ID.

Hypotransferrinemia is  found in malnutrit ion, 
severe liver damage by decreased synthesis, urinary loss 
(nephrotic syndrome), and inflammatory syndrome by 
hypercatabolism.

Atransferrinemia is a severe disease that manifests 
itself from birth as severe hypochromic anemia. The iron 
absorbed is not transported efficiently and accumulates in 
the organs (liver, kidneys, pancreas, and heart). 

Total iron-binding capacity or TBIC measures the 
amount of iron that can be carried into the bloodstream 
by transferrin. TIBC (µmol/L) = transferrin (g/L) ×25, or, 
TIBC (mg/L) = transferrin (g/L) ×1.395. 

TSAT
TSAT is calculated according to the following formula: (%) 
= serum iron (µmol/L)/TIBC (µmol/L).

TSAT and TBIC are usual ly  used to diagnose 
hemochromatosis (TSAT >45%). TSAT will generally be 
under 20% in the case of ID.

Detecting iron circulating in the blood is not recommended 
in the current clinical practice, notably due to significant 

Table 1 Reference values

Nature
Reference values (to be adapted according to 
the dosing method used)

Serum iron Male 10–30 µmol/L

Female 9–29 µmol/L

Newborn 10–36 µmol/L

2 months to 15 years 11–24 µmol/L

Transferrin Adult 2–4 g/L

Newborn 1.6–1.8 g/L

Ferritin Male 20–300 µg/L

Female 15–150 µg/L

Newborn 50–400 µg/L

6 months-15 years 15–80 µg/L

sTfR 0.76–1.76 mg/L

Hepcidin 1–20 ng/mL (LC-MS-MS)

NTBI or FI 0.3–1 μmol/L

Serum iron in μmol/L; transferrin in g/L; ferritin in μg/L; sTfR in 
mg/L; hepcidin in ng/mL; NTBI or FI in μmol/L. FI, free iron; LC-
MS-MS, liquid chromatography tandem-mass spectrometry; 
NTBI, non-transferrin bound iron; sTfR, soluble transferrin 
receptor.
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nychtemal variations. However, the iron measurement 
is notably mandatory for TSAT calculation. Current 
techniques for determining serum iron are colorimetric. 
Automated methods include colorimetric and immune 
methods with various interferences (bilirubin, hemoglobin, 
drugs, copper, etc.). Increased iron concentrations are 
observed in iron overloads, both acquired and inherited and 
hepatic cytolysis. The decreases reflect ID and acute and 
chronic inflammatory conditions.

Soluble transferrin receptor (sTfR)
sTfR is a truncated monomer of the extracellular domain 
of the tissue receptor. The isoform lacks its first 100 amino 
acids, which circulate in the form of a transferrin complex 
and its receptor. Its plasma concentration is correlated 
with the number of TfRs, and therefore with the iron 
status. Tissue deficiency leads to an increase in sTfR. Iron 
deprivation leads to increased synthesis of sTfRs, while 
excess iron depletes them. The availability of iron will 
therefore modulate the density of receptors on proliferative 
cells (17). At birth, the RsTF concentration is more than 
double that of adults. Then, quickly, there is no longer any 
variation related to sex or age. On the other hand, black 
subjects and people living at altitude have increased by 10% 
RsTF concentration compared to expected.

RsTF can be assayed by enzyme-linked immunosorbent 
a s s a y  ( E L I S A ) ,  i m m u n o t u r b i d i m e t r y,  o r  b y 
immunonephelometry. The reference values vary according to 
the techniques, the monoclonal antibodies, and the units used 
(mg/L or nmol/L).

Hepcidin
Hepcidin’s effect on a cellular level involves binding 
ferroportin, the principal iron export protein. This binding 
results in its ferroportin internalization and degradation 
and lead to iron sequestration within ferroportin-expressing 
cells. Aberrantly increased hepcidin leads to systemic ID 
and/or iron restricted erythropoiesis (18). Inflammation 
and iron refractory iron deficiency anemia (IRIDA) are 
associated with high hepcidin concentrations (6).

Hepcidin can be assayed by mass spectrometry (LC-MS-
MS) or enzyme immunoassay (ELISA), giving correlated 
but different values (19).

The current or potential indications for the hepcidin 
assay in clinical practice are as follows:

	 Microcytic hypochromic anemia with a suspected 
hereditary origin;

	 Hereditary hemochromatosis: for therapeutic 
monitoring;

	 Chronic renal failure and chronic inflammatory 
syndrome: to assess the indication for iron 
supplementation.

Free protoporphyrin
Its assay is carried out after separation by high performance 
liquid chromatography (HPLC) by fluorometric detection. 
In ID, protoporphyrin is increased in the urine (>700 μg/L).  
However, it can also be grown in chronic conditions or 
cancer.

Zinc protoporphyrin (ZPP)
ZPPs are determined by the hematofluorometric method 
on whole blood. However, concentration increase is not 
specific to ID. Still, it reflects an anomaly in the metabolism 
of the heme: when the iron is in insufficient concentration, 
zinc is incorporated in the heme tetrapyrrole ring.

