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Background: Glioblastoma (GBM) is the poorest prognosis for a malignant brain tumor; however, 
postoperative chemoradiotherapy has been reported to improve survival time. Therefore, high-cost 
treatment for prolonged survival time led to health, economic burden, and catastrophic costs in a limited-
resource setting. Various immune-nutritional indexes can indicate patient status; both nutritional and 
inflammatory status may help predict prognosis. The primary objective was to evaluate the prognostication 
of immune-nutritional indexes in GBM patients. Moreover, the secondary objective was to compare how 
well clinical nomograms with and without immune-nutritional indexes predicted 2-year mortality.
Methods: A retrospective cohort analysis was conducted on GBM patients. A 70:30 split was used to 
randomly separate the whole data set into the train and test datasets. Factors associated with prognosis 
were analyzed using Cox hazard regression from the training dataset; therefore, nomograms without/with 
hemoglobin, albumin, lymphocyte, and platelet (HALP) scores were developed from the training dataset. 
The model’s prognostication performances were also assessed using sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and the area under the receiver operating characteristic (ROC) 
curve (AUC).
Results: The total dataset comprised 271 GBM patients, with an average age of 51.62 years [standard 
deviation (SD): 16.02 years]. From multivariable analysis with the training dataset, prognostic factors 
comprised age, basal ganglion/thalamic GBM, the extent of resection, temozolomide (TMZ), and HALP 
score. As a result, the HALP cutoff in the present study was 32, and the high-HALP group had a significantly 
longer survival time than the low-HALP group (log-rank test, P value =0.007). The AUC of the nomogram 
without and with HALP was 0.710 and 0.778, respectively for 2-year death prediction.
Conclusions: In summary, the HALP score was useful for the added performance of prognostication in 
patients with GBM. A nomogram with basic predictors could be challenged to apply for allocating resources 
for high-cost standard chemotherapy in the limited-resource setting. In addition, future multicenter 
prospective studies should be conducted to externally validate the HALP-based nomograms.
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Introduction

Glioblastoma (GBM) is the most common malignant tumor 
in adults, as well as the most aggressive primary brain 
tumor (1,2). However, this tumor has the poorest prognosis 
among gliomas. Following tumor removal and adjuvant 
chemoradiotherapy, the median survival time for GBM 
has been reported to be between 11 and 15 months (1-3). 
Although targeted therapy has been studied for extending 
survival time, its application in real-world settings is limited 
by its high cost (4,5). One of the key methods for allocating 
resources is disease prognostication. Treatment plans that 
depend on a disease’s prognosis being positive present a 
management problem (6,7). The Karnofsky performance 
status (KPS), the extent of resection, and concurrent 
chemoradiotherapy with temozolomide (TMZ), various 
molecular biomarkers have all been investigated and 
reported as being linked with the prognosis in prior studies 
(7-10).

Several immune-nutritional indexes have recently been 
studied and reported as prognostic factors in a variety 
of cancers (11,12). Njoku et al. reported preoperative 
hemoglobin, albumin, lymphocyte, and platelet (HALP) 
scores and prognostic nutritional index (PNI) significantly 
associated with prognosis in endometrial cancer (13) and 
Leetanaporn et al. found that lower HALP score was related 
to improved survival time in patients with locally advanced 
cervical cancer (14). However, Shen et al. found that HALP 

scores had no predictive value in small-cell lung cancer and 
PNI was not significantly associated with recurrence-free 
survival in gastric cancer (15). Moreover, the neutrophil-to-
lymphocyte ratio (NLR) is one of the immune-inflammatory 
biomarkers that has been studied as a prognostic factor. 
Garrett et al. showed that NLR and PNI were significantly 
connected to prognosis in univariate analysis; however, 
these biomarkers were not significantly associated with 
survival in multivariable analysis (16). Various immune-
nutritional indexes associated with long survival time that 
are potentially explained by the indexes can represent 
patient status both nutritional and inflammatory status and 
reflect the severity of the disease (17,18).

