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Background: Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy (TMA) 
and a medical emergency. The ADAMTS13 (AS13) activity assay is needed to confirm the diagnosis. Within 
the context of limited laboratory resources, a machine learning (ML) was developed to potentially reduce 
overutilization of AS13 testing and aid clinical colleagues in the future.
Methods: A hybrid approach, consisting of both inhouse and literature data, was taken to acquire the 
data to train and test the decision tree (DT) ML model. The dataset consisted of 104 patients (30 inhouse,  
74 literature-derived) with an equal mix of TTP to non-TTP patients (52 each). The features used to 
develop the supervised DT model were directly acquired from the PLASMIC score. 
Results: The optimized DT model overall accuracy on the testing dataset was 81%. The sensitivity, 
specificity, positive and negative predictive were 100%, 69%, 67%, and 100%, respectively. 
Conclusions: We were able to improve the overall performance of the DT model while maintaining 
a high NPV. However, this invariably translated to potentially increased false positive results (outcomes 
classified as TTP are actually non-TTP), our overall goal was not to restrict testing on any potentially true 
TTP cases. This study was done with limited clinical laboratory resources and continues to be a project 
in progress. However, as laboratory specialists become more involved in artificial intelligence (AI)/ML 
initiatives, institutions will need to provide them with a modern information technology (IT) infrastructure 
with adequate resources to enable these efforts to meet the needs of the future health care system. 
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Introduction

Background

The potential future role of the laboratorian and 
machine learning (ML)
ML has the potential to be an excellent tool in the clinical 
laboratory to improve workflow efficiency and testing 
utilization (1-3). Broadly, artificial intelligence (AI) is 
defined as the ability of computers to emulate human 
thinking. ML, a subcategory of AI, uses algorithms to 
systemically learn and recognize patterns from data with 
the capacity to improve upon its analysis (1). For most 
laboratory specialists, the concepts of ML are nebulous. 
Typically, laboratory specialists have little to no experience 
in data processing, programming, and ML techniques. 
Further, while clinical informatics fellowships have only 
recently started incorporating basic ML concepts and data 
utilization techniques within their curriculum (4), current 
pathology trainees (both residents and fellows) mostly are 
not exposed to general pathology informatics content in 
their training (5).

Given the certainty that future ML algorithms will 
continue to be integrated within clinical laboratory 
technologies, laboratory specialists will necessarily need 
to be involved with their implementation, utilization, 
and support (1,2,6). Notably, professional laboratory 
specialists are responsible for all diagnostic technologies 
and instrumentation in the lab, including their verification, 

validation, implementation, and maintenance. Clinically, 
this responsibility extends to the patient results themselves, 
with pathologists and other laboratory specialists providing 
interpretation and consultation services—intimate 
knowledge of all post-testing calculations and algorithmic 
modifications is fundamental to high quality laboratories. 
Thus, the question is not if the laboratorian will be involved 
with ML/AI, but instead to what extent that involvement 
will be.

A guide in ML for the clinical laboratorian by a clinical 
laboratorian
Currently, laboratory specialists who want to learn ML 
must make a substantial independent effort to teach 
themselves and find resources outside of their local resource 
setting (7-9). This can involve a significant expenditure of 
time and energy, all of which is uncompensated due to its 
independent nature and lack of direct institutional support. 
Consequently, the laboratorian’s effort to learn ML comes 
at his or her own expense, with many laboratory specialists 
discouraged against learning even basic ML/AI techniques. 
However, it is crucial that laboratory specialists continue to 
learn about new technologies in order to improve and push 
forward the laboratory of the future (1,10). This article 
is dedicated to that effort, documenting the journey of a 
clinical laboratorian, inexperienced in ML, programming, 
and advanced data analytics to develop a ML process for the 
clinical laboratory. The hope is that this will inspire clinical 
laboratory specialists and serve as both a roadmap and call 
to action for others to begin the process of acquiring ML/AI 
knowledge so they too can help drive their own laboratory 
into the future.

The current state of the laboratory and diagnostic test 
utilization
Although there has been a significant national clinical 
laboratory staff shortage for some time, the COVID-19 
pandemic accelerated this trend and the impact is 
widespread and profound (11-17). The staff shortage impact 
is felt in almost every area of the lab, including decreased 
economic resources, overly complex workflow processes, 
increased result turnaround times, and worsening staff 
burnout/turnover. Despite these difficulties, the laboratories 
have continued to make significant efforts to maintain 
excellent quality in diagnostic testing by implementing 
more automation, enhancing workflow processes, enacting 
programs to recruit and retain staff, improving staff 
productivity, and reducing overly complex assays (18-23).

Highlight box

Key findings
• ML DT algorithm developed appears to provide an opportunity to 

rule out patients with suspected TTP in resource limited clinical 
laboratories. 

What is known and what is new?
• A pretest probability tool currently available to evaluate TTP is 

the PLASMIC score.
• AS13 activity assay is required to confirm TTP. 
• The AS13 assay is highly complex and overutilized.
• Utilizing a ML DT algorithm as decision support tool in potential 

TTP cases.

What is the implication and, and what should change now? 
• The use of ML/AI algorithms provides opportunities to improve 

testing utilization and guiding physicians in diagnostic dilemmas. 
As laboratory specialists become more involved in AI/ML 
initiatives, institutions will need to provide them with a modern IT 
infrastructure with adequate resources to enable these efforts.



