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Review Article
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Background and Objective: Despite optimal statin treatment, the risk of cardiovascular disease persists. 
Higher circulating triglyceride levels are linked to the development of cardiovascular disease. Clinical trials 
are currently being conducted to determine the efficacy of promoters of lipoprotein lipase (LPL) activity. 
However, the clinical significance of measuring plasma and serum LPL concentrations is unknown.
Methods: The MEDLINE, EMBASE, PubMed, Web of Science, and Cochrane Central databases were 
scoured for English publications using the following keywords: triglyceride; lipoprotein lipase (LPL); 
glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1); chylomicron 
(CM); very low-density lipoprotein (VLDL); heparin; noncommunicable disease; insulin resistance; diabetes 
mellitus; pre-diabetes; cardiovascular disease; diagnosis; and prognosis.
Key Content and Findings: LPL activity is highly regulated at the transcriptional, post-transcriptional, 
translational, and post-translational levels. The circulating levels of LPL show a negative relationship with 
triglycerides and HbA1c and a positive relationship with high-density lipoprotein (HDL) cholesterol and 
adiponectin. Circulating LPL levels are significantly reduced in arteriosclerotic diseases such as metabolic 
syndrome, diabetes, and cardiovascular diseases. The clinical significance of pre-heparin LPL measurement 
must be determined to assess the efficacy of triglyceride lowing drugs. 
Conclusions: Circulating LPL levels are linked to lipid parameters and are reduced in arteriosclerotic 
diseases; however, the regulatory mechanism of circulating LPL levels is unknown.
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Introduction

Noncommunicable diseases (NCDs) account for roughly 
three-quarters (74%) of all deaths worldwide. The most 
common NCDs are cancers, diabetes, chronic lung 
disease, and heart disease. Metabolic risk factors, such as 
overweight/obesity, high blood pressure, hyperglycemia, 
and hyperlipidemia increase the risk of NCDs (1). An 
increased risk of atherosclerotic cardiovascular events is 
associated with high levels of triglyceride-rich lipoprotein 
(TRL) remnants derived from hepatic and intestinal 
sources (2). Increased levels of circulating TRLs, such as 
chylomicrons (CMs) and very low-density lipoproteins 
(VLDLs), exacerbate cardiovascular disease by promoting 
atherosclerosis (3). Most conventional triglyceride-lowering 
therapies do not reduce the risk of cardiovascular events in 
statin-treated patients; however, in patients with varying 
triglyceride levels and experimental models, new treatment 
modalities that target catalytic pathways in TRL metabolism 
decrease TRL concentrations and atherosclerosis (2-4). 
These studies may lead to the development of new therapies 
that reduce TRL levels and cardiovascular risk (2). The 
majority of new therapeutic targets regulate lipoprotein 
lipase (LPL) activity (2,5,6). LPL is an important player in 
TRL metabolism (7); however, the actual clinical significance 
of pre-heparin LPL mass and the relationship between 
circulating LPL levels and NCDs remains unknown. In this 
review, we updated the clinical significance of determining 
LPL concentration in pre-heparin serum. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://jlpm.amegroups.com/article/
view/10.21037/jlpm-23-12/rc).

Methods

We used the following search terms to find articles 
pub l i shed  in  Eng l i sh  in  the  Cochrane  Centra l , 
EMBASE, MEDLINE, PubMed, and Web of Science 
databases:  tr iglyceride;  l ipoprotein l ipase (LPL); 
glycosylphosphatidylinositol-anchored high-density 
lipoprotein binding protein 1 (GPIHBP1); chylomicron 
(CM); very low-density lipoprotein (VLDL); heparin; 
noncommunicable disease; insulin resistance; diabetes 
mellitus; pre-diabetes; cardiovascular disease; diagnosis; and 
prognosis. All authors compiled the final reference list after 
independently selecting articles and evaluating data quality, 
presentation, and interpretation in light of the study’s 
central idea (Table 1).

