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Introduction

The alkaline phosphatases (ALPs) are a group of isoenzymes 
that catalyse the hydrolysis of organic phosphate esters. 
Located primarily in the cytoplasm they are anchored to 
the plasma membrane by a glycosylphosphatidylinositol 
anchor in almost all tissues (1,2), with a half-life of 7 days (3). 
Optimal enzyme conditions include an alkaline pH, between 
8–11 (4). The ALP metalloenzyme family is encoded by 
multiple genes in humans, is expressed in multiple tissues 
including liver and bone, and each enzyme requires three 

metal ions, two Zn2+ and one Mg2+, in its active site (5). 
ALP is widely included in panels designed to assess liver 

and bone function with alanine aminotransaminase (ALT) 
and/or aspartate aminotransferase (AST), total protein, 
albumin, and bilirubin, or calcium, albumin with or without 
phosphate respectively (6). The International Federation 
of Clinical Chemistry (IFCC) stated adult range is  
45–135 U/L (7). Diagnostic algorithms will be presented 
to provide an approach to investigate abnormalities of 
ALP activity. This article is not meant to replace current 
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guidelines and reviews, nor replace thorough clinical 
assessment. Instead, these algorithms are aimed to enhance 
the understanding of the role of diagnostics in the clinical 
pathway. Quality and efficiency of patient care are promoted 
by the appropriate use of diagnostics. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://jlpm.amegroups.org/article/
view/10.21037/jlpm-23-63/rc).

Methods

The narrative literature review was undertaken with 
review of PubMed, OMIM, ScienceDirect, and Google 
and seminal texts (Table 1). The search was performed 
from February 2023 to June 2023 from database inception. 
Language was restricted to English. Diagnostic algorithms 
were created from synthesis of the information obtained 
from literature review.

Metabolic role of ALP

ALP is a zinc metalloenzyme; it is activated by magnesium, 
or other cations. Encoded by four distinct genes that 
encode the isoforms found in humans with a great many 
functions (Table 2) (14). The most abundant, ALPL, 
accounts for the tissue non-specific ALP (TNSALP) that is 
found in liver, bone, and kidney, encoded on chromosome 
1. Post translational modification further results in distinct 
carbohydrate compositions between those produced in 
the liver (hepatocellular and biliary canalicular subtypes) 
and in bone osteoblasts (BALP) (5). ALPP, ALPP2 and 
ALPI encode tissue specific ALP found in the placenta 
(syncitiotrophoblasts), germ cells, and intestines (enterocyte 

luminal surface) respectively (5). Tumours have been 
associated with excretion of variations of the placental 
isoform e.g., Regan isoenzyme (15). Both liver and intestinal 
types are found in the brush border of the renal proximal 
tubule (Table 2). The three major substrates for ALP are 
inorganic pyrophosphate (PPi), pyridoxal-5-phosphate 
(PLP), and phosphoethanolamine (PEA) (16).

Although ubiquitous there is a considerable difference 
in relative enzyme activity between tissues (Table 3) (8). 
Although activity may be higher in the kidney, bone is 
heavier therefore the highest ALP tissue activity in total 
is found in the placenta followed by the intestine, bone, 
kidney, and liver in descending order (2). In health, human 
serum contains predominantly bone and liver isoforms, 
with approximately equal activity from both. Elevations 
of ALP activity are seen in health, e.g., during pregnancy 
and placenta formation (placental isoform), growing (bone 
isoform, and see later section on special states) or can 
represent a wide range of disorders of tissues (particularly 
those with high ALP activity) including endocrine and 
medication causes (2).

Liver based ALP is synthesised in many tissues including 
hepatocytes and osteoblasts (Figures 1,2) (3,14). At least 90% (8)  
of the ALP is attached to exterior surfaces, 3% is found in the 
cytosol and the rest in the extracellular fluid and vessels. ALP 
is eliminated by being taken up by hepatocytes and catabolised 
in lysosomes (14) (Figure 1). In adults, there is a continuous 
process of bone remodelling, involving the resorption of bone 
by osteoclasts, followed by the synthesis and maintenance 
of bone by osteoblasts (Figure 2). This is a process that is 
regulated by complex interactions between large numbers 
of factors and hormones and is highly co-ordinated (18).  
ALP, no matter the source, is not cleared by the kidneys 

Table 1 The search strategy summary

Items Specification

Date of search February 2023–June 2023

Databases and other sources searched PubMed, OMIM, ScienceDirect, Google

Search terms used “ALP”, “Alkaline Phosphatase”, “Hypophosphatasia”, “isoenzyme”, “pregnancy” 