Journal of Laboratory and Precision Medicine, 2023 Page 3 of 17

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2023;8:22 | https://dx.doi.org/10.21037/jlpm-23-11

Compounding the current state of the laboratory is 
inappropriate test utilization that, while not a recent 
phenomenon, continues to be a significant laboratory (and 
healthcare) burden (24-31). Specifically, the focus here is 
test overutilization. Overutilization occurs for a variety of 
reasons, including ordering provider underestimation of 
overutilization, lack of understanding of costs, diagnostic 
uncertainty, unawareness of laboratory resources, habitual 
practice, and institutional culture (24-31). As one can 
imagine, the combination of worsening staff shortages and 
inappropriate diagnostic test utilization is unsustainable  
(32-34). Similarly, just as the COVID-19 pandemic 
exacerbated the staffing shortage, it also compounded 
inappropriate utilization issues, which in our case was 
especially notable with coagulation testing (35). In our 
institution, we have an ADAMTS13 (AS13) assay that, at 
baseline, is likely overutilized and increased during the 
height of COVID-19 pandemic years (Figure 1). Here, 
we seek to find a unique solution to inappropriate AS13 
testing by developing a ML algorithm with the intention 
of implementing into the clinical workflow in the future. 
Before discussing the ML algorithm development, a brief 
review of the basics of AS13 testing and the role it has in 
thrombotic thrombocytopenic purpura (TTP) will follow 
for context.

The physiological role of AS13 in hemostasis
The von Willebrand factor (vWF) molecule is a multimeric 
glycoprotein synthesized and stored by megakaryocytes 
and endothelial cells, with platelets also storing vWF in 
their alpha granules. Importantly for our discussion, vWF 
is secreted by both platelets and endothelial cells and is 
essential for primary hemostasis (36). Primary hemostasis is 

the process of platelet clot formation in the setting of injury 
to blood vessels. Appropriate primary hemostasis requires 
that platelet adhesion and aggregation occur at the site of 
injury and vWF plays a significant role in both of these 
important processes (36) (Figure 2).

Currently, the only known role of AS13 (a disintegrase 
and metalloproteinase with a thrombospondin type 1 motif, 
member 13) is to regulate vWF (37). AS13 is a protease that 
cleaves vWF into smaller molecules (36). The significance 
of cleaving vWF into smaller molecules is that it reduces 
vWF capacity to induce thrombosis; thus, participating in 
the regulation of both clot formation and extension during 
primary hemostasis (36,37) (Figure 2).

AS13 and TTP
TTP is a rare thrombotic microangiopathy (TMA) 
characterized by severe thrombocytopenia, microangiopathic 
hemolytic anemia, and microvascular platelet-rich 
thrombi leading to end organ ischemic injury. TTP can be 
categorized as either acquired or inherited. The inherited 
form of TTP, also called Upshaw-Schulman syndrome, 
represents approximately 5% of the total TTP cases (38). 
It is caused by a genetic alteration of the AS13 gene that 
renders the protease ineffective in cleaving vWF (37). 
However, given that acquired TTP represents the majority 
of TTP cases (~95%), it will be the focus of this article (38).

The approximate annual incidence of TTP is 1–6 cases 
per million/year (37,38). Acquired TTP is caused by an 
autoimmune mechanism (antibody inhibitor) that leads to 
significantly reduced activity levels of AS13 (37,38). The 
decreased activity levels of AS13 results in excessive “sticky” 
large (or ultra-large) vWF multimers that promote platelet 
microthrombi formation. The combination of decreased 

Figure 1 AS13 test orders per year (2017–2021). Note the increase of test orders during the years of 2020 and 2021 during the COVID-19 
pandemic. 
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AS13 activity and excessive large vWF is the pathological 
mechanism of TTP (36,37).

In our laboratory, the AS13 assay (The Immucor 
Lifecodes ATS-13® assay, lmmucor GTI Diagnostics Inc., 
Waukesha, WI, USA) measures the patient’s AS13 activity 
by providing a reagent substrate that is a synthetic fragment 
of the vWF molecule containing the AS13 cleavage site. 
When the synthetic molecule is cleaved by the patient’s 
AS13 in the sample, fluorescence is released from the 
molecule via fluorescence resonance energy transfer (FRET) 
technology. The fluorescence is then measured, which 
is then compared to a calibration curve that derives the 
AS13 activity level. A reflex testing protocol is initiated if 
the AS13 activity level is <20%. If AS13 activity is reduced 
due to autoantibodies, the reflex test protocol provides 
the relative amount of activity inhibition by the anti-AS13 
antibodies (expressed in Bethesda units). The discrepancy 
between the potential diagnosis of TTP of <10% activity 
(see below for details) and our reflex testing at <20% has to 
do with laboratory experience and limitations of the assay 
rather than a necessary valid diagnosis of TTP between 
10–20%. In our experience, the FRET assay occasionally 
yields AS13 activities of 10–13% (rarely up to 15%) in cases 
of definite TTP; analysis of the same specimen by enzyme-
linked immunosorbent assay (ELISA) assay typically will 
read as <10%. The latter topic is beyond the scope of this 
article and we will continue our discussion with AS13 
activity levels <10% for the diagnosis of TTP.