LPL

LPL hydrolyzes triglyceride and acts as a ligand

LPL was discovered in 1943 as a heparin-activated clearing 
factor (8) and renamed LPL in 1955 (9,10). LPL is a 50 kDa 
protein that hydrolyzes triglycerides in circulating CMs 
and VLDL on vascular endothelial cell surfaces (11). LPL-
catalyzed lipolysis of TRLs by LPL is the rate-limiting 
step in triglyceride clearance from the blood, making it an 
important process in lipid metabolism. Natural lipolysis by 
LPL results in the release of fatty acids for tissue uptake, 
the production of low-density lipoprotein (LDL), and the 
elevation of high-density lipoprotein (HDL) (12). LPL 
is transported to the surfaces of vascular endothelial cell 
surfaces from its primary sites of production in the heart, 
adipose tissues, and skeletal muscle (13-15). LPL mass 
detaches from the vascular endothelial surface and is carried 
to the liver for elimination as it degrades (16,17). Although 
LPL mass exists in pre-heparin serum, LPL activity is rare 
(in the absence of intravascular heparin injection) (16,17). 
LPL, which is catalytically inactive, mediates lipoprotein 
metabolism in the liver for lipoprotein receptors and 
glucosaminoglycans via its ligand function rather than 
its lipolytic function (18-22). Inactive LPL promotes 
the uptake of cholesteryl ester and VLDL into cells and 
organs. This results in decreased VLDL triglycerides (22). 
However, because serum pre-heparin LPL is catalytically 
inactive, measuring pre-heparin LPL concentration has not 
been widely studied as a diagnostic marker (23).

Regulatory mechanism of triglyceride lipolysis by LPL

Recent reviews summarized the regulatory mechanisms of 
intravascular lipolytic processing of TRLs by LPL along 
the luminal surface of capillaries (11,24). LPL activity is 
tightly regulated at the transcriptional, post-transcriptional, 
translational, and post-translational levels because of its 
critical role in lipid homeostasis (25,26). Several proteins, 
including apolipoprotein (apo)C1 (27,28), apoC2 (29), 
apoC3 (28,30), apoA5 (31), angiopoietin-like protein 3 
(ANGPTL3) (32), ANGPTL4 (33,34), and ANGPTL8, 
regulate LPL (35). LPL is synthesized and secreted as 
a monomer rather than a homodimer from head-to-
tail (36,37). To preserve its native fold, LPL must be 
chaperoned in all compartments because it is inherently 
unstable (38). LPL is chaperoned in the endoplasmic 
reticulum by lipase maturation factor 1 (LMF1) and Sel-1  
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Table 1 The search strategy summery

Items Specification

Date of search December 1 to 31, 2022

Databases and other sources searched PubMed

Search items used “Triglyceride”; “LPL”; “GPIHBP1”; “CM”; “VLDL”; “LDL”; “Heparin”; “Noncommunicable 
Disease”; “Insulin Resistance”; “Diabetes Mellitus”; “Pre-Diabetes”; “Cardiovascular Disease”; 
“Diagnosis”; “Prognosis”

Timeframe January 1943 to December 2022

Inclusion criteria English text; human and animal investigation

Selection process All authors selected and had consensus

LPL, lipoprotein lipase; GPIHBP1, glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1; CM, chylomicron; 
VLDL, very low-density lipoprotein; LDL, low-density lipoprotein.

suppressor of Lin-12-like 1 (Sel1L) during parenchymal cell 
biosynthesis. LPL is chaperoned by heparan sulfate-modified 
syndecan-1 (SDC1) as it moves from the trans-Golgi network 
into the secretory pathway (39). Heparan sulfate proteoglycans 
(HSPGs) in the extracellular matrix and the glycocalyx of 
parenchymal cells regulate LPL in the subendothelial space. 
GPIHBP1 transports LPL from the abluminal endothelial 
surface to its site of action in the capillary lumen (11,40-42).  
GPIHBP1, an effective chaperone for LPL, maintains its 
native and active states (43). The acidic domain increases 
the rate of GPIHBP1 and LPL association by 2,500-fold, 
allowing LPL to transition from an HSPG-bound to a 
GPIHBP1-bound state and then enter the capillary lumen 
via transcytosis (44). LPL is stabilized by binding to TRLs; 
however, apoC1 and apoC3 displace LPL from lipid droplets 
(LDs) (26). Angiopoietin-like protein (ANGPTL)-3, -4, and 
-8 inhibits LPL activity by converting stable LPL dimers to 
unstable monomers. By binding directly to LPL monomers, 
ANGPTL4 catalyzes the irreversible unfolding of LPL’s α/
β-hydrolase domain (37,38,44,45). GPIHBP1 binding to 
LPL prevents this inhibition. An ANGPTL3/ANGPTL8 
oligomeric complex regulates LPL activity in oxidative tissues 
(46-51). Therapeutic strategies that improve LPL function, 
decrease apoC3 and ANGPTL4 function, or increase apoA5 
function are expected to have cardioprotective effects (26). 
Genetic alterations affecting LPL activity are summarized 
by Shaik et al. LPL activity is elevated by loss of function of 
apoC3, ANGPTL3 and ANGPTL4 and decreased by loss of 
function of apoA5 (2,3) (Figure 1).