Timeframe From database inception to June 2023

Inclusion criteria All papers and reviews were included, restricted to English

Selection process M.I. and K.E.S. conducted initial search, with refinement by all other authors to obtain 
consensus and agreement

Any additional considerations, if applicable Seminal texts were also searched and the references of important articles and texts were 
obtained and checked for relevance

https://jlpm.amegroups.org/article/view/10.21037/jlpm-23-63/rc
https://jlpm.amegroups.org/article/view/10.21037/jlpm-23-63/rc
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Table 2 Table of human alkaline phosphatase isozymes (8-13) 

Human 
genes

Names Tissue distribution Function

ALPL Tissue nonspecific 
alkaline phosphatase

Developing nervous 
system

Hydrolyses pyrophosphate supplying inorganic phosphate for 
mineralization, reduces extracellular pyrophosphate and phosphorylcholine 
concentration, dephosphorylation and detoxification of lipopolysaccharides, 
sphingosine 1-phosphate receptor signalling, antiendotoxin mediator and 
anti-inflammatory, regulation of adenosine concentrations

Liver-bone-kidney type 
alkaline phosphatase

Skeletal tissue, liver, 
kidney

Hydrolyses a variable spectrum of phosphate-containing compounds, 
contributes to DNA synthesis, attenuates inflammation, influences 
mitochondrial respiration, extracellular matrix mineralization

ALPP Placental alkaline 
phosphatase

Syncytio-trophoblast, 
tumours

Indicative of tissue having stem cell functions, tumour marker, detoxification 
of bacterial endotoxin

ALPP2 Germ cell alkaline 
phosphatase

Testis, malignant 
trophoblast, testicular 
cancer

Indicative of tissue having stem cell functions, sperm glycolytic reactions 
and fructose formation, tumour marker to diagnose carcinoma-in situ of the 
testis, seminoma

ALPI Intestinal alkaline 
phosphatase

Gut Intestinal tight junction integrity and maintains barrier function, attenuates 
inflammation, regulation of intestinal surface pH, absorption of lipids, 
detoxification of free nucleotides and bacterial lipopolysaccharides, possible 
modulation of the gut microbiota, regulation of transmucosal passage of 
bacteria, dephosphorylation of extracellular adenosine triphosphate 

Table 3 Relative tissue activity of alkaline phosphatase in human tissue (2,8,17)

Tissue
Activity per g of wet tissue with two substrates, liver activity set to 100 as benchmark IU/g of tissue,  

mean ± standard deviationΒ-glycerophosphate Phenylphosphate

Placenta – 3,214 69±44

Ileum (mucosa) 1,714 2,524 38±14

Kidney 619 – 2.1±0.7

Bone – 571 Age dependent

Colon (mucosa) 471 – 2.3±0.8

Adrenal 167 –

Lung 129 – 2.1±0.5

Spleen 129 –

Liver 100 100 2.6±1.4

Brain 76 –

Stomach (mucosa) 62 –

Heart – 33

Pancreas – 10

Skeletal muscle – 5

Serum (adult) 0.2 –

Testes – – 0.5±0.1
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Figure 1 Summary of ALP origin, production, and elimination in the body. ALP, alkaline phosphatase; GGT, gamma glutamyl transferase; 
Mg, magnesium; Zn, Zinc. 

Figure 2 Bone homeostasis in normal bone. PTH, parathyroid hormone; RANKL, receptor activator of nuclear factor kappa-Β ligand; 
RANK, receptor activator of nuclear factor kappa-Β; IGF-1, insulin-like growth factor 1; TGF-beta, transforming growth factor beta.
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making it a useful tool for assessment of bone turnover in 
the presence of chronic kidney disease (CKD) (19). 

In CKD, abnormalities of mineral and bone metabolism 
occur with extra-skeletal calcification, called CKD-mineral 
bone disorder (CKD-MBD), which is distinct from the 
morphological diagnosis of renal osteodystrophy which is 
a consequence of it (20,21). Fibroblast growth factor 23 
(FGF23) is raised prior to the more characteristic findings 
of hyperphosphataemia, high parathyroid hormone (PTH) 
or low activated vitamin D (1,25VitD) and is likely a 
key factor for renal, bone, mineral, and cardiovascular 
complications (22). Although FGF23 is phosphaturic, 
in CKD the renal response is diminished resulting in 
hyperphosphataemia which stimulates PTH secretion with 
a subsequent increase in bone turnover and measurable ALP 
activity. Furthermore, the impaired urinary tubular function 
and elevated serum FGF23 concentration lead to decreased 
vitamin D activation and enhanced PTH secretion under 
conditions of relative calcium deficiency, thereby giving rise 
to secondary hyperparathyroidism. BALP may be slightly 
superior in diagnosing bone disease in CKD-MBD but not 
enough to justify the additional cost for routine practice (21).