The importance of AS13 testing and pretest probability
An AS13 activity level of <10% is required to confirm 
the diagnosis of TTP (39). An activity level of >10% 

tentatively rules out TTP depending on the level above 
10% and clinical context; Thus, leaving the differential to 
other potential TMA and TMA-like syndromes, such as 
hemolytic uremic syndrome, complement mediated TMA, 
transplant associated TMA, disseminated intravascular 
coagulation, and COVID-19 associated coagulopathy 
(37,38,40). Ideally, once the diagnosis of TTP is confirmed, 
treatment can be swiftly initiated. Therapeutic plasma 
exchange (TPE), in conjunction with corticosteroids, is 
the mainstay of treatment (41) and removes the antibody 
inhibitor from the plasma that is affecting the AS13 activity. 
Before TPE, the mortality rate of TTP was >90% (37,42). 
TPE removes the casual antibody from the patient’s plasma 
while simultaneously replenishing AS13. The advent of 
TPE in the treatment of TTP reduced mortality from 
>90% to 10–20% (37,43), with other adjunctive therapies 
for TTP available (caplacizumab, rituximab, cyclosporine, 
and others) (41,44,45).

Despite the importance of diagnostic testing for TTP, 
many hospitals do not have access to AS13 testing onsite. 
In fact, most hospitals send the AS13 test out to a reference 
laboratory, inevitably leading to a delay in results. With 
this in mind, the guidelines from the International Society 
on Hemostasis and Thrombosis (ISTH) for the diagnosis 
of TTP have embedded three recommended testing 
scenarios when testing is available either within 72 h, 
>72 h but <7 days, or not available (38). The conclusion 
is TTP is a medical emergency and therapy should be 
started based on clinical presentation and level of suspicion 
(37,38). However, it is important to remember that for 
patients presenting with a suspected TMA, TPE is first 
line treatment for TTP but may not be effective with other 

Figure 2 Illustration of the physiological role of AS13. AS13 cleaves the vWF to regulate the platelet thrombus formation. vWF, von 
Willebrand factor. 
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TMAs. Therefore, it is important for physicians to be able 
to distinguish between conditions to avoid unnecessary, 
inappropriate and or delayed treatment.

Given the importance of AS13 testing for accurate 
diagnosis and treatment of TTP, why don’t most labs 
have onsite testing? Although each institution may have 
individualized reasons for this, most will fall under a 
combination of limited economic and staffing resources, 
complexity of performing the test, and low incidence of 
the disease (46,47). Thus, many physicians rely on clinical 
pretest probability assessments to initiate treatment 
and then wait for the send out test results to return for 
confirmation (38).

The pre-test probability may be evaluated using different 
clinical and laboratory parameters. One of the most well-
known pre-test probability tools available is the PLASMIC 
score, which was developed in 2017 (48). The PLASMIC 
score should only be applied to patients who have both a 
platelet count (Plt) of <150×103/μL (K) and schistocytes 
visible on the peripheral blood smear. The PLASMIC 
score consists of the following seven features: (I) Plt; (II) 
hemolysis; (III) absence of active cancer; (IV) absence of 
transplant; (V) mean corpuscular volume; (VI) prothrombin 
time (PT)-international normalized ratio (INR); and (VII) 
creatinine (Cr). See Table 1 for details. Each feature is 

assigned one point and the total score is associated with a 
risk for TTP, see Table 2.

Inhouse testing and the PLASMIC score limitations
In general, when the PLASMIC score is applied correctly, 
it can be an effective tool for a rapid assessment of a 
potential TTP case in patients presenting with a TMA 
(48-54). Additionally, utilizing the PLASMIC score 
properly could lead to significant cost savings by reducing 
unnecessary TPEs, decreasing AS13 testing utilization, and 
lowering subspecialty consultations expenditures (46,47). 
Unfortunately, application of the PLASMIC score properly 
does not occur frequently with orders seen at our health 
system’s institutions, a pattern that is likely the same at 
other institutions as well. In 2021, we began an initiative to 
review AS13 testing orders for cancellation (Figure 3). This 
process included laboratory techs, pathology residents and 
pathology attendings reviewing patient charts, calculating 
the PLASMIC scores, consulting with the ordering 
providers, and adding educational comments to the results. 
Our investigation revealed that a majority of the orders the 
lab canceled were due to a combination of patients with 
Plt >150K, lack of schistocytes on the peripheral blood 
smear, and hemolysis often explained for other identifiable 
reasons. Interestingly, review of the medical chart often 
showed inappropriate PLASMIC score application, if it was 
used at all (data not published). Our experience suggests 
the PLASMIC score tends to be overestimated, leading 
to increased inappropriate test utilization and expending 
limited laboratory resources.

Another observation seen in the data that was indirectly 
alluded to above is the abrupt increase in testing when the 
COVID-19 pandemic occurred. One of the reasons for 

Table 1 Description of the PLASMIC score features and point assignment

Feature Feature description Assigned point

Platelets If <30K† 1 

Hemolysis If retic count >2.5% or undetectable haptoglobin or indirect bilirubin  
>2 mg/dL (34.2 µmol/L) 

1

Absence history of transplant Solid-organ and stem-cell transplant 1

Absence active cancer Active cancer is considered if treated within the past year 1

Mean corpuscular volume If <90 fL 1

Creatinine If <2.0 mg/mL (176.8 µmol/L) 1

Prothrombin time—INR If <1.5 1
†, K: ×103/μL. INR, international normalized ratio. 

Table 2 Total PLASMIC score and associated TTP risk (46)

PLASMIC score total (pts) Approximate TTP risk (%)

0–4 <5

5 5–25

6–7 60–80
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this increased laboratory testing early in the pandemic was 
due to CAC (40,55). Although research in CAC points to it 
likely being a distinct entity in which TTP testing was often 
pursued as a rule out diagnosis due to an overlap between 
clinical presentation and laboratory test results (35,40). 
However, the research shows that AS13 activity is not 
depleted to levels seen in TTP (40,55). In general, concerns 
for CAC led to an increase with all coagulation testing, 
including AS13 testing during the pandemic (see years 2020 
and 2021 in Figure 1) (35). Finally, although our laboratory 
is moving to a semiautomated assay, it continues to be a 
complex test requiring manual processes and expertise in 
the interpretation of results. Despite some of the automated 
improvements to the assay, it is important to remain vigilant 
and continue to improve utilization in diagnostic testing for 
overall cost effectiveness, efficiency, and quality of patient 
care (56).