LPL activity in the fasted and fed state

Kristensen et al. indicated fasting- and fed-state LPL 

activity (24). During fasting or exercise, TRLs must 
be directed away from storage in white adipose tissue 
(WAT) and toward oxidative tissues such as the heart and 
skeletal muscles. This is accomplished by (I) increasing 
the expression of ANGPTL4 in WAT, which inhibits 
LPL secretion and inactivates LPL in the subendothelial 
space, and (II) downregulation of hepatic ANGPTL8 
expression, which significantly reduces the effectiveness of 
ANGPTL3-mediated LPL inhibition (46,52,53). The TRL 
flux must quickly switch from oxidative to storage tissues 
after re-feeding. This transition is mediated by the rapid 
upregulation of ANGPTL8 expression in the liver and 
WAT, combined with a decrease in ANGPTL4 expression 
in WAT (51). The resultant secretion of a hepatic 
ANGPTL3-ANGPTL8 complex mediates endocrine 
inhibition of LPL in oxidative tissues. The increased 
synthesis of ANGPTL8 may attenuate LPL inhibition by 
ANGPTL4 in an autocrine/paracrine manner that favors 
TRLs processing in WAT.

LPL as a ligand

LPL improves the binding of CMs, β-VLDL, and 
apolipoprotein E (apoE)-containing liposomes to LDL 
receptor-related protein (LRP) (18). The pre-heparin 
LPL mass aids in the clearance of residual lipoproteins. 
LPL can act as a ligand for LRP and may mediate 
remnant uptake (54). Inactive LPL does not promote 
remnant uptake into Hep G2 according to research on 
denatured bovine milk LPL (55); LRP is the receptor 
for activated α2-macroglobulin (19,56,57). Eisenberg 
suggested that LPL primarily influences the binding of 
human plasma lipoproteins to heparan sulfate on cell 



Journal of Laboratory and Precision Medicine, 2023Page 4 of 16

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2023;8:18 | https://dx.doi.org/10.21037/jlpm-23-12

LPL activators
• ApoA5
• ApoC2

LPL inhibitors
• ApoC3
• ANGPTL3
• ANGPTL4
• ANGPTL8

TRLs
• Chylomicrons
• VLDL

Endothelial cell

Myocytes Adipocytes

LPL

GPIHBP1

Free fatty acid

Capillary 
lumen

Subendothelial 
space

Figure 1 Lipolysis of TRLs by LPL on capillary lumen. LPL is synthesized in adipocytes and myocytes, moves from the subendothelial 
spaces into capillary lumen by GPIHBP1, and hydrolyzes TG. LPL, lipoprotein lipase; TRLs, triglyceride rich lipoproteins; 
ApoA5, apolipoprotein A5; ApoC2, apolipoprotein C2; ApoC3, apolipoprotein C3; ANGPTL3, angiopoietin-like protein 3; 
ANGPTL4, angiopoietin-like protein 4; ANGPTL8, angiopoietin-like protein 8; VLDL, very low-density lipoprotein; GPIHBP1, 
glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1; TG, triglyceride.

surfaces and in the extracellular matrix (20). LPL binds 
to both the α2-macroglobulin receptor (α2MR)/LRP 
and β-VLDL. Dimeric LPL mediates the binding of 
β-VLDL to the receptor protein. LPL in combination 
with β-VLDL improves binding to α2MR/LRP. LPL-
mediated binding and uptake of remnant particles induce 
the physiological remnant removal and pathophysiology of  
atherosclerosis (21). Catalytically inactive LPL mediates 
organ uptake of VLDL particles and selective uptake 
of cholesteryl ester into cells, resulting in lower VLDL 
triglyceride levels and myopathy (22).

