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Introduction

Sphingolipids, named after the mythical creature Sphinx 
due to their initially mysterious function akin to the 
enigmatic riddle posed by Sphinx, are essential components 
of the eukaryotic cell membrane (1). They are primarily 
localized in the nervous system and play a critical role in 

various cellular processes, such as regulating membrane 
dynamics, modulating cell signaling, and mediating cell 
adhesion and recognition (2). Based on the structure, 
sphingolipids can be categorized into sphingoid bases 
(and their simple derivatives), ceramides, and complex 
sphingolipids (3). Glycosphingolipids, a common type of 
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complex sphingolipids, are characterized by the presence 
of carbohydrate groups in their molecules (4). Neutral 
glycosphingolipids, such as glucosylceramides (GlcCer) 
and galactosylceramides (GalCer), contain an uncharged 
carbohydrate group. Acidic glycosphingolipids, represented 
by sulfatides and gangliosides, comprise negatively charged 
groups such as sulfate groups or sialic acid groups (5) (Figure 1). 

Sphingolipids are transported to lysosomes through 
the membrane flow, where they are degraded into the 
basic units (6). The degradation of sphingolipids is 
accomplished through a stepwise process involving 
various specific lysosomal acid hydrolases (7,8) (Figure 2).  
These enzymes can easily access glycosphingolipids with 
long-chain carbohydrate groups and efficiently break 
them down into smaller molecules. However, these 
enzymes cannot access glycosphingolipids with short 
oligosaccharide chains and require activator proteins to 
facilitate the degradation process (9). To date, five known 
sphingolipid activator proteins (SAPs) have been identified, 
including GM2 activator and four saposins (Saposin 
A, B, C, and D). SAPs exhibit membrane perturbing 
capabilities, act as physiological detergents, and/or engage 
in direct interactions with enzymes. These properties 
are indispensable for accessing and breaking down 
glycosphingolipids by lysosomal enzymes (10). Defects 

either in enzymes or SAPs lead to the inability to degrade 
certain sphingolipids. Consequently, these sphingolipids 
accumulate within lysosomes, causing sphingolipidoses, a 
subgroup of lysosomal storage disorders (11,12) (Figure 3). 

The diagnosis of sphingolipidosis due to an enzyme 
deficiency can be accomplished by enzyme activity 
measurement (13). However, the diagnosis of SAP 
deficiencies remains challenging due to the complexities 
of SAP functional study in a clinical laboratory. Moreover, 
these disorders are exceptionally rare, increasing the 
likelihood of oversight and misdiagnosis. Because of the 
clinical similarities between SAP defects and corresponding 
enzyme deficiencies (14,15), physicians often encounter 
confusion caused by the discrepancy between clinical 
presentations and normal enzyme activities. This review 
paper focuses on laboratory methodologies and aims to 
provide insight into the enigmatic aspects surrounding 
the diagnosis of SAP deficiencies. By unraveling the 
complexities involved, it is hoped to streamline the 
laboratory diagnostic process, reducing diagnostic odysseys, 
and enhancing accuracy in identifying these defects.

GM2 activator deficiency

GM2 activator (GM2A or GM2AP), encoded by the 

Figure 1 The synthesis and structures of representative sphingolipids. Sphingosine represents one of the most common sphingoid bases, 
synthesized by attaching an acyl group to serine. Ceramide is formed through the linkage of a fatty acid to the amine group of a sphingosine 
molecule. Glucosylceramide is a neutral glycolipid, with a glucose molecule attached to the head of ceramide. Sulfatide represents an acidic 
glycosphingolipid, which is a galactosylceramide molecule tagged with a sulfate group.
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gene GM2A, is a glycoprotein with a molecular weight 
of 17.6 kDa (16,17). GM2AP functions as the activator 
protein mainly for the degradation of GM2 gangliosides by 
hexosaminidase A (18). Its molecule possesses a hydrophobic 
cavity capable of harboring the ceramide moiety of GM2 
gangliosides, which plays a vital role in delivering GM2 to 
hexosaminidase A (19). Any defect in hexosaminidase A or 
GM2AP results in the accumulation of GM2 gangliosides 
in lysosomes, causing GM2 gangliosidosis (19). Patients 
with GM2 gangliosidosis commonly present with impaired 
development of the central nervous system, exaggerated 
startle response, hypotonia, and cherry red spots (19). 
The majority of GM2 gangliosidosis cases are caused by 
hexosaminidase A deficiency, also known as Tay-Sachs 
disease (OMIM 272800), or combined hexosaminidase A 
and B deficiency, referred to as Sandhoff disease (OMIM 
606873) (20). The diagnosis of Tay-Sachs disease or 
Sandhoff disease is established via enzyme assay, which 
reveals a significantly reduced activity (21). Sandhoff et al. 
observed an exceptional case of GM2 gangliosidosis with 
clinical features resembling those found in Tay-Sachs disease 

patients, yet hexosaminidases appeared to be normal when 
using a synthetic substrate in the enzyme assay (22,23). This 
exceptional case was subsequently confirmed as the first 
reported case of GM2 activator deficiency, also referred to as 
the AB variant of GM2 gangliosidosis (OMIM 272750) (24). 
Given that synthetic substrates are usually small molecules 
readily accessible and digestible by hexosaminidases, thus 
not requiring GM2AP, such substrates are unsuitable for 
assessing GM2 activator deficiency. 