Rationale and knowledge gap

Finding potential solutions around PLASMIC score 
applicability
As mentioned above, the application of the PLASMIC score 
in a clinical setting is often inappropriately performed, 
leading to overestimates in the total PLASMIC score. This 
therefore favors the inappropriate ordering, and increased 
utilization of AS13 testing which also has the potential to 
inappropriate management and treatment. The negative 
predictive value (NPV) of the PLASMIC score could be 
increased by varying the weights of the PLASMIC score 
features based on the clinical circumstance. While one of 
the original articles in the development of the PLASMIC 

score did show the odds ratio for each feature, the emphasis 
remained on the using total score for risk assessment (48). 
In contrast, is there an optimal combination that may 
involve an algorithmic application of the PLASMIC score 
features instead of using the most important features in a 
sequential manner to identify the prime NPV?

In general, algorithmic flowcharts such as a decision 
tree (DT) are widely used in medicine across disciplines. 
DTs are often used as a clinical decision support (CDS) 
tool to assist in the diagnosis and management of various 
conditions in medicine (57). A DT has a hierarchical 
flowchart structure where features are located at decision 
nodes that guide users along a path to the next node until 
the final outcome is reached. Formally, the root node is the 
starting point on the DT leading to all other sub nodes. 
Internal nodes are bifurcation points directing users to 
either other internal nodes or a terminal node. A terminal 
node is a final outcome of the DT, see Figure 4.

In our experience, most established DT algorithms in 
medicine are developed by a combination of literature 
review and expert opinion. However, while these algorithms 
can be sufficiently accurate for their intended use cases, they 
are not developed in a standardized robust manner. They 
usually require multiple physician expert time and are often 
limited to scenarios that are relatively not overly complex 
(58-61). Recently, ML developed algorithms have gained 
traction in medicine and their use in CDS tools is noted in 
a number of areas, including laboratory medicine (62-65).

Identifying the “right” ML algorithm by a novice
ML algorithms can be difficult to understand or obscure to 
the everyday laboratorian or physician. Many algorithms 

Figure 3 AS13 orders ran vs. canceled per year (2017–2021). Note the increase of test orders during the years 2020 and 2021 during the 
COVID-19 pandemic. During the year of 2021 a significant number of tests were canceled compared to the previous years due to the 
implementation of a protocol discussed in the text. 
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appear opaque and perplexing due to their mathematical 
complexity and inability to provide “palatable” visualization 
of how decisions and predictions are developed and 
executed. Further, strong arguments can be made against 
using obscure and opaque algorithms, sometimes called 
“black box” algorithms, in medicine as they may potentially 
border along unethical boundaries (65,66). “Black box” AI/
ML algorithms are often a combination of an individual’s 
lack of understanding of how predictions are made, 
complexity of a model in which a simple explanation/
representation cannot be crafted such as deep learning 
systems, and potential propriety algorithms which 
inherently lead to a lack of transparency. However, using 
ML DT algorithms may avoid many of these potential 
problems because these algorithms can be visualized and 
inspected for interpretability in the predictions that are 
made (3). Further, many healthcare providers are familiar 
with DT algorithms as discussed above.

Objective

If a PubMed advanced keyword search of “machine 
learning” and “thrombotic thrombocytopenic purpura” 
is performed, only two articles are retrieved from the 
literature (67,68). The intention of the first study is 
to predict TTP and other TMAs using ML, with it 
considering the difficulty of onsite AS13 testing and the 
unreliability of the PLASMIC score regarding ethnicity 
for the TMA differential (67). Additionally, it explores the 
use of an ensemble ML method to address this issue by 
evaluating nine ML algorithms, including a DT. The group 
highlights multiple features, some of which are from the 
PLASMIC score, but did emphasize that the DT algorithm 

was the least predictive of the ML methods. The second 
study focused on identifying a biomarker for the prognosis 
of TTP, using ML to identify D-dimer as the strongest 
predictor of the prognosis, mortality, and thrombotic 
events in TTP (68). In contrast to both of these studies, the 
objective of our study is distinct in that we are only using 
the PLASMIC score features to develop a DT algorithm 
that is optimized for a high NPV. We present this article in 
accordance with the STARD reporting checklist (available 
at https://jlpm.amegroups.com/article/view/10.21037/jlpm-
23-11/rc).

Methods

Finding the right software and programming language

As a novice with absolutely no experience, identifying 
the appropriate software and programming language to 
develop a ML DT type algorithm was crucial. This process 
involved a combination of criteria, including finding easy-
to-use software, an abundance of free learning resources, 
ease of programming language, DT capability, and finally, 
cost (Figure 5). Based on these criteria, PythonTM was 
selected for the programming language. Anaconda®, an 
open source software, was used to manage projects, which 
included removing and installing statistical algorithms and 
visualization packages for the ML model development.