GPIHBP1 (glycosylphosphatidylinositol-anchored 
high-density lipoprotein binding protein 1)

GPIHBP1, a capillary endothelial cell GPI-anchored 
protein (11,25,40), is a dedicated LPL chaperone. GPIHBP1 
transports LPL from the subendothelial spaces into the 

capillary lumen (11,24,41,58). LPL-mediated intravascular 
triglyceride processing is dependent on GPIHBP1-chaperoned 
LPL transport across capillaries (11,24,42). GPIHBP1 
maintains LPL’s structure and catalytic activity (11,24,43,45). 
The literature suggests that GPIHBP1 chaperones LPL 
in four ways (11). First, LPL capture from subendothelial 
spaces is dependent on the GPIHBP1 protein found on the 
abluminal surface of capillary endothelial cells (41,44). Second, 
the binding of GPIHBP1 to LPL stabilizes its structure and 
activity (43-45). Third, GPIHBP1 transports LPL across 
endothelial cells in the capillary lumen to its site of action (41). 
Fourth, GPIHBP1-bound LPL is required for lipoprotein 
regulation in the bloodstream (42), allowing LPL-mediated 
lipoprotein processing to occur. We recently reported 
hypertriglyceridemia caused by GPIHBP1 autoantibodies (59).  
The discovery of inhibitory GPIHBP1 autoantibodies 
revealed a new etiology of acquired hypertriglyceridemia in 
some patients with no known mutations in LPL, GPIHBP1, 
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APOC2, APOA5, or LMF1 (59-61).

Circulating levels of LPL and GPIHBP1

LPL is released into the bloodstream by heparin injection

LPL is released into the bloodstream after being detached 
from vascular endothelial cells by heparin injection (62). 
Although pre-heparin plasma contains a significantly large 
amount of LPL, the activity of TG hydrolysis is very low or 
non-detectable (23). Therefore, LPL in various lipoprotein 
disorders has been studied using post-heparin plasma (with 
intravascular heparin injection) (63-65). However, at room 
temperature, LPL activity in post-heparin plasma rapidly 
decreases at room temperature (7), making it unsuitable 
for routine clinical use. Because of the requirement for 
heparin injection, LPL determination has not been used 
in general clinical research. Heparin injection can cause 
bleeding, which is dangerous for patients with peptic ulcers 
or proliferative diabetic retinopathy. There are also issues 
with post-heparin LPL mass determination that prevent it 
from becoming a widely used test (66). An enzyme-linked 
immunosorbent assay was developed to detect LPL in 
human plasma using specific monoclonal antibodies (67,68). 
LPL concentration and activity measurements in post-
heparin plasma have been used in clinical trials to detect 
LPL deficiency (69) but not to diagnose lipid disorders or 
the risk of cardiovascular disease. Because heparin injection 
causes LPL to dissociate from vascular endothelial cells, 
the measured concentration is not indicative of normal or 
pathological LPL levels in the bloodstream (70). Therefore, 
the importance of determining circulating LPL in the 
absence of heparin treatment, such as pre-heparin serum/
plasma, should be considered.

The LPL mass and activity in pre-heparin and post-
heparin plasma

The function, turnover, and transport of plasma LPL before 
and after heparin treatment differ significantly, as evidenced 
by LPL mass and activity. All of the parameters had a 
significant but distinct relationship with plasma lipoprotein 
lipid concentrations (17). The low correlation between 
pre- and post-heparin LPL may be due to pre-existing 
LPL (pre-heparin LPL) in post-heparin plasma (68). The 
percentage of LPL that separates from the entire vascular 
endothelial cell surface after heparin injection is unknown. 
It is clear that post-heparin LPL mass contains an artificial 

factor given that it is affected by variables such as heparin 
dose, the time elapsed after injection, and circulation (17,68). 
Pre-heparin LPL mass may indicate whole-body LPL 
activity because LPL hydrolyzes triglycerides, lowering 
serum triglyceride levels and increasing HDL-C (68). The 
serum pre-heparin LPL concentration is high enough to be 
measured. A comparative analysis reveals that post-heparin 
plasma LPL activity can replace pre-heparin serum LPL 
concentration (23). Therefore, using an automated LPL 
assay to measure the LPL concentration in pre-heparin 
serum can provide practical clinical applications in TG-rich 
patients without the need for heparin injection (68).