Nomograms are frequently used in prognosis prediction 
because they reduce the complexity of the statistical risk 
predictive model into numerical estimates for death, 
recurrence, or other clinical outcomes (19). Li et al. 
developed a nomogram for predicting the overall prognosis 
of GBM patients using various clinical parameters and 
reported that the concordance indices (C-indices) of 
the prediction tool ranged from 0.729 to 0.734, whereas 
Kudulaiti et al. created a Cox-based nomogram and reported 
C-indices for prognostication ranging from 0.629 to 0.776 
(20,21). Because patients with GBM had a poor prognosis, 
prognostication with high-precision predictive performance 
has been challenged.

A review of the literature indicates that there hasn’t 
been much research on the predictive value of immune-
nutritional indices for GBM patients. Additionally, the 
immune-nutritional-based prediction model may improve 
the predictive performance of GBM patients’ prognosis. 
Faced with this gap, the authors aimed to evaluate the 
prognostication of HALP score, PNI, and NLR in patients 
with GBM. Additionally, the secondary objective study was 
to compare how well clinical nomograms with and without 
immune-nutritional indexes for 2-year mortality prediction 
could be performed in the future. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jlpm.amegroups.org/article/view/10.21037/jlpm-
23-66/rc).

Methods

Study designs and study population

The present study was a retrospective cohort design. 
Between January 2000 and December 2021, all patients 
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newly diagnosed with GBM were operated on at the tertiary 
center of southern Thailand. Patients who lacked complete 
medical records, or histological slides for diagnosis 
confirmation, or were unable to determine an updated 
status were excluded. GBM was diagnosed by pathologists 
with histological findings in microvascular proliferation or 
necrosis or wild-type IDH, according to the World Health 
Organization’s central nervous system tumor classification. 
In addition, the area under the receiver operating 
characteristic (ROC) curve (AUC) formula was used for 
sample size calculation (22). Based on Li et al., various 
parameters were calculated as follows: AUC of 0.729, alpha 
of 0.05, and estimation error of 0.10 (20). Therefore, the 
sample size of the study population was at least 108 patients.

Before the review of the medical records, the operational 
definition was made. Based on the research conducted by 
Bloch et al., the extent of resection and a residual tumor 
was assessed using post-operative T1-weighted (T1W) with 
contrast imaging. In detail, a residual tumor of less than 5% 
after surgery was referred to as total resection, but a leftover 
tumor of 5% or more was referred to as partial resection. 
Furthermore, a biopsy just served as a diagnostic tool; the 
tumor was not intended to be removed (23).

The formula for calculating the HALP score is 
[hemoglobin (g/L) × albumin (g/L) × lymphocytes (/L)]/
platelets (/L) (23), while PNI was computed as follows: 
[albumin (g/L) + 5 × total lymphocyte count (109/L)] (24).

Ethical considerations

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The present 
study was approved by the Human Research Ethics 
Committee of the Faculty of Medicine, Prince of Songkla 
University (REC. 63-372-10-1). Because this study utilized 
a retrospective study design, informed consent from patients 
was not required. However, patient identification numbers 
were encoded before analysis.

Statistical analysis

Patients’ characteristics, neuroimaging findings, and 
treatment were demonstrated in proportion for descriptive 
purposes. When the variables were continuous, the mean 
with standard deviation (SD) was used. The updated 
patients’ status was classified as binary classifiers (death or 
living status) for the independent variable. In the present 
study, the complete case strategy was employed for missing 

value management before analyzing the final model. 
Therefore, the chi-square test was used to estimate the 
difference in each variable’s distribution across datasets, 
while the independent t-test was used to compare the mean 
of continuous variables across datasets. P values less than 
0.05 were considered statistically significant.

In the survival analysis, overall survival, survival 
probability, and median survival time were evaluated. 
The Kaplan-Meier curves illustrate the overall survival, 
which is the period from surgery to death, and the survival 
probability was defined as the proportion of units that 
survive beyond a specified time such as a 2-year survival 
probability. In addition, the median survival time was 
defined as the length of time since surgery that half of a 
group of GBM patients were still living (25). The survival 
outcome of the present study was classified as either death 
or living status, which was confirmed on February 2, 2023, 
by the local civil registry database.