To approach the question as to whether we could 
discover an optimal sequence of the PLASMIC score 
features, we had to find which feature provided the most 
information for each DT node development that separated 
the patients with TTP from those without. As discussed 
above, that arrangement may or may not have been the 

Figure 4 General characteristics of decision trees. 
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feature with the greatest odds ratio. A quick calculation of 
all the possible arrangements (or permutations) of the seven 
features revealed 5040 (7! = 5040) potential sequences. 
The next step then involved each arrangement being tested 
against the training data to isolate the highest NPV. Of 
note, the binary element (yes or no) of each feature was not 
considered in the latter arrangement calculation. Overall, 
this was not a simple task easily tackled using simple flat-file 
spreadsheets—we concluded that the use of ML and other 
mathematical tools was the best approach for addressing our 
problem’s complexity.

In order to optimize the conditions of a ML DT for a 
high NPV, we chose the mathematical approach of first 
objectively measuring information regarding each feature 
used in the algorithm and then applying those measurements 
to resolve the proper sequence of features. This approach 
is based on Information Theory, specifically using Shannon 
entropy as a way to measure information (69). Entropy, in 
simple terms for our discussion, measures the amount of 
“mixing” in a dataset, which in our case signifies patients 
with vs. without TTP (non-TTP). For example, if our data 
set contains 20 patients with a 10-10 mix of TTP vs. non-
TTP, then it has maximum entropy due to the fact that if 
we were to randomly select a patient from our data pool, 
we would have an equal probability of retrieving either a 
TTP or a non-TTP patient. However, as new information 
is introduced through the application of features, then 
the dataset mix shifts away from being equal (10-10 mix) 
and we are able to classify TTP and non-TTP into purer 
sub datasets. Hypothetically, each feature applied should 
inherently shift the original dataset in such a way that 
entropy would decrease, as seen in Figure 6A,6B. Overall, 
the goal of the DT was to shift our dataset from high to 

low entropy in order to develop a model that could more 
accurately predict TTP vs. non-TTP.

Data collection

This retrospective observation study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013), after receiving approval from the University 
of Florida Institutional Review Board (IRB #202202290 
October 11, 2022). The data collection was based on 
information available in the electronic medical health 
record. This protocol did not interfere with any standard 
of care practice as it was retrospective. Thus, individual 
informed consent was waived.

A hybrid approach, consisting of both inhouse and 
literature data, was taken to acquire the data to train and 
test the DT ML model. Our inhouse data consists of 
the years 2017 until 2021. Our data identified 14 newly 
diagnosed cases of TTP, for which the PLASMIC score and 
AS13 level were collected for each of these patients from 
the electronic medical record. We also randomly selected 
16 control patients for which the PLASMIC score was 
collected and the AS13 activity levels were present, ranging 
between 12–30%. AS13 activities between 10–15% were 
checked with an alternative assay method to confirm our 
results by an independent laboratory outside of our health 
system.

Due to the limitations with our inhouse data for newly 
diagnosed TTP patients (low volume, n=14), we decided 
to supplement this dataset using the literature. We used 
specific criteria to collect consistent and appropriate data 
per patient for our study from the literature, including: (I) 
adult population; (II) PLASMIC score containing individual 
patient feature scores; (III) AS13 activity level prior to 
treatment present; (IV) new diagnosis of TTP. Three 
articles met the criteria for our study (49,50,70). In toto, 
the combined inhouse and literature dataset consisted of  
104 patients (30 inhouse, 74 literature-derived) with an 
equal mix of TTP to non-TTP patients (52 each).

Optimizing the ML DT with the training data set

The PLASMIC score data was collected for the entire dataset 
(inhouse and literature) and entered into a spreadsheet. Each 
patient and their respective corresponding PLASMIC score 
features were coded into binary units (feature present =1,  
feature absent =0). For example, for the feature ‘platelet 
count <30K/μL’, all platelet counts <30K/μL were coded as 

Figure 5 Venn diagram of criteria for selecting software for ML. 
ML, machine learning. 

Facility of 
programming 

language

Resource rich 
for beginners

Breadth of 
machine 
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1 (present) and anything >30K/μL was coded as 0 (absent). 
All PLASMIC score features were scored similarly and the 
spreadsheet converted to a CSV file.

The next step for ML algorithm development and 
statistical analysis involved installation of the required 
software packages in PythonTM. Key software packages 
included the DT classifier and train-test-split. The DT 
classifier package allows for a selection of options to be 
used in the development of the DT. For our purposes, the 
entropy option was selected for the analysis of the quality of 
the node splitting, as discussed above. Additionally, another 
tool was used to fine tune the DT using the cost complexity 
pruning (CCP) parameter. See discussion below for details.

The purpose of the train-test-split package was to split 
all of the data randomly into two subsets, training data 
(75%) and test data (25%). A supervised ML approach was 
subsequently employed, where training data is first labeled 
for appropriate outcomes (TTP and non-TTP) and then 
used to train the DT algorithm. Test data was held aside 
until initial model training was complete and fine-tuned, 
after which it was used to evaluate the trained algorithm’s 
performance on new unseen data.

Of note, while our goal was for the model to be as 
accurate as possible in distinguishing between TTP and 
non-TTP patients, our approach intentionally optimized 
the negative predictive value more than overall accuracy (i.e., 
maximum confidence when model output equals non-TTP). 
While this invariably translates to potentially increased false 
positives results (outcomes classified as TTP are actually 
non-TTP), our overall goal was not to restrict testing on 

any potentially true TTP cases.
In supervised ML with DTs, a well-known limitation 

is the propensity to overfit the data during training. 
Qualitatively, this is apparent by observing the large size 
(number of nodes and levels) of the DT. With overfitting, 
DT algorithms give accurate predictions for the training 
data, but then do not necessarily perform well on the test 
(new) data. As an analogy, a student (DT) has learned 
to get all of the answers correct (outcome label: TTP & 
non-TTP) on a practice exam (training data) given by the 
professor. The student (DT) has made such an effort to get 
all of the answers correct on the practice exam that they 
essentially memorized the specific practice test questions 
and answers rather than learning the concepts from the 
practice exam. Thus, when the real exam (new unseen data) 
is given, the student (DT) performs poorly.