Pre- and post-heparin plasma LPL in TRLs metabolism

TRL-associated atherogenic dyslipidemia is characterized 
by elevated fasting triglycerides, remnant lipoproteins 
(RLPs), LDL-C levels, and small dense LDL cholesterol 
(sdLDL-C), as well as postprandial accumulation of 
TRLs (71). Post- and pre-heparin plasma LPL primarily 
metabolizes RLPs. LPL activity and concentration 
correlated inversely with RLP particle size as measured by 
the RLP-TG/RLP-C ratio in both pre-and post-heparin 
plasma. RLP particle size is consistent with pre-heparin 
plasma LPL concentration and post-heparin plasma LPL 
activity (23,72-77) (Table 2). Furthermore, both postprandial 
pre-heparin plasma LPL concentration and post-heparin 
plasma LPL activity were similarly inversely related to RLP 
particle size. Fasting post-heparin plasma LPL activity and 
postprandial pre-heparin plasma LPL concentration had the 
greatest similarity. Despite the inverse relationship between 
LPL concentration and RLP particle size (23,72-75,77), 
an increase in LPL is associated with an increase in RLPs 
(23,72-75,77). This suggests that insufficient hydrolysis 
of TG-rich lipoproteins by LPL on the endothelium 
after a fatty meal may result in RLP with a large particle 
size. RLPs are sdLDL-C precursors. Plasma sdLDL-C 
concentration is positively correlated with TG and RLPs 
but negatively correlated with LPL activity (23,72-74,76). 
Post-heparin plasma LPL activity and concentration 
correlated negatively with pre-heparin plasma TG, RLP-C,  
RLP-TG, and sdLDL-C concentrations (23,72-75,77). LPL 
concentration in pre-heparin plasma is more physiologically 
associated with adiponectin than maximum LPL activity or 
concentration in post-heparin plasma (Table 2). Therefore, 
LPL activity or concentration measured in post-heparin 
plasma may not accurately reflect the physiological state 
of TRL metabolism. This implies that pre-heparin plasma 
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Table 2 Association between pre-heparin lipoprotein lipase and metabolic parameters, arteriosclerotic disease, and therapeutic approach

Items Association with pre-heparin LPL Reference number

Metabolic parameters

Body weight Inverse association (78,79)

Fasting plasma glucose Inverse association (78,79)

Fasting plasma insulin Inverse association (78,79)

HOMA-IR Inverse association (78-81)

Triglyceride Inverse association (23,72-75,77,78,82,83)

Remnant lipoprotein Inverse association (23,72-75,77,78,82,83)

Small dense LDL-C Inverse association (23,72-75,77,78,82,83)

HDL-C Positive association (72,78)

Adiponectin Positive association (72,78)

GPIHBP1 Positive association (82)

Skeletal muscle Positive association (83)

Arteriosclerotic disease

Type 2 diabetes mellitus Low pre-heparin LPL mass (84-94)

Cardiovascular disease Low pre-heparin LPL mass (17,82,95-101)

Number of symptoms of metabolic syndrome The higher the number of symptoms, the 
lower the pre-heparin LPL

(78,80)

Therapeutic approach

5-hydroxytrptamine2A receptor antagonist Increase pre-heparin LPL (102)

Angiotensin II receptor antagonist Increase pre-heparin LPL (103)

Bezafibrate Increase pre-heparin LPL (104-106)

Colestimide Decrease pre-heparin LPL (107)

Incretin Increase pre-heparin LPL (6,108-112)

Insulin Increase pre-heparin LPL (84-87,91)

Metformin Increase pre-heparin LPL (113)

Pioglitazone/Troglitazone Increase pre-heparin LPL (113-118)

Statin Increase pre-heparin LPL (119-123)

No effect (93,124,125)

Decrease pre-heparin LPL (93,126)

LSG Increase pre-heparin LPL (127)

Konjac glucomannan Increase pre-heparin LPL (128)

HOMA-IR, homeostasis model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density 
lipoprotein cholesterol; GPIHBP1, glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1; LSG, laparoscopic 
sleeve gastrectomy; LPL, lipoprotein lipase.
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LPL activity may be more useful for diagnosis than 
measuring post-heparin plasma LPL concentration. The 
circulating levels of LPL are inversely related to TG, 
RLP-C, RLP-TG, and sdLDL-C (23,72-75,77) (Table 2).