Measurement of ALP

ALP activity is dependent on zinc and activated by magnesium 
thereby order of blood draw is important to prevent cation 
chelation, and hence reduction in measured activity, by 
common tube additives, such as ethylenediaminetetraacetic 
acid (EDTA), oxalate, or citrate (23). Delayed separation 
of serum from the cells may very marginally increase ALP 
activity but analysis within 24 hours is unlikely to affect 
results in a clinically significant way irrespective if stored at 
room temperature or refrigerated (24,25). 

The activity of ALP is measured by the change of 
absorbance at 405 nm by the yellow quinoid version of 
4-nitrophenoxide formed at an alkaline pH following ALP 
catalysing the cleavage of phosphate from 4-nitrophenyl 
phosphate. The rate can be increased by including a 
phosphate acceptor e.g., adenosine monophosphate, which 
is also included in the IFCC reference method based on the 
above reaction (26).

Isoforms can be detected through a variety of means e.g., 
electrophoresis (27), differential deactivation e.g., by heat 
(1,28), differential response to inhibitors (1,29), affinity 
for lectins (30,31) and immunoassay (32,33). However, in 
clinical practice other routinely available tests are mostly 
reliable at identifying the source (as well as the marked 

improvement in imaging technology and availability) and 
the time, and cost, it may take to get these specialist tests 
makes them almost obsolete (34).

There are several caveats to consider when interpreting 
ALP results:
 Race and sex can impact ALP activity: positive 

correlation with increases in mean body mass index 
(BMI) of populations, seen in those of Hispanic 
descent greater than those of African American, 
which were greater than those of Caucasian. Males 
have higher activities than females within populations, 
which is also positively correlated to BMI (35).

 People who smoke have activity 10% higher than 
those who do not (36).

 Activity fluctuates approximately 6% from week to 
week in a healthy individual (37).

ALP can become bound to immunoglobulin, called 
macro-ALP, which prevents it being cleared as quickly (38,39). 
This is analytically correct, i.e., there is an increase in ALP 
activity in the serum, but does not represent increased tissue 
turnover and therefore a potential cause of spurious results. 

Low ALP activity

In a study of unselected male patients, the causes of a low 
ALP, which was rare, occurring in only 0.2% of almost 
70,000 samples, were:
 Cardiac surgery and cardiopulmonary bypass (26.5%), 

mean pre-surgical ALP was 71 U/L which fell to  
20 U/L, corresponding magnesium concentration fell 
from a mean of 0.98 to 0.54 mmol/L.

 Malnutrition (12.0%), mean ALP of 18 U/L, 
secondary to decreased activity of both bone and 
hepatic ALP.

 Severe magnesium deficiency (mean concentration 
0.48 mmol/L) affected 4.8% with a mean ALP 
activity of 21 U/L. 

 Hypothyroidism (2.4%), ALP activity returning to 
normal once euthyroid. 

 Severe anaemia attributed to iron deficiency  
(1.2%) (40).

In an audit of a year’s cases another group identified blood 
transfusion, cardiopulmonary bypass, and chemotherapy as 
causes, but a few cases had no identifiable cause (41). This 
led the team to conclude that the lower limit of ALP activity 
is too arbitrary to be useful to pick up important pathology. 
The causes of low ALP activity will be discussed below with 
Figure 3 providing a diagnostic algorithm aimed at helping 
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Figure 3 Algorithm and supporting information for the laboratory investigation of low ALP. ALP, alkaline phosphatase; K, potassium; 
Mg, magnesium; Ca, calcium; PO, phosphate; EDTA, ethylenediaminetetraacetic acid; PTH, parathyroid hormone; CKD, chronic kidney 
disease; TTG, tissue transglutaminase; FIT, faecal immunochemical test; B12, vitamin B12; TSH, thyroid stimulating hormone; PPI, 
protein pump inhibitor. 
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the clinician approach the investigation.