When using the DT classification package, overfitting 
naturally occurs as the package scripts prioritize training 
(creating as many DT nodes, or branches to fit the data) 
over generalizability (using the minimum number of 
nodes to get the best accuracy of the model across all 
data). Additional functions are therefore included in the 
package to help ‘prune’ the weakest branches and minimize 
overfitting of a DT algorithm, typically by: (I) requiring a 
minimum number of samples in a node before considering 
a new split, and (II) limiting the number of internal nodes 
in any given DT. For our purposes, we made use of the 
CCP parameter and cross validation (CV) protocol to help 
minimize overfitting of our DT.

With the CCP, a complexity parameter (alpha) is 

Figure 6 A conceptual illustration of the impact different features may have on a dataset with respect to measuring entropy. The feature 
that decreases entropy the most has the greatest impact on the splitting the dataset into correct outcome categories, orange or blue circles. 
In each figure, the entropy scale decreases from left to right and the red arrow shows the level of entropy for the corresponding dataset. (A) 
Illustration of a feature, designated as 1, decreasing entropy from the original dataset. (B) Feature 2 decreasing entropy greater than feature 
1 in (A). 
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calculated for each node of the tree, which then allows 
for setting an overall alpha value that can act as a limit, or 
tuning parameter, to prune the “weakest” branches of the 
DT. As the CCP alpha increases, the nodes with the smallest 
alphas (“weakest” branches) are pruned first, however with 
high alphas, more and more of the tree gets pruned. In 
the end, the goal of the CCP alpha process is to define the 
alpha parameter such that training accuracy only slightly 
decreases while testing accuracy increases. In essence, this 
allows for fine tuning of the DT while minimizing the error 
rate and increasing data generalizability.

The second function used was the CV protocol. The 
CV performs 5 iterations of running the training dataset 
to train the DT model. Importantly, before each iteration 
a subset of the training data, or validation set, is removed 
and hidden until the training is completed for that 
iteration. At this point, the validation set is then tested on 
the trained model and accuracy scores are calculated. Each 
iteration validation set is different from the previous set. 
Thus, the model was trained and “validated” on different 
combinations of the training data to assess generalizability 

by evaluating consistency of the accuracy score for each 
iteration (Figure 7).

Results

For our DT model, the initial accuracy was ~94%, post 
training but without fine tuning using the CCP or CV 
functions, for distinguishing TTP vs. non-TTP patients. 
Notably, the preliminary DT was large and complex, with a 
total of 7 levels and 43 nodes. As expected, however, when 
evaluated against the test dataset, the DT model performed 
much lower at ~65% overall accuracy. Despite this initial 
lower overall accuracy with new data, the model did 
accurately predict non-TTP patients in the test set, with a 
100% negative predictive value (Figure 8).

Next, the DT model was fine-tuned using the CCP alpha 
pruning process to achieve better overall accuracy with 
new data while also maintaining its excellent NPV. The 
accuracy of the model on both the training and test dataset 
was measured for every increase in the alpha parameter, 
with the results plotted to visualize the differences in model 
performance (Figure 9). With no fine tuning (alpha =0), 
baseline accuracy of the model was 94% using the training 
data and 65% using the test data. With increasing alpha 
parameter values, the number of model nodes decrease, 
resulting in improved accuracy on the test data but lowered 
accuracy on the training data. As seen in Figure 9, at an 
alpha between 0.025 and 0.03, the DT model’s training 
and test data performance intersect at 85% accuracy; at 
this point, increasing the alpha parameter does not change 
the overall accuracy performance of the model for either 
dataset. However, when the alpha value approaches 0.06, 

Figure 7 Illustration of the cross-validation process. The total dataset is split into training data (75% of the total data) and test data (25% of 
the total dataset). The training dataset is then put through the cross-validation process in which each iteration (five iterations shown here) 
selects a different variation of the training and validation set. 

Figure 8 The results of the performance of the preliminary DT on 
the test dataset (n=26) displayed in a confusion matrix. There were 
10 true TTP cases in this dataset and the DT did not classify any of 
them as non-TTP (No TTP). TTP, thrombotic thrombocytopenic 
purpura; DT, decision tree. 
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the performance of the DT model sharply decreases for the 
test dataset.

Following fine tuning with the CCP function, we 
then moved to further stabilize and provide additional 
consistency to our model through the application of the CV 
protocol. In this situation, a CCP alpha of 0.03 and a CV of 
five iterations were selected. After each iteration, the DT 
was trained and the accuracy recorded from the evaluation 
of the validation data set. The accuracy results for each 
iteration, respectively, were 81%, 81%, 81%, 73% and 
87%. These results suggested the DT performance with 
the selected alpha was a function of the way the training 
data and validation set was split for each iteration. Although 
the accuracy was, to a certain extent, relatively consistent, 
we still wanted to further refine the model more for use 
with external datasets by identifying a more ideal alpha that 

maximizes NPV vs. model accuracy.
To better select a less sensitive alpha to the validation 

data splits, we used a similar approach to CV protocol, 
however this time the CCP alpha function was nested 
within the CV function. By doing this, we were then able 
to measure the accuracy at different alpha values for each 
iteration of the CV. From this data, a CCP alpha of 0.0265 
was identified that optimized the DT model for maximum 
generalizability and NPV.