Nomogram development

A 70:30 split was used to randomly separate the entire data 
set into train and test datasets. The nomogram was trained 
using 70% of the total data, with the remaining 30% 
utilized to validate the prediction of the model. In detail, 
Cox proportional hazard regression was used to investigate 
factors associated with survival outcomes. Therefore, the 
candidate variables that had a P value of less than 0.10 in the 
univariate analysis were also included in the multivariable 
analysis. Therefore, backward stepwise selection with the 
lowest Akaike information criterion was performed for the 
final predictive model.

Nomogram was built from the final prediction model 
and the discriminative ability of a final model is measured 
by Harrell’s C-index. For internal validation, the bootstrap 
sampling method was used 1,000 times.

Hence, a prognosis of a 2-year mortality nomogram 
was estimated with unseen data from the remaining test 
dataset. To demonstrate the performance of the model 
on the test data set for which the actual values of the 
outcome were known, a confusion matrix was constructed 
as follows: sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV). The 
ROC curve and the AUC were also utilized to evaluate 
the model’s discrimination. AUC of 0.7 would typically 
indicate acceptable discrimination, whereas AUCs of 0.8 
and 0.9 would indicate good and excellent discrimination, 
respectively (26,27). The statistical analysis and nomogram 



Journal of Laboratory and Precision Medicine, 2024Page 4 of 13

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2024;9:12 | https://dx.doi.org/10.21037/jlpm-23-66

development were performed using the R version 4.2.2 
software (R Foundation, Vienna, Austria). Additionally, 
the nomogram in the present study was built by package 
‘regplot’ (28).

Results

Clinical and radiological characteristics

Initially, 288 patients were diagnosed with GBM for the 
first time. Ten patients lacked a histopathological-confirmed 
diagnosis, five lacked complete information from their 
medical records, and two lacked preoperative radiological 
imaging. Therefore, 271 GBM patients were included in 
the total dataset. Hence, one hundred ninety patients were 
randomly assigned to the training dataset, which included 
the remaining 81 patients.

From the total dataset, the average age was 51.62 years 
(SD: 16.02 years) and the male-to-female ratio was 
1.42. Furthermore, it was noted that more than half had 
preoperative KPS lower than 80. According to the imaging 
findings, the frontal and temporal lobes were the most 

common sites of GBM involvement, accounting for 32.1% 
and 29.2%, respectively. GBM of the corpus callosum was 
found in 10.3% of all patients in the present study and the 
average tumor size was 5.13 cm (SD: 1.80 cm). Moreover, 
17% of this cohort had multiple tumors. Following the 
operation, total tumor resection was achieved in 22.9% 
of cases, while partial resection was performed in 63.8%. 
Consequently, postoperative KPS lower than 80 was found 
in 60.1%, and postoperative TMZ with radiotherapy 
was accomplished in 31.7% of cases. The majority of 
GBM (91.7%) were IDH-wildtype tumors, with IDH-
mutant GBM occurring in 8.3% of cases. In the immune-
nutritional indexes, the average HALP score, PNI, and 
NLP were 40.28 (SD: 25.75), 93.53 (SD: 48.32), and 7.04 
(SD: 9.57), respectively.

After random splitting, the baseline characteristics, 
and preoperative laboratories according to the train and 
test datasets were shown in Tables 1,2. Almost all clinical 
characteristics were not substantially different across the 
train and test datasets, except for gender, preoperative 
ataxia, average maximum tumor diameter, and white cell 
count. However, these characteristics were not candidate 

Table 1 Baseline characteristics according to various datasets 

Factors Total dataset (n=271) Train dataset (n=190) Test dataset (n=81) P value

Age (years), n (%) 0.56

<60 184 (67.9) 127 (66.8) 57 (70.4)

≥60 87 (32.1) 63 (33.2) 24 (29.6)

Age (years), mean (SD) 51.62 (16.02) 50.84 (16.27) 53.43 (15.38) 0.21

Gender, n (%) 0.001

Male 159 (58.7) 123 (64.7) 36 (43.8)

Female 112 (41.3) 67 (35.3) 45 (56.3)

Clinical presentation, n (%)