LPL and adiponectin

Adiponectin, a fat-derived adipocytokine, has been linked 
to insulin resistance (129,130), lipoprotein metabolism, 
and abdominal fat (129). Insulin regulates LPL expression 
and production in adipocytes (131,132). Pre-heparin LPL 
has a strong relationship with plasma adiponectin (72,78) 
(Table 2). Both adiponectin and pre-heparin LPL levels 
fall as symptoms of metabolic diseases worsen (78,80), 
and they are inversely related to body weight and TG but 
positively related to HDL-C (78) (Table 2). Low LPL mass 
in pre-heparin serum indicates rising insulin resistance 
and adipose tissue accumulation (78) (Table 2). Plasma 
adiponectin and RLPs are inversely related (81,130,133). 
Reduced adiponectin levels are frequently associated 
with increased RLP levels in patients with high insulin 
resistance (129,133). VLDL and RLP hydrolysis is delayed 
by reduced LPL levels linked with low adiponectin levels 
(72,81,129,133). The mechanism that increases LPL 
activity in cardiomyocytes is well characterized (84,134). 
Adiponectin increases cell-surface expression and LPL 
activity time-dependently in adult rat cardiomyocytes (84). 
Adiponectin aids LPL activation by translocating it to the 
cell surface (84). Adiponectin increases fatty acid uptake 
in cardiomyocytes (134-137). Diabetic cardiomyopathy is 
defined by an increased dependence on free fatty acids for 
energy production in the myocardium and decreased glucose 
utilization (138). Increased cardiac LPL activity caused 
by adiponectin may be critical in the progression of heart 
failure. Decreased adiponectin levels linked to lower cardiac 
LPL raise plasma triglyceride concentrations. Cardiac-
specific deletion of LPL is linked to heart dysfunction (139). 
Adiponectin increases insulin signaling and restores insulin 
sensitivity by reducing ectopic lipid storage in the liver 
and skeletal muscle. Adiponectin mediates these effects by 
stimulating LPL in increased muscle fat oxidation (140).

LPL and insulin sensitivity

Insulin resistance is closely linked to the development of 
atherosclerosis. In adipose tissue, insulin regulates LPL 
production (81,133). The biosynthesis of LPL is activated 
by an insulin-sensitive element in the LPL gene (133). 

LPL expression is increased in skeletal muscle and adipose 
tissue in response to insulin (81,133). Pre-heparin LPL 
mass reflects the total body LPL production and is linked 
to insulin resistance (141). Insulin resistance, measured 
by the homeostasis model assessment of insulin resistance 
(HOMA-IR) index, is considerably associated with pre-
heparin serum LPL but not with post-heparin plasma 
LPL (81,133) (Table 2). Pre-heparin LPL mass correlates 
negatively with body weight, fasting blood glucose, HbA1c, 
fasting immunoreactive insulin (IRI), and HOMA-IR 
(78,79) (Table 2). Hypertriglyceridemia, high sdLDL-C, 
and low HDL-C are linked to insulin resistance (85-88,142) 
and may cause a decrease in LPL production (142). The 
degree of insulin resistance in metabolic syndrome may be 
linked to the pre-heparin LPL mass (which reflects insulin 
sensitivity) and oxidative stress (78).

LPL and diabetes

Insulin plays a major role in regulating pre-heparin 
LPL mass. Patients with type 2 diabetes mellitus have 
significantly lower LPL production and circulating pre-
heparin LPL mass than non-diabetic healthy controls  
(84-94) (Table 2). Pre-heparin LPL mass correlates 
negatively with HbA1c in patients with diabetes (92) 
(Table 2). Post-heparin LPL activity reportedly declines in 
diabetes (90). Pre-heparin LPL mass and HDL-C levels 
are significantly increased by insulin injection, followed by 
a drop in FBS (84-87,91) (Table 2). LPL activity in adipose 
tissue is significantly lowered in diabetic men but not in 
diabetic women (92). Decreased LPL lipolysis of plasma 
TG-rich lipoproteins may cause the inferior lipid profile 
found in men with poorly controlled type 2 diabetes than 
women (93). LPL activity in adipose tissue is significantly 
reduced in men with diabetes but not in women (92). 
In type 2 diabetes mellitus, low adiponectin in plasma is 
linked to low post-heparin LPL (94). Pre-heparin LPL 
mass indirectly shows the amount of working LPL activity 
in vivo (89).