The final DT model, with the alpha set at 0.0265, was 
then trained with the original training data, followed by 
evaluation with the original test data. Both training and 
test overall performance was 81% with this model, with the 
NPV remaining at 100%, see Figure 10. Comparing the 
performance and characteristics of the final (pruned) DT 
against the initial DT model, see Table 3. For reference, the 
drawn final DT model is shown in Figure 11.

Discussion

Key findings

Our TTP DT model was able to meet both our functional 
specifications and primary clinical use case, which was to 
assist in the appropriate use of our inhouse AS13 assay by 
providing a high NPV on the testing data set. By insisting 
on having a high NPV for our model, we can now be 
confident of negative for TTP outputs from any given 
patient’s PLASMIC score inputs. Further, we are now 
able to redirect inappropriate AS13 testing requests, in 
addition to aiding our clinical colleagues when faced with 
a potential TMA diagnostic dilemma. Of note, we were 
also able to optimize the positive predictive value (PPV) 

Figure 9 Accuracy vs. CCP-alpha graph for the training (blue) 
and test (orange) datasets. The DT performance improves on 
the test dataset as the alpha increases. In contrast, as DT pruning 
increases (alpha increasing), the model performance decreases on 
the training data set. Optimization is reached at the intersection of 
the training and test graphs. CCP, cost complexity pruning; DT, 
decision tree. 

Figure 10 The results of the performance of the pruned DT on 
the test dataset (n=26) displayed in a confusion matrix. Again, the 
test dataset of 10 true TTP cases were not classified as non-TTP 
(No TTP). However, the improvement of the model compared to 
the preliminary DT was in predicating true non-TTP case. TTP, 
thrombotic thrombocytopenic purpura; DT, decision tree. 

Table 3 DT model comparison on the testing dataset

Evaluation characteristic Preliminary DT Pruned DT

Sensitivity (%) 100 100

Specificity (%) 44 69

PPV (%) 53 67

NPV (%) 100 100

Overall accuracy (%) 65 81

DT levels 7 6

DT Nodes 43 19

DT, decision tree; PPV, positive predictive value; NPV, negative 
predictive value. 
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of the preliminary DT model as compared to the final 
‘pruned’ model, from 53% to 67%, respectively. This PPV 
is acceptable for our intended purposes.

Strengths, limitations and comparison to similar research

In order to focus on developing a ML algorithm for the first 
time in our laboratory, we needed to operate from a position 
that allowed us to use features already relatively established 
for the diagnosis TTP. We decided to use features from 
the PLASMIC score as this has been supported in the 
literature. Second, we wanted to avoid going down the path 
of using overly complex methods, such as those requiring 
data transformation/preprocessing, custom programming, 
and complex ML algorithms like convolutional neural 
networks. Based on these requirements, we selected to 
move forward with a DT algorithm given its inherent 
transparency and ability to be visually displayed in a manner 
easily understood by medical professionals, regardless of 
any prior ML knowledge. If successful, we feel this would 
allow us to implement the algorithm into practice with less 

barriers.
Despite the strengths to our approach, there are 

limitations of our model which include the issue of 
overfitting of the DT algorithm and our use of a relatively 
small dataset for model development. We tried to 
ameliorate overfitting by using additional functions such 
as CCP and CV, during model development. Another 
inherent limitation of a DT is that it can also be unstable 
with small variations in training data sets, thus generating 
very different trees (71). We utilized the CV function to 
give us some insight to this instability, however, we remain 
concerned about this potential. There are additional 
techniques one can use to lower potential variance, such 
as bagging or boosting methods. We preliminarily used a 
random forest bagging method for our model evaluation 
(data not shown) and to date we feel that the DT NPV is 
adequate. Furthermore, it is important to highlight that 
the calculated negative predictive value is only true for 
the prevalence of TTP within the evaluated cohort, which 
is 50%. This does not represent the true prevalence of 
disease in the general population (~0.0003%) nor the true 

Figure 11 An elementary depiction of the optimized decision tree model. Plt, platelet count; Cr, creatinine; TTP, thrombotic 
thrombocytopenic purpura; INR, international normalized ratio; MCV, mean corpuscular volume. 
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prevalence in our laboratory based on testing with AT13 
(~2.5%). Assuming that the DT model would preserve 
the current sensitivity (100%) and specificity (69%) with 
further testing in datasets with decreasing prevalence such 
as 30%, 10% or 0.5%, the NPV should not significantly 
change and remain approximately 100%. However, false 
positives will increase but the rate of increase diminishes 
as the prevalence continues to decrease. To reiterate, the 
goal of the model is to have an excellent NPV that should 
continue to perform adequately in reaching lower levels 
of prevalence. Nevertheless, further testing is absolutely 
required and we are currently gathering a more robust 
dataset to fully validate the model. Additionally, a direct 
performance comparison between the ML DT algorithm 
and PLASMIC score should be addressed, specifically 
comparing the NPV.

The limited available dataset we encountered is a 
concern, however given the frequency of the disease, it’s 
not surprising only a limited number of cases could be 
identified, even after using data from the literature to 
supplement our smaller inhouse dataset. Fortunately, a 
DT algorithm might perform adequately despite a limited 
dataset as long as the features number is also relatively 
minimal (72). Given these limitations, we look forward to 
testing the our TTP model on an external validation dataset. 
If the performance is acceptable, we would proceed to test 
the model in parallel to our current clinical workflows so 
we can better note discrepancies and determine whether 
additional fine tuning is required.