Progressive headache 139 (51.3) 99 (52.1) 40 (49.4) 0.75

Motor weakness 129 (47.6) 91 (47.9) 38 (46.9) 0.95

Seizure 62 (22.9) 45 (23.7) 17 (21.0) 0.66

Cranial nerve palsy 33 (12.2) 25 (13.2) 8 (9.9) 0.87

Behavior change 24 (8.9) 14 (7.4) 10 (12.3) 0.18

Ataxia 6 (2.2) 4 (2.1) 2 (2.5) 0.004

Preoperative KPS, n (%) 0.77

<80 147 (54.2) 102 (53.7) 45 (55.6)

≥80 124 (45.8) 88 (46.3) 36 (44.4)

Table 1 (continued)
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Table 1 (continued)

Factors Total dataset (n=271) Train dataset (n=190) Test dataset (n=81) P value

Major tumor location, n (%)

Frontal lobe 87 (32.1) 56 (29.5) 31 (38.3) 0.15

Temporal lobe 79 (29.2) 59 (31.1) 20 (24.7) 0.29

Parietal lobe 50 (18.5) 32 (16.8) 18 (22.2) 0.29

Corpus callosum 28 (10.3) 20 (10.5) 8 (9.9) 0.87

Occipital lobe 13 (4.8) 10 (5.3) 3 (3.7) 0.58

Periventricular region 8 (3.0) 6 (3.2) 2 (2.5) 0.75

Brainstem 6 (2.2) 3 (1.6) 3 (3.7) 0.27

Intraventricular region 4 (1.5) 2 (1.1) 2 (2.5) 0.37

Cerebellum 2 (0.7) 1 (0.5) 1 (1.2) 0.53

Pineal region 2 (0.7) 2 (1.1) 0 (0.0) 0.35

Basal ganglion or thalamic region 14 (5.1) 12 (6.3) 2 (2.5) 0.19

Multiple tumor, n (%) 46 (17.0) 33 (17.4) 13 (16.0) 0.79

Lateralization, n (%) 0.41

Left 120 (44.3) 80 (42.1) 40 (49.4)

Right 118 (43.5) 83 (43.7) 35 (43.2)

Midline 22 (8.1) 20 (10.5) 2 (2.5)

Bilateral 11 (4.1) 7 (3.7) 4 (4.9)

Tumor diameter (cm), mean (SD) 5.13 (1.80) 5.28 (1.82) 4.77 (1.71) 0.03

Maximum diameter (cm), n (%) 0.27

<5 120 (44.3) 80 (42.1) 40 (49.4)

≥5 151 (55.7) 110 (57.9) 41 (50.6)

Extent of resection, n (%) 0.82

Biopsy 36 (13.3) 24 (12.6) 12 (14.8)

Partial resection 173 (63.8) 121 (63.7) 52 (64.2)

Total resection 62 (22.9) 45 (23.7) 17 (21.0)

Postoperative KPS, n (%) 0.46

<80 163 (60.1) 117 (61.6) 46 (56.8)

≥80 108 (39.9) 73 (38.4) 35 (43.2)

Adjuvant therapy, n (%) 0.34

Radiotherapy alone 185 (68.3) 133 (70.0) 52 (64.2)

Concomitant chemoradiotherapy (TMZ) 86 (31.7) 57 (30.0) 29 (35.8)

IDH wild-type†, n (%) 122 (91.7) 119 (92.2) 3 (75.0) 0.92
†, the number of patients in the total dataset, train dataset, and test dataset are 133, 129, and 4, respectively. SD, standard deviation; 
KPS, Karnofsky performance status; TMZ, temozolomide.
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Table 2 Average preoperative laboratory, NLR, PNI, and HALP score

Factors Total dataset Train dataset Test dataset P value

Hematocrit (%), mean (SD) 40.57 (4.69) 40.68 (4.81) 40.33 (4.42) 0.57

Hemoglobin (g/dL), mean (SD) 13.5 (1.66) 13.63 (1.66) 13.44 (1.66) 0.39

White cell count (×103/mcL), mean (SD) 10,987.90 (4,148.97) 11,367.10 (4,250.60) 10,103.09 (3,780.30) 0.02