LPL and fatty acid metabolism in the diabetic heart

The regulatory mechanism of LPL in the heart was 
thoroughly evaluated and well-illustrated by Rodrigues 
and colleagues (143). On the apical side of coronary 
endothelial cells, GPIHBP1-bound LPL hydrolyzes 
triglycerides, synthesizes fatty acids, and supplies them 
to the cardiomyocyte (143,144). In cardiomyocytes, fatty 
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acids undergo mitochondrial b-oxidation and oxidative 
phosphorylation to generate ATP or accumulate as lipid 
metabolites/droplets (143). Accumulated lipid intermediates 
activate insulin signaling and substrate utilization (143). 
In the heart, 95% of the generated ATP is acquired from 
glucose and FAs through mitochondrial metabolism (143). 
The heart cannot synthesize FAs and obtains them from 
other sources (143). LPL-mediated lipolysis of lipoproteins 
is a critical source of FAs in the heart (145). In type 2 
diabetes mellitus, glucose utilization efficiency declines 
due to increased insulin resistance and insufficient insulin 
action. Following diabetes, the heart shifts its primary 
energy source from glucose to fatty acids, causing diabetic 
cardiomyopathy (143-145). In diabetes, increased fatty acid 
use due to underutilization of glucose is compensated by an 
increase in vascular LPL or adipose tissue lipolysis. There is 
a mismatch between the delivery of FAs and their oxidation 
in the diabetic heart, causing lipid metabolite accumulation 
and myocyte LD synthesis (143). This mediates lipid-
induced insulin resistance, cell death, and, eventually, 
diabetic cardiomyopathy (67-69,87,88,143-145).

LPL and coronary heart diseases

Pre-heparin LPL levels and LPL activity are decreased 
in cardiovascular disease, including plaque instability, 
coronary stenosis,  coronary vasospasm, and acute 
myocardial infarction, as repeatedly highlighted in this 
review (17,82,95-101) (Table 2). Shirai and colleagues 
reported that pre-heparin LPL mass was the highest risk 
factor for coronary stenosis than other risk factors such as 
age, smoking, family history, hypertension, hyperuricemia, 
diabetes mellitus, total cholesterol, triglyceride, HDL-C, 
and BMI (95-97,104) (Table 2). The hepatic triglyceride 
lipase (HTGL) concentration demonstrates positive 
correlations, while GPIHBP1 shows inverse correlations 
with RLP-C and sdLDL-C. Elevated HTGL is linked 
to an increased risk of CAD, while increased LPL is 
associated with a reduced risk of cardiovascular disease (82) 
(Table 2). Low LPL production was found to be associated 
with atherosclerosis and the overexpression of LPL 
decreased serum TRL, particularly RLPs, in mice (146). 
Low pre-heparin LPL, hypertriglyceridemia, and higher 
sdLDL are independent risk factors for cardiovascular 
diseases and are considerably related to each other  
(17,95-100). Furthermore, a prospective study revealed 
that low pre-and/or post-heparin LPL mass predicts 
future coronary events (147).

LPL and exercise

Pre-heparin LPL and GPIHBP1 serum concentrations 
assessed in young Japanese men were shown to be 
significantly high in skeletal muscle-rich participants 
and positively correlated with skeletal muscle mass. 
Increasing skeletal muscle mass increases energy use by 
boosting TRL hydrolysis through circulating LPL and 
GPIHBP1 concentrations. In contrast, elevated HTGL 
serum concentrations are linked to a rise in serum LDL-C 
synthesis that is independent of skeletal muscle mass (83).  
Post-heparin plasma LPL activity increases after prolonged 
exercise (148). Increased post-heparin LPL activity was 
observed to be significantly correlated with exercise-induced 
reductions in fasting and postprandial triacylglycerol 
(TAG) concentrations (149). Skeletal muscle LPL activity 
is maximized more than 8 h after exercise (150). On the 
contrary, moderate-intensity cycling performed the day before 
loading moderate-fat food reduced postprandial serum TAG 
concentrations in young men without affecting pre-heparin 
LPL concentrations measured in the fasted and postprandial 
states the following day (151). Further study is required to 
determine the effect of exercise on circulating pre-heparin 
LPL levels. Because there are distinctions between men and 
women in body composition, such as body fat percentage and 
muscle mass, gender differences are anticipated in the effect 
of exercise on circulating pre-heparin LPL levels.