As mentioned in the introduction section, to our 
knowledge, there is currently very limited research in the 
area of TTP and ML. At this time, there were only two 
studies that evaluated TTP with ML techniques (67,68). 
Again, the approach to both of these studies are different 
from our study in both selected features and ML algorithms 
utilized.

Implications and actions needed

In this study, we used PLASMIC score features to develop 
a supervised ML DT model to rule out TTP. Our primary 
intention for developing this model was to assist our 
laboratory with future test utilization and stewardship of 
the AS13 assay. Secondarily, we wanted to demonstrate 
how a laboratorian inexperienced in ML could acquire the 
skills necessary to develop a ML model, including basic 
concepts in supervised ML such as DT analysis, overfitting 
of training data, and fine tuning of model performance to 

improve generalizability to unseen data.
When developing and deploying ML models, there are 

many different aspects to consider and steps to complete 
prior to letting them loose in the wild. In fact, for many in 
healthcare, the ML process tends to stop after the proof 
of principle/concept phases given the inherent complexity 
and burden of getting a clinically oriented ML model 
ready for use within healthcare information technology 
(IT) infrastructures. Recently, Lavin et al. published a 
system engineering approach to ML and AI systems using 
technology readiness levels (TRL) (73). TRLs provide 
users interested in developing ML algorithms a robust 
framework to follow, recognizing that algorithms don’t exist 
in a vacuum and instead are composed of many different 
components and connected systems. Further, the TRL 
approach considers the maturity of ML models and systems, 
including their accompanying data pipelines and software 
dependencies. Overall, TRLs range in maturity from TRL0 
(first principles) to TRL9 (deployment).

Currently, our TTP ML model is in its earliest 
stages and we would classify it at a TRL2, or proof of 
principle, maturity level. At a TRL2, we have successfully 
developed and run a model in a simulated clinical/research 
environment, using data similar to that to which will be 
used in clinical practice. Going forward, we plan to engage 
our institutional IT group to determine the next best steps 
for clinical deployment. Of note, while we could move 
systematically through each of the TRL levels to create our 
own ML system, we recognize that the effort involved in 
doing so is beyond the scope of typical clinical laboratory 
practice. Instead, by partnering with our IT colleagues, 
we will look to leverage existing IT systems, policy, and 
procedures in order to better achieve our goals.

Concomitant to IT systems and integration evaluation, 
we will also begin efforts to assess our model’s robustness 
by exposing it to a wider variety of real-world data. These 
efforts will include steps taken to assess our model’s bias, 
ensure a proper ethics review has been performed, and 
review potential effects of our model on both laboratory 
and clinician decision making. We will also engage our 
institutional compliance office to assess our model’s 
regulatory status and whether it qualifies a medical device 
per the recent Clinical Decision Support Software guidance 
released by the Food and Drug Administration (FDA) (74). 
Finally, once proper data pipelines are established, we plan 
to “shadow” test the model in the clinical environment by 
creating a parallel testing workflow using actual patient 
cases coming through our laboratory.
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We should note that even if one is able to perform all 
of the steps as described above, there are still additional 
considerations that must be managed prior to deployment of 
our model. For example, with low enough volumes, it may 
be entirely realistic to manually implement our model on 
local workstations in the lab vs. investing in a costlier ML 
platform. Additionally, we will need to consider whether 
the algorithm will be used solely within the laboratory to 
manage AS13 testing vs. releasing the predictions from the 
model to the electronic health record (EHR) and allowing 
clinicians to act on the information. Another option for us 
could be to leverage our EHR’s AI/ML module for model 
deployment, however that would require our project to go 
through institutional prioritization and demand review. 
From a regulatory perspective, we will also need to review 
whether our model would qualify as a medical device vs. 
a CDS tool per the Federal FDA Software as a Medical 
Device (SaMD) guidelines (75). This decision will hinge on 
multiple factors, including the intended use of the model, 
the clinical data inputs, and how the model outputs will be 
used by pathologists, laboratory specialists, and/or other 
health care professionals when making specific patient 
care decisions. Fundamentally, there are many different 
deployment issues for us to consider as we move forward.

Conclusions

Overall, developing a ML DT model provided an excellent 
opportunity to immerse ourselves in ML techniques and 
programming. We are not yet experts in this area, but we 
believe we have made great strides moving toward it and 
preparing ourselves for the clinical laboratory of the future. 
More importantly, we want to develop a framework for 
implementing ML-based decision support tools developed 
by clinical laboratory specialists within our institution. It 
does have advantages. It is important to note that both 
conventional and advanced statistical methods/models may 
be appropriate to utilize in many situations in the clinical 
laboratory and may offer advantages over ML models. 
However, this analysis, while important, is beyond the 
scope of this current article. Nevertheless, this will create 
opportunities for laboratory specialists to be stewards of 
diagnostic testing. The difficulty for everyday laboratory 
specialists to acquire and develop ML techniques is due to 
lack of training, limited experience, and limited institutional 
support. The healthcare system and physicians rely 
heavily on laboratory services to aid in clinical decisions, 
with the laboratory often at the forefront of technology 

implementation in healthcare—we envision clinical 
laboratories further being at the forefront of AI and ML. 
Finally, as laboratory specialists become more involved in 
AI/ML initiatives, institutions will need to provide them 
with a modern IT infrastructure with adequate resources to 
enable these efforts.
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