Neutrophil (%), mean (SD) 73.75 (13.78) 74.64 (13.53) 71.68 (11.15) 0.25

Lymphocyte (%), mean (SD) 19.13 (10.77) 18.62 (10.59) 20.29 (11.15) 0.24

Platelet count (×103/mcL), mean (SD) 270,525.93 (86,802.07) 276,522.81 (88,381.82) 256,530.86 (81,823.57) 0.08

Albumin (g/dL), mean (SD) 3.95 (0.55) 3.91 (0.58) 4.05 (0.49) 0.06

NLR, mean (SD) 7.04 (9.57) 7.17 (8.78) 6.72 (11.25) 0.74

PNI, mean (SD) 93.53 (48.32) 95.28 (51.78) 89.45 (39.07) 0.31

HALP score, mean (SD) 40.28 (25.75) 39.85 (16.27) 41.29 (23.51) 0.65

NLR, neutrophil-to-lymphocyte ratio; PNI, prognostic nutritional index; HALP, hemoglobin, albumin, lymphocyte, and platelet; SD, standard 
deviation.

variables in the multivariable analysis.

Survival analysis

From the total dataset, 1-, 2-, and 5-year survival 
probabilities were 34% [95% confidence interval (CI): 
28–40%], 14% (95% CI: 10–19%), and 3.4% (95% CI: 
1.7–7.1%) and the average follow-up time was 14.4 months 
(SD: 16.4 months). Moreover, the median overall survival 
time was 8 months (95% CI: 7–10), as shown in Figure 1A. 
There were no significant differences in the survival curves 
of the train and test datasets (log-rank test, P value =0.13), 
as shown in Figure 1B.

The Cox proportional hazard regression was performed 
to explore factors associated with prognosis. Age, 
preoperative KPS, basal ganglion or thalamic GBM, 
multiple GBM, the extent of resection, TMZ, postoperative 
KPS, PNI, and HALP score were candidate variables 
in univariate analysis, as shown in Figure 2. Thus, these 
candidates were employed to evaluate in multivariable 
analysis using a backward stepwise procedure. The final 
predictive model comprised age, preoperative KPS, basal 
ganglion or thalamic GBM, multiple GBM, the extent of 
resection, TMZ, and HALP score, as shown in Table 3.

Comparison prognostic performances of nomograms 
without/with HALP score

A nomogram was built from the final predictive models with 

and without the HALP score, as shown in Figure 3A,3B. 
For the goodness of fit measure of the prediction models, 
Harrell’s C-index of the nomogram without the HALP 
score was 0.704, while the nomogram with the HALP score 
had an unadjusted C-index of 0.707. Figure 3C,3D shows 
that the calibration plots demonstrated that the nomograms 
with HALP score were better at predicting the chance of 
survival than the nomograms without HALP. The internal 
validation was performed with the bootstrap method. As a 
result, nomograms without and with HALP had bootstrap-
corrected C-indices of 0.692 and 0.704, respectively.

For 2-year death prediction with the testing dataset, 
the AUC of the nomogram without and with HALP was 
0.710 and 0.778, as shown in Figure 4. Therefore, Table 4 
demonstrates prognostic performances of 2-year mortality 
by nomogram without and with HALP score. The PPV 
of the nomogram without the HALP score was 0.86 (95% 
CI: 0.78–0.94), while the PPV of the nomogram with the 
HALP score increased to 0.95 (95% CI: 0.89–1.00).

Discussion

The present study found that the prognosis of GBM was 
poor, which was consistent with prior studies. Prognostic 
factors of the present study comprised age, basal ganglion/
thalamic GBM, the extent of resection, TMZ, and HALP 
score these results are in concordance with other research 
reports. According to the literature review, the patient’s 
overall survival ranged from 8 to 16 months (1,29,30). The 
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Figure 1 Overall Kaplan-Meier curves. (A) Kaplan-Meier curve of the total dataset; (B) Kaplan-Meier curves of the train and test datasets 
(log-rank test, P value =0.13).