LPL and lipid-lowering therapy

Plasma triglyceride levels are more than just a marker. It is a 
risk factor for coronary artery disease (152,153) and one of 
the risks associated with statin therapy (154). In the future, 
lipid-directed treatment will include treating TRL in 
specific patient populations and lowering LDL-C levels (6). 
LPL plays an important role in TRL hydrolysis. The fasting 
and postprandial blood triglyceride levels are determined 
by LPL-mediated lipolysis and hepatic uptake of remnant 
particles (6,155). Reduced plasma LPL mass is associated 
with an increased risk of coronary artery disease (95,97) 
(Table 2). The administration of drugs such as fibrate, insulin 
sensitizers, and statins to healthy volunteers or patients 
with diseases that are likely to progress arteriosclerosis 
affects the plasma LPL mass concentration. Triglyceride 
levels were lower after taking bezafibrate, which is thought 
to be due in part to increased LPL production (156,157). 
Bezafibrate administration increased LPL mass and activity 
in pre- and post-heparin plasma (104-106) (Table 2). 
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Insulin sensitizer administration activates PPARγ, such as 
pioglitazone and troglitazone, and increases LPL mass and 
activity (113-118) (Table 2). Metformin raises pre-heparin 
LPL levels (113) (Table 2). Glucagon-like peptide 1 (GIP), 
one of the incretins, inhibits CM secretion (6,108,109) and 
activates LPL (110-112) (Table 2). Recently, adding konjac 
glucomannan (KGM) powder to rice gruel reduced TG 
while increasing LPL and GPIHBP1 (128) (Table 2). It 
is unknown what mechanism increased LPL in response 
to KGM supplementation in rice gruel (128). The LPL 
increase could be explained by incretin induction, which 
promotes KGM intestinal activity. Statins’ effects on 
LPL mass and activity are contradictory. The effect of 
statin administration includes: (I) increased LPL mass or 
activity (112,113,119-123); (II) had no effect (93,124,125); 
(III) decreased LPL mass or activity (93,126) (Table 2). 
Colestimide, but not ezetimibe, considerably reduced 
plasma LPL mass (107) (Table 2). In addition to these human 
studies, statins also stimulate LPL synthesis in vitro studies. 
Statin promoted LPL expression in preadipocytes (158)  
and skeletal muscle cells (159). Studies on the effects of 
statins revealed no clear relationship between changes 
in lipase mass and changes in plasma lipid levels (97). 
Additionally, angiotensin II receptor antagonist (103) and 
5-hydroxytryptamine2A receptor antagonist (102) are also 
known to increase serum LPL mass. LPL activity-related 
genetic abnormalities mediate cardiovascular risk. Loss-of-
function mutations in apoC3, for example, which is an LPL 
inhibitor, decrease the risk of coronary artery disease (152). 
In contrast, loss-of-function mutations in apoA5, which 
is an LPL activator, increase the risk of coronary artery  
disease (160). Furthermore, a surgical method also 
attenuated pre-heparin LPL. Pre-heparin LPL levels 
increased during BW reduction and laparoscopic sleeve 
gastrectomy (LSG), a bariatric surgical procedure in obese 
patients (127) (Table 2). LSG effectively improves diabetes, 
hypertension, and dyslipidemia (161,162). Bariatric surgery, 
including LSG, has amazing therapeutic effects for obesity 
and obesity-related diseases (160-162). During coronary 
angiography, LPL increased 15 minutes after heparin 
administration, and TG and sdLDL decreased, but returned 
to the basal levels 4 hours later (82). In hemodialysis, 
administration of heparin transiently increases LPL and 
decreases TG. After that, LPL and TG return to pre-
heparin levels. Repeated administration of heparin in 
hemodialysis depletes LPL stores, therefore, chronic dialysis 
patients have decreased LPL activity, dyslipidemia, and an 
increased risk of CVD (163,164). At present, administration 

of heparin for the treatment of hypertriglyceridemia due to 
increased LPL has not been investigated.

Conclusions

Despite optimal statin treatment, the risk of cardiovascular 
disease persists. Reducing the prevalence of cardiovascular 
diseases is critical for reducing the number of NCD 
patients. Epidemiological and genomic research suggests the 
contribution of TRLs in the development of cardiovascular 
diseases. According to natural selection studies, novel 
triglyceride-lowering therapies can reduce cardiovascular 
risk. Clinical trials are currently underway to determine the 
efficacy of LPL activity modulators that inhibit apoC3 or 
ANGPTL3. The clinical significance of pre-heparin LPL 
measurement must be determined to assess the efficacy 
of these drugs. LPL activity is highly regulated at the 
transcriptional, post-transcriptional, translational, and post-
translational levels. We have successfully developed assay 
systems for human LPL and GPIHBP1, as well as mouse 
assay systems. Using these measurement systems should 
lead to a better understanding of the clinical significance of 
pre-heparin LPL and GPIHBP1.
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