It can be modified in hemoglobinopathies, sideroblastic 
anemia, inflammation, and lead poisoning (20,21). This assay 
is cheap and easy; it can eliminate ID in low concentrations. 

Non-transferrin bound iron (NTBI)
This fraction comprises iron bound to proteins other 
than transferrin. Iron is also found in hemoglobin 
molecules associated with haptoglobin or within heme 
molecules, notably attached to hemopexin. It is linked to 
low molecular weight molecules, hence its name. When 
NTBI, which represents the free iron pool, is present in 
plasma, it is rapidly taken up by the liver, which could 
participate in toxic cellular effects and worsen hepatic iron 
overload. The values are on the order of 1 mM. When 
this compartment increases following an increase in iron 
from the extracellular medium, it would be responsible 
for the appearance of free radicals and cell damage. This 
fraction of the martial pool is the most toxic because it 
is metabolically challenging to control. The toxicity of 
iron is now well established. It is exerted at several levels, 
sometimes promoting the proliferation of microorganisms 
and infections, sometimes creating or worsening oxidative 
stress through Fenton and Haber-Weiss reactions, and 
inducing lipid peroxidation.
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Iron not bound to proteins, also called low molecular 
weight iron, is the fraction of completely free iron, or pool 
of intracellular labile iron (LIP), which is in principle only 
found in the intracellular compartment of iron transit. 

No standard method exists at this time.
These explorations must be coupled with:
	 A complete blood count to check for an abnormality 

of erythrocytes and hemoglobin;
	 A measurement of c reactive protein to assess a 

possible inflammatory syndrome.

Genetic analysis in iron overload
An increase in TSAT and/or hyperferritinemia should first 
lead to the search for the p.Cys282Tyr mutation of the HFE 
gene:
	 If the patient is homozygous for the p.Cys282Tyr 

variant, it is a type 1 hemochromatosis. Apart from 
an associated inflammatory pathology, the serum 
ferritin concentration is a good indicator of iron 
overload. However, hepatic puncture-biopsy and/or 
magnetic resonance imaging (MRI) are considered 
for serum ferritin levels >1,000 µg/L with a high 
aspartate aminotransferase (AST) level and/or 
hepatomegaly.

	 If the patient is not homozygous for the p.Cys282Tyr 
variant, the TSAT is a decision element:
	 With a TSAT comprised between 45% and 

65%, it is necessary to suggest a compound 
heterozygosity p.Cys282Tyr-p.His63Asp, a type 4 
ferroportin syndrome (regular or low TSAT with 
ferritinemia >1,000 µg/L), and a dysmetabolic 
hepatosiderosis (metabolic syndrome and 
secondary iron overload).

	 With a TSAT of >65% in a young subject, 
it is necessary to look for a cause of juvenile 
hemochromatosis.

In the presence of hypochromic microcytic anemia with 
normal or increased iron circulating concentration, testing 
for rare mutations may be undertaken.

Non-biological explorations

Nuclear magnetic resonance and computed tomography 

techniques are non-invasive techniques for the evaluation of 
liver iron overload. The invasive procedure of bone marrow 
aspiration with Perl’s staining has long been the gold standard 
for the diagnosis of ID (20). Nuclear magnetic resonance and 
computed tomography techniques are non-invasive techniques 
for the evaluation of liver iron overload. The invasive 
procedure of bone marrow aspiration with Perl’s staining has 
long been the gold standard for the diagnosis of ID (20).

Liver biopsy, a very invasive procedure with numerous 
contraindications, makes it possible to determine the 
amount of iron per gram of dry tissue and can be used to 
diagnose rare genetic overloads of genetic origin.

Interferences

Chronic inflammatory diseases such as cancer (22), 
infection (23), rheumatoid arthritis, IBD (6,24) are 
associated with modifying the iron balance and lead to 
interpretation errors. The determination of the additional 
parameters allows a better understanding of the iron balance 
of these patients (2,25,26).

High circulating concentrations of ferritin are found 
in various rare inflammatory medical conditions like 
macrophage activation syndrome, adult-onset Still’s disease, 
catastrophic antiphospholipid syndrome (27). Some 
drugs will disrupt iron metabolism, such as cardiovascular  
drugs (1). Those interferences are summarized in Table 2.

Conclusions

Among the many biomarkers existing to explore iron 
metabolism, ferritin and transferrin saturation are generally 
used and sufficient in first line. In more complicated cases, 
especially in cases of coexistence of inflammatory disease, 
ferritin and transferrin saturation are generally not sufficient 
and a combination of specific biomarkers is often necessary 
to explore, particularly when comorbidities interfering with 
iron metabolism.

Biomarker ratios are increasingly developed to support 
the diagnosis of ID. Genetic studies also make it possible to 
refine the diagnosis in cases of overload. These biological 
analyzes eliminate the need for invasive examinations to 
explore iron metabolism.
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