Figure 2 Kaplan-Meier curves according to various variables. (A) Age groups; (B) preoperative KPS; (C) postoperative KPS; (D) basal 
ganglion or thalamic tumor; (E) multiple GBMs; (F) total resection; (G) adjuvant treatment; (H) HALP score; (I) PNI. KPS, Karnofsky 
performance status; GBM, glioblastoma; RT, radiotherapy; TMZ, temozolomide; HALP, hemoglobin, albumin, lymphocyte, and platelet; 
PNI, prognostic nutritional index.
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Table 3 Factors associated with prognosis of patients with GBM using train dataset

Factors
Univariate analysis Multivariable analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age (years) 1.01 (1.007–1.027) 0.001 1.01 (1.007–1.031) <0.001

Gender

Male Ref.

Female 0.79 (0.57–1.09) 0.16

Clinical presentation

Progressive headache† 0.87 (0.64–1.18) 0.39

Motor weakness† 1.22 (0.90–1.66) 0.18

Seizure† 1.09 (0.77–1.56) 0.60

Cranial nerve palsy† 0.82 (0.53–1.26) 0.38

Behavior change† 0.62 (0.37–1.14) 0.12

Ataxia† 1.17 (0.27–12.67) 0.56

Preoperative KPS

<80 Ref. Ref.

≥80 0.60 (0.44–0.83) 0.002 0.74 (0.53–1.04) 0.09

Major tumor location

Frontal lobe† 0.80 (0.57–1.12) 0.21

Temporal lobe† 1.06 (0.76–1.47) 0.72

Parietal lobe† 1.21 (0.81–1.80) 0.33

Corpus callosum† 1.16 (0.72–1.88) 0.52

Occipital lobe† 0.91 (0.44–1.86) 0.80

Periventricular region† 0.71 (0.28–1.78) 0.47

Brainstem† 0.73 (0.13–5.29) 0.76

Intraventricular region† 3.24 (0.79–13.28) 0.11

Cerebellum† 1.62 (0.22–11.64) 0.68

Pineal region† 1.44 (0.65–5.83) 0.60

Basal ganglion or thalamic region† 2.02 (1.09–3.75) 0.02 2.13 (1.12–4.04) 0.02

Multiple tumor† 1.50 (1.01–2.22) 0.04 1.46 (0.94–2.25) 0.08

Lateralization

Left Ref.

Right 0.97 (0.70–1.35) 0.98

Midline 2.13 (1.01–4.48) 0.04

Bilateral 1.12 (0.65–1.94) 0.67

Maximum diameter (cm)

<5 Ref.

≥5 1.005 (0.73–1.37) 0.97

Table 3 (continued)
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Table 3 (continued)

Factors
Univariate analysis Multivariable analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Extent of resection

Non-total resection Ref. Ref.

Total resection 0.45(0.39–0.67) <0.001 0.53 (0.35–0.79) 0.002

Postoperative KPS

<80 Ref.

>80 0.59 (0.43–0.82) 0.002

Adjuvant therapy

Radiotherapy alone Ref. Ref.

Concomitant chemoradiotherapy (TMZ) 0.58 (0.41–0.81) 0.002 0.48 (0.34–0.70) <0.001

IDH mutation

Mutant Ref.

Wild-type 1.05 (0.46–2.34) 0.89

NLR

≤7 Ref.

>7 1.33 (0.96–1.83) 0.08

PNI

≤95 Ref.

>95 0.62 (0.42–0.85) 0.003

HALP score

≤32 Ref. Ref.

>32 0.66 (0.48–0.89) 0.007 0.65 (0.47–0.90) 0.01
†, data showed only the “yes group”, while reference groups (no group) were hidden. GBM, glioblastoma; CI, confidence interval; ref., 
reference; KPS, Karnofsky performance status; TMZ, temozolomide; NLR, neutrophil-to-lymphocyte ratio; PNI, prognostic nutritional 
index; HALP, hemoglobin, albumin, lymphocyte, and platelet.

extent of resection, adjuvant chemoradiation with TMZ, 
and molecular biomarkers were all linked to a prolonged 
survival time in individuals with GBM (31,32).