Pseudo hypophosphatasia

For an unexpected isolated low ALP activity EDTA, or 
other tube additives such as oxalate or citrate, contamination 
should be considered. Serum ALP activity decreased 
significantly at EDTA concentrations of >1.86 mmol/L  
(unexpected hyperkalaemia and hypocalcaemia are 
further clues) but this degree of contamination is not 
commonly reached in most cases of contamination (42,43). 
EDTA, citrate and oxalate bind cations and hence reduce 
ALP activity which requires both zinc and magnesium 
ions. Citrate is also found in blood transfusions and 
anticoagulated lines, e.g., in haemodialysis.

Primary hypophosphatasia

Primary low ALP activity, called hypophosphatasia, is due 
to genetic mutations in the ALPL gene (TNSALP) and 
clinical symptoms can include rickets and osteomalacia, 
epilepsy, myopathy, respiratory difficulties, hypercalcaemia, 
nephrocalcinosis, and tooth loss (16). At its most severe it 
can be fatal in infancy, but others will present as adults (16).  
Despite the wide phenotype all will have dental and 
skeletal mineralization symptoms, with high PPi in the 
bone matrix (16). Deformed and painful bones in infancy 
or painless, early, tooth loss (with roots attached) may 
indicate hypophosphatasia (16). ALP deactivates active 
B6, PLP, to form pyridoxal, and the accumulation of 
pyridoxal may account for the seizures seen in some babies 
with hypophosphatasia, occurring a few days after birth. 
Although not demonstrated in humans, restoring ALP 
activity in deficient mice resolves the seizures (16). High 
urinary PEA is another useful screening tool however 
genetic diagnostics (more than 300 mutations have been 
described in the ALPL gene but not all are disease causing) 
and enzyme replacement therapy is now available (16). 
Hyperphosphataemia can be seen, and later hypercalcaemia, 
as the phosphate and calcium homeostasis mechanisms are 
normal promoting renal excretion which can lead to renal 
complications such as renal failure and nephrocalcinosis (16).

Malnutrition and malabsorption

Malnutrition can lead to low ALP activity. This may be 
caused by metal deficiencies such as zinc or magnesium 
(44,45). In one study all those with a low ALP, compared 

to controls, were deficient in either zinc (47.6%) or 
magnesium (52.4%) (46). Nutritional rickets can reduce 
ALP activity, however if vitamin D deficient with low 
dietary calcium intake (47), ALP may be elevated (although 
not reliably) (48-50). A low protein state may lead to a 
low ALP activity (51,52) but again this observation is not 
consistent in kwashiorkor (53).

Vitamins C and B12 have been shown to promote bone 
growth, and deficiencies have a negative impact on bone 
growth (54) and increase the rate of osteoporosis (55). ALP 
is a marker for bone turnover therefore any decrease in 
turnover will affect the activity of ALP (55). However, it 
is unusual to find isolated nutritional deficiencies with, for 
example, a case report of scurvy demonstrating elevated 
ALP due to hypovitaminosis D, and coeliac disease which is 
often associated with elevated ALP activity (56,57). 

Endocrine and metabolic links to ALP
Wilson disease, an inborn error of copper metabolism, has 
been associated with low ALP activity, particularly in the 
initial stages (58). It is believed that copper competition 
with zinc causes the suppression in ALP activity (25). 
Conditions associated with low bone turnover, such as 
hypoparathyroidism and hypothyroidism, may reduce 
ALP activity, likely not enough to cause low ALP activity 
commonly (16,59). In cardiopulmonary bypass ALP 
is presumed to be consumed by dephosphorylating 
inflammatory chemicals and the reduction in activity 
correlates with worsening outcomes (60).

Drugs and toxins
Clofibrate reduces ALP activity but is no longer used 
(61,62), having been replaced by other drugs in the fibrate 
class due to side effects. ALP activity is inhibited by 
theophylline, sulphonamides, arsenates, molybdates, and 
other agents, with active development of ALP inhibitors 
underway to attempt to treat ectopic calcification which 
are not yet on the market (8,63-65). Inhibition by cation 
chelation by citrate can cause a transiently low ALP, e.g., in 
neonates or massive transfusions (41). ALP production is 
reduced by bisphosphonates (66,67), denosumab (68), and 
proton pump inhibitors (69) although they may not result in 
ALP activity beneath the reference range (70) (see Table 4).

High ALP

The commonest tissue origins of an elevated ALP activity 
are liver and bone (see Table 5). The key differentials will 
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differ depending on how well the person is and, potentially, 
the degree of elevation (Table 5). In hospitalised patients 
ALP is commonly raised [causes include pyelonephritis, 
malignancy, congestive heart failure and renal failure 
(14,78,79)]; in those with underlying conditions (who 
are well) elevations tend to resolve within 3 months (14). 
The causes of a rise in ALP activity are discussed below. A 

diagnostic algorithm is provided as a systematic framework 
that can be used to guide rather than be followed 
proscriptively, see Figure 4 (80,81). It is important to note 
in mild elevations of ALP activity other laboratory tests 
may not be helpful in identifying the cause, particularly 
in asymptomatic patients, and there may need to be a 
strategy of watchful waiting to determine if the elevation 

Table 5 Relative tissue activity of alkaline phosphatase in human pathology (2,73-77)

Disorder Patients with abnormal ALP (%) Mean ALP (multiple of upper reference limit)

Primary liver cancer 92 5.5

Tumour, metastatic liver 88 5.5

Extrahepatic obstruction 94 4.9

Intrahepatic obstruction 82 2.8

Acute viral hepatitis 80 2.5

Inactive cirrhosis 75 2.1

Alcoholic hepatitis 77 1.8

Chronic active hepatitis 78 1.7

Primary biliary cholangitis >95 1.67†

Osseous metastases 74 2

Pregnancy 100 Depends on stage, up to 4

Osteomalacia 80 1.5

Low vitamin D 0 –

Hyperthyroidism 44 Up to 5

Secondary hyperparathyroidism 75 –
†, wide range of values, this figure, and above, is the trigger for treatment with ursodeoxycholic acid. ALP, alkaline phosphatase. 

Table 4 Drugs that can lower measured ALP activity in humans (8,71,72)

Drugs Mechanism

Proton pump inhibitors Inhibit osteoblasts, decreases bone turnover

Steroids Effects variable on bone turnover and can also raise ALP

Theophylline, aminophylline Inhibits ALP activity and so test is falsely low

Bisphosphonates Suppress osteoclast and so negative feedback to osteoblast

Denosumab Suppress osteoclast and so negative feedback to osteoblast

Sulfonamides Inhibits ALP activity and so test is falsely low

Cimetidine and ranitidine Inhibits ALP activity and so test is falsely low

Imidazole and levamizole Inhibits ALP activity and so test is falsely low

Nitrofurantoin, cyanides, arsenals Inhibits ALP activity and so test is falsely low

ALP, alkaline phosphatase. 
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is persistent and the organ source [if less than 1.5 times 
the upper limit of normal (ULN) for example consider 
repeating at 3 months if isolated and patient is well] (82). 

ALP and its association with the liver and biliary tract

Most test panels for liver function include the enzymes 

ALT and ALP. A larger rise in ALT activity (compared 
with the ULN) may indicate hepatocellular damage 
whereas a relatively more significant ALP elevation 
(compared with the ULN) likely indicates a cholestatic 
pathology. Gamma-glutamyl transferase (GGT) elevation 
supports the diagnosis of a liver aetiology (GGT should 
be normal in bone causes of high ALP, unless there is 

Figure 4 Algorithm and supporting information for the laboratory investigation of raised ALP. ALP, alkaline phosphatase; ULN, upper 
limit of normal; GGT, gamma-glutamyl transferase; ANA, anti-nuclear antibody; ENA, extractable nuclear antigen antibody; AMA, anti-
mitochondrial antibody; Ca, calcium; PO, phosphate; ERCP, endoscopic retrograde cholangiopancreatography; MRCP, endoscopic 
retrograde cholangiopancreatography; PBC, primary biliary cholangitis; PTH, parathyroid hormone; LDH, lactate dehydrogenase; bHCG, 
beta human chorionic gonadotrophin; CKD, chronic kidney disease; HELLP, HELLP syndrome. 

Raised alkaline phosphatase (ALP)*.
If well consider either benign familial hyperphosphatasia (rare) or, and particularly if 
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Liver disease e.g., obstruction, 
autoimmune (90% of PBC have 
positive AMA), drugs, infiltrative, 

tumours (isolated granulomas 
or tumours will raise ALP with 
mild effect on other liver tests), 
progressive familial intrahepatic 

cholestasis (GGT normal)

Intestinal ALP 
elevation after 

eating is normal 
(fast to normalise) 

but rarely high 
enough to be 

significant

LDH, 
bHCG, 
renal 

function

Repeat ALP 
measurement 
after fasting

GGT, ANA, ENA, albumin, immunoglobulins,
liver autoantibodies (AMA), and liver

ultrasound, consider liver biopsy, ERCP or MRCP

Blood 
group

*Ensure use 
of appropriate 

reference interval

**LDH may not be
elevated in 
sarcoidosis

Yes No

GGT?