As a result, the HALP score is one of the prognostic 
factors following multivariable analysis. This could be 
explained by the fact that the score evaluates both the 
patient’s immune system and nutritional state. According 
to Wang et al., the HALP cutoff value for endometrial 
cancer was 33.8, and found that the low-HALP group had 
poorer survival outcomes than the high-HALP group. 
Moreover, HALP was a prognostic factor with a cut-
off value of 31.5 in patients with gastrointestinal stromal 
tumors (33). According to a review of the literature, few 

papers mention using the HALP score in GBM patients, 
and there is no standard cutoff point. As a result, the HALP 
cutoff in the present study was 32, and the high-HALP 
group had a significantly longer survival time than the 
low-HALP group. HALP score is significantly associated 
with favorable prognosis, which is probably explained by 
this parameter that is able to indicate patients’ systemic 
status, both nutritional and inflammatory status (17). In 
the present study, the predictive model with HALP had a 
high specificity that preferred a few false positives; thus, 
this predictive model was appropriate for confirming the 
occurrence of 2-year mortality (34). In addition, PNI has 
been studied as a prognostic factor in various cancers (26,35). 
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Figure 4 ROC curves of 2-year mortality prediction. ROC, 
receiver operating characteristic; AUC, area under the ROC curve; 
HALP, hemoglobin, albumin, lymphocyte, and platelet.

PNI tended to be a predictor in this investigation since 
this biomarker was statistically significant in univariate 
analysis. However, PNI was not significantly associated with 
prognosis when the multivariable analysis was performed 
in the present study. In the future, a multicenter study or 
systematic review with meta-analysis may confirm the effect 
of PNI on prognosis from the increased sample size.

TMZ became the standard treatment following the 
study of Stupp’s trial. Nevertheless, the high expense of 
the standard treatment would be a financial burden in a 
limited-resource setting. Several studies proposed clinical 
prediction tools for prognostication in GBM. The HALP 
score may be used as a reliable and cheap prognostic factor 
for developing treatment strategies for GBM patients. Luo 
et al. developed a nomogram predicting prognosis in GBM 
from the SEER database and reported that the C-indices 
of the nomogram were 0.717 (95% CI: 0.710–0.724) and 
0.724 (95% CI: 0.713–0.735) in the training cohort and the 
validation cohort, respectively (36). Additionally, Zheng  
et al. demonstrated the unadjusted C-index of a nomogram 
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Table 4 Prognostic performances of 2-year mortality by nomogram without and with HALP score

Nomogram Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC (95% CI)

Nomogram without HALP score 0.92 (0.85–0.98) 0.50 (0.26–0.73) 0.86 (0.78–0.94) 0.64 (0.39–0.89) 0.71 (0.55–0.86)

Nomogram with HALP score 0.66 (0.55–0.78) 0.88 (0.74–0.99) 0.95 (0.89–1.00) 0.43 (0.27–0.59) 0.78 (0.66–0.89)

HALP, hemoglobin, albumin, lymphocyte, and platelet; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive 
value; AUC, area under the ROC curve; ROC, receiver operating characteristic.

predicting prognosis in patients with GBM was 0.79, 
and the bootstrap-corrected C-index was 0.78, which is 
consistent with our findings (37). The nomogram with 
HALP score in the present study had a high value of PPV 
for 2-year mortality prediction; therefore, this tool with 
simple predictors could be an alternate way for allocating 
resources for high-cost medications in the real-world 
setting.

To the best of the authors’ knowledge, this was the 
first study to show the HALP-based nomogram for 
GBM prognosis. However, the limitations of the present 
study were noted. Firstly, the authors considered a small 
number of patients for the training and test datasets. This 
limitation would be overcome by multicenter research or 
meta-analysis, which would increase the number of study 
populations (38). Moreover, the nomogram should be 
estimated using a larger number of unseen data to confirm 
generalizability, which would make it challenging to 
evaluate these models in the future through a prospective 
study (2). Secondly, the retrospective design of the study 
led to the selection and information bias. Nevertheless, 
the authors tried to manage this limitation by establishing 
an operational definition, inclusion, and exclusion criteria 
before the review (39,40).

Conclusions

In summary, the HALP score was useful for the added 
performance of prognostication in patients with GBM. 
A nomogram with basic predictors could be challenged 
to apply for allocating resources for high-cost drugs. 
Furthermore, future multicenter prospective studies should 
be done to externally validate the HALP-based nomogram.
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