Elevated

Normal

Normal

Abnormal

High 
LDH

Deranged 
renal 

function

Positive
bHCG

Still elevated

B or O A or AB

Negative findings, normal GGT

Positive findings

Not
elevated
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more than one pathology) (83-85). An exception is the 
rare familial intrahepatic cholestasis which has raised ALP 
and normal GGT activities (86). This can present in a 
benign form that occurs at any age, and lasts for several 
weeks to months, or a progressive form that causes severe 
cholestasis before 6 months of age and progressing to 
cirrhosis, liver failure and death, unless a liver transplant is 
provided (86). 

When reviewing raised ALP results, an elevation of 
ALP of approximately four times the ULN or greater 
occurs in up to 75% of the patients with cholestasis, either 
intrahepatic or extrahepatic in one study (87). Liver diseases 
that principally effect parenchymal cells, such as infectious 
hepatitis, typically show only moderately elevated or even 
normal ALP activity but this depends upon study (see 
Table 5). As per the European Association for the Study of 
the Liver (EASL), activity thresholds for serum requiring 
diagnostic work-up are >1.5 times ULN (88).

This review will concentrate on the cholestatic liver 
diseases as the hepatocellular diseases will be covered in 
more detail in the companion article to this (on investigation 
of elevated transaminases). Cholestatic liver diseases 
include autoimmune e.g., primary biliary cholangitis or 
cirrhosis (PBC) (89). PBC is diagnosed by the presence of 
anti-mitochondrial antibodies (AMAs) (90) and increased 
concentrations of immunoglobulins [mainly immunoglobulin 
M (IgM)] (91). Anti-nuclear antibodies (ANAs) and anti-
smooth muscle antibodies (SMAs) are found in nearly 50% 
of PBC patients (92). ANA, anti-glycoprotein 210 and/or 
anti-sp100 (nuclear membrane proteins) may be present in 
those who are AMAs negative (93).

Primary sclerosing cholangitis (PSC) and secondary 
sclerosing cholangitis are differentials for PBC (94,95). 
Up to 80% of people with PSC are diagnosed with 
inflammatory bowel disease (IBD), primarily ulcerative 
colitis (88). In PSC immunoglobulins are often elevated 
with IgM (96) and IgG raised in 45% and 61% respectively, 
with IgG typically exceeding 1.5 times the ULN (97). 
Immunoglobulin G Subclass 4 (IgG4) was found to be 
elevated in 9% of PSC patients in another study and has 
been suggested to be a disease subtype (98,99), with those 
with raised IgG4 tending to progress more rapidly without 
treatment (98,100). Other autoantibodies present include 
perinuclear antineutrophil cytoplasmic antibodies (pANCAs) 
(26–94%), ANA (8–77%), and SMAs (0–83%) (101).

Imaging is relevant for all patients in whom cholestasis is 
suspected, cholangiography, preferentially with non-invasive 
magnetic resonance imaging (MRI), or endoscopically, 

to exclude PSC. Transient elastography is another non-
invasive tool that has shown high degree of accuracy in 
diagnosing advanced fibrosis in patients with PBC (102). A 
liver biopsy is rarely required.

Obstruction of the biliary tree, or cholestasis, will lead 
to an elevation of the ALP and causes for this include 
gallstone, biliary strictures and tumours, infiltrative 
processes, and medication (see Table 6) (82,108-111). For 
example, colestipol, a bile acid sequestrant, increases ALP 
activity but is not widely used anymore (61). 

Bone

Increasing bone turnover, particularly osteoblast activity, 
will elevate ALP (5). Other tests including vitamin 
D, calcium, phosphate and PTH may be required to 
distinguish some of the following disease entities, and 
this is further illustrated in Figure 4. There are other, 
less commonly requested tests, which might also be 
available for the clinician to distinguish bone diseases 
(see sister algorithms in this special series on calcium and 
phosphate). 

Common causes of bone pathology that increases ALP 
are periods of increased skeletal growth, such as during 
adolescence (4), fracture recovery (112), cancer including 
osteosarcoma or bone metastasis, hyperparathyroidism, 
CKD and vascular calcification (113). 

Rickets, a rare condition in the UK, is the clinical 
consequence of impaired mineralization of the growth 
plate cartilage and spongiosa in the metaphysis of children 
and adolescents (114) due to calcium and/or vitamin D 
deficiency (calcipenic rickets), renal tubule dysfunction 
and disturbances of chondrocytes and osteoblasts (Table 7).  
Bones are resorbed to release calcium, under PTH action, 
which also results in hypophosphataemia (116,117). 
Osteomalacia is rickets occurring after the growth plates 
fuse, i.e., the adult version (114), and biochemically there 
will be raised PTH with deficiencies in phosphate and 
vitamin D. In osteomalacia vitamin D supplementation 
will return ALP activity to normal after about 6 months of 
treatment, therefore there is no need to remeasure activity 
prior to this time point (34).

Paget disease is an increasingly rare condition of 
disordered bone turnover with no clear single cause 
(118,119). Markers of bone turnover are raised including 
type I procollagen N-terminal peptide (P1NP), N-terminal 
telopeptide of type I collagen and bone ALP (120), with 
ALP activity used to measure treatment efficacy (121). 
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Table 6 Drugs that can cause an elevation in measured alkaline 
phosphatase activity in humans—excluding hepatotoxic medications 
(82,103-107)

Drugs Mechanism

Antibiotics

Penicillin derivatives Intrahepatic cholestasis

Erythromycin Intrahepatic cholestasis

Aminoglycosides Enzyme induction

Sulfa drugs Intrahepatic cholestasis

Antiepileptic drugs

Carbamazepine Intrahepatic cholestasis

Phenobarbital Enzyme induction

Phenytoin Enzyme induction

Sodium valproate Enzyme induction

Antihistamines

Cetirizine Intrahepatic cholestasis

Cardiovascular drugs

Captopril Intrahepatic cholestasis

Diltiazem Enzyme induction

Felodipine Enzyme induction

Verapamil Intrahepatic cholestasis

Disease modifying agents

Penicillamine Intrahepatic cholestasis

Sulfa drugs Intrahepatic cholestasis

Allopurinol Causes a granulomatous hepatitis

Polycyclic aromatic hydrocarbons

Oral contraceptive pill 
(oestrogen)

Enzyme induction

Anabolic and 
corticosteroids

Enzyme induction but variable 
and can lead to low ALP 

Psychotropic drugs

Monoamine oxidase 
inhibitors

Intrahepatic cholestasis

Phenothiazines and 
chlorpromazine

Intrahepatic cholestasis

Lipid lowering

Statins Enzyme induction

ALP, alkaline phosphatase.

However, there is an argument that ALP normalization is an 
inappropriate measure of treatment success as only occurred 
in ~25% of those treated with bisphosphonates, though 
ALP activity overall did reduce by ~41% (122). Treating to 
normalise ALP has no reported differences in fracture rate, 
pain relief, hearing, need for orthopaedic surgery or quality 
of life when compared to treating to alleviate bone pain 
solely (123,124). Imaging is used to confirm a diagnosis of 
Paget disease (125).

Osteoporosis is not associated with an elevation of 
ALP, unless there is a secondary fracture, however BALP 
can be used to monitor the effect of treatment on bone 
turnover (126). Osteomyelitis does not raise ALP either. 
A femoral neck fracture elevates serum ALP activity by 
approximately 30% and trochanteric by 100% (14,127). 

Note that oestrogens reduce BALP in post-menopausal 
women which might theoretically disguise subtle elevations 
in women on hormone replacement therapy (128). Steroids 
have an unpredictable effect on BALP as although they may 
be osteogenic in exogenous or endogenous hypercortisolism 
there may be no noticeable effects or mild suppression 
(66,129,130). Hyperthyroidism and thyrotoxicosis cause 
an elevation in ALP, likely by effects on bone metabolism 
(131,132).

Tumour placental ALP
In cancer there can be significant production of ALP which 
cannot be related to the tissue involvement and therefore 
represents paraneoplastic production of foetal proteins 
(particularly placental type ALP) from the tumour. Regan 
isoform, a rare variant of placental ALP, is one example; 
in one series (133) of 239 people with malignant disease 
25.5% had elevated Regan isoenzyme detectable in the 
serum. Tumour types reported to demonstrate elevations 
of Regan isoform include kidney, stomach, uterine, lung, 
cervical, endometrial, testicular, ovarian, medullary thyroid, 
haematopoietic, prostate and germ cell (15). Other examples 
include Kasahara a foetal intestinal ALP isoform (134) e.g., 
in renal cell carcinoma (135), and Nagao a placental-like 
ALP isoform (134,136).

Miscellaneous

Transient hyperphosphatasaemia (TH) is a benign 
condition, of unknown aetiology, characterized by marked 
elevation of serum ALP activity, such as an increase of four-
fold ULN. There should be a notable absence of associated 
diseases such as liver, bone, or kidney pathology and it 
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settles within weeks or months of initial observation (137). 
However, ALP activity can remain elevated for extended 
periods of time, for greater than 4 months, in approximately 
20% of cases (138). Diagnosis of TH is linked to the ‘fast’ α2 
band which is detected on agarose gel electrophoresis (139)  
but testing may not be necessary if  the person is 
asymptomatic. Prevalence of TH is suggested to be around 
2.8% (ALP >1,000 U/L) (140) in the classically affected 
population, children younger than 5 years old, but has also 
been described in transplant patients (141,142).

Bacterial and fungal glycoproteins can compete with 
the receptors involved in the excretion and elimination of 
ALP from the serum (14). Therefore, ALP elevations can 
be seen in infections without any obvious liver toxicity or 
cholestasis (143).

Raised ALP has also been identified in a range of 
other disorders including rheumatoid arthritis (144,145), 
atherosclerosis (146), and axial spondylarthritis (147). 
However, the links between elevated ALP and the diseases 
have not been fully established, or the mechanisms 
understood. 

In individuals with blood groups O and B, ALP 
concentration increases by about 20% after consuming a 
fatty meal, due to contribution from the intestinal tract 
isoenzyme (14,148). It was found that red cells of blood 
group A bind almost all intestinal ALP (149), which is not 
replicated in those with types O or B. As this elevation can 
persist for up to 14 hours in the serum, the recommendation 
is to check the serum enzyme activity in a fasting state (150). 
In one case a patient’s intestinal ALP activity was measured 
as high as 140 U/L, with a normal range suggested to be 
<18 U/L (151). There are also cases of benign familial 
conditions causing elevated intestinal ALP. Rosalki et al.  
presents examples of patients with persistent and 
unexplained raised ALP, above the reference range, that had 
a genetic component, with an autosomal dominant pattern 

of inheritance suggested as the cause (152).

Special states

Serum ALP varies with age and gender. There are two 
peaks of ALP activity during infancy and puberty, which 
fall mid-childhood and towards the end of adolescence 
respectively (153,154). A German study of over 300,000 
paediatric plasma samples demonstrated that at birth 
ALP activity is low. Activity increases quickly, peaking at  
20 days and then decreasing again until 4 years of age with 
an increase during adolescence to reach adult ranges (155). 
For a reference source for paediatric values the CALIPER 
database is a useful source (156). Gender will also influence 
these peaks, with females shown to peak 2 years earlier than 
males in keeping with growth rates (112,138).

Gender also influences expected BALP activity in later life, 
significantly higher activities were found in postmenopausal 
women when compared to premenopausal (157). During 
pregnancy, bone turnover increases (158) contributing to 
an increase in BALP plus an additional increase in placental 
ALP activity in serum resulting in an ALP activity threefold 
higher at the end of term (159). Therefore, ALP activity 
should be reviewed against appropriate reference ranges to 
avoid over diagnosing or missing pathology.

Conclusions

Serum ALP activity can be affected by normal physiological 
states and diseases. Pathological causes of high activity 
commonly are attributable to bone or liver disorders. 
Unexpectedly low activity may be due to pre-analytical 
contamination with cation chelators. A set of diagnostic 
algorithms have been created to guide the reader’s approach 
and provide a systematic route of testing. Each patient is 
unique however and the clinical picture may direct the 

Table 7 Typical biochemical features of various forms of osteomalacia/rickets (115)

Cause Calcium Vitamin D PTH Phosphate Other

Hypovitaminosis D L L H L H ALP

Low 1,25D (renal failure, vitamin D dependent rickets 
type I caused by loss of function in 1α hydroxylase)

L N H L/H H ALP, L 1,25D

Vitamin D dependent rickets type II (loss of function of 
vitamin D receptor)

L N H L H ALP, H 1,25D

Low phosphate (multiple causes see later slide) N N N L H ALP

PTH, parathyroid hormone; L, low; H, high; N, normal; ALP, alkaline phosphatase.
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reader to skip steps or refer to other algorithms within 
the series or in the literature. These algorithms are not 
a replacement for experience, expert opinion or local 
guidelines and should instead act as a diagnostic aid. 
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