Functional study

O’Brien et al. demonstrated a significantly reduced 
hexosaminidase activity in fibroblasts from a patient with 
GM2 activator deficiency using natural GM2 ganglioside 
extracted from brain tissues as the substrate (25). It was 
evident that, in the absence of a functional GM2 activator, 
the natural GM2 gangliosides could not be degraded by 
the enzyme. Therefore, it is feasible to distinguish GM2 
activator deficiency from other types of GM2 gangliosidoses 
by running parallel enzyme activity testing using synthetic 
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Figure 2 Representative metabolic pathway of sphingolipid degradation. This illustrative metabolic pathway highlights the stepwise 
degradation of sphingolipids. At each step, a monosaccharide or a sulfate group is sequentially removed from a sphingolipid molecule by a 
specific enzyme, ultimately resulting in the formation of ceramide. Ceramide is then further degraded by eliminating a fatty acid group to 
produce sphingosine. Each degradation step also relies on sphingolipid activator proteins. Among these activator proteins, saposin B and C 
exhibit broad specificity, while GM2 activator, saposin A, and saposin D demonstrate narrower specificity. SAP, sphingolipid activator protein.
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and natural substrates respectively. In cases of GM2 
activator deficiency, an abnormal activity result is obtained 
only when employing a natural substrate, while other types 
of GM2 gangliosidoses present abnormal results in both 
tests using synthetic and natural substrates. It is worth 
noting that, while the presence of detergent such as sodium 
taurocholate is crucial for achieving optimal enzyme activity 
(25,26), detergent quantity should be carefully validated 
since an excessive amount can compensate for the defect 
in GM2AP and result in false-negative results for GM2 
activator deficiency. Tropak et al. established a fluorescence 
enzyme activity assay using a synthetic fluorescent GM2 
analog that was incorporated into liposomes to mimic the 
intra-lysosomal membrane (27). By utilizing the modified 
liposomes along with recombinant GM2AP, they provided 
an alternative strategy for distinguishing GM2 activator 
deficiency from other GM2 gangliosidoses. That is, in GM2 
activator deficiency, normal enzyme activity was observed in 
the presence of recombinant GM2AP, but abnormal activity 

was obtained when recombinant GM2AP was absent. In 
contrast, other GM2 gangliosidoses exhibited reduced 
enzyme activity regardless of the presence or absence of 
recombinant GM2AP (27). Several other techniques can 
be used to quantitively measure the expression of GM2AP, 
such as Western blotting, enzyme-linked immunosorbent 
assay (ELISA), screen-printed carbon electrode (SPCE), 
and fluorescence-resonance energy transfer (FRET) assay 
(28-30). Nonetheless, these techniques are solely suitable 
for situations where mutations in the GM2A gene result 
in decreased expression or absence of GM2AP, or critical 
alterations in protein antigenicity.

Given the complex nature of GM2AP functional 
studies,  the measurement of biomarkers becomes 
essential during the diagnostic journey for GM2 activator 
deficiency. Abnormal levels of specific sphingolipid species 
along with typical clinical presentations in the setting of 
normal enzyme activity may strongly suggest an activator 
defect. 
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Figure 3 Representative disorders stemming from blockages in sphingolipid degradation pathway. Blockages in the degradation pathway can 
result from deficiencies in either enzymes or sphingolipid activator proteins, leading to the buildup of specific sphingolipids and respective 
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GM2 gangliosides

Initially, GM2 gangliosides were assessed using thin-layer 
chromatography (TLC), gas-liquid chromatography (GLC) 
and high-performance liquid chromatography (HPLC) 
(31-33). Tsuji et al. also established an ELISA method 
using an anti-GM2 monoclonal antibody to quantify GM2 
in fibroblasts (34). The application of mass spectrometry 
(MS) for GM2 measurement offers an advantage due to 
its exceptional sensitivity. Tsui et al. developed a tandem 
mass spectrometry (MS/MS) strategy for the quantitative 
profiling of gangliosides in tissue lipid extracts, including 
GM2 (35). They employed an aqueous partition method 
for ganglioside enrichment and proposed a three-step MS 
analysis strategy, including precursor ion scan of 290 m/z,  
product ion spectrum analysis, and ceramide moiety 
composition determination (35). Subsequently, a simple 
and accurate isotope dilution method was also established 
to quantify GM2 human CSF samples with a linear range of 
10–200 ng/mL (36). However, since GM2 gangliosides are 
integral components of cell membranes and are particularly 
abundant in brain tissue, the quantitative measurement of 
GM2 was mainly limited to cell or tissue extracts or CSF, 
significantly diminishing its clinical applicability (37,38). 
While an ultra-performance liquid chromatography 
(UPLC)-MS/MS method and an HPLC-MS/MS method 
were used to assess GM2 concentrations in the plasma of 
GM2 gangliosidosis patients, those studies suggested that 
GM2 species in plasma have limited diagnostic value (39,40). 
Blondel et al. validated an LC-MS/MS method to measure 
multiple plasma biomarkers following an easy sample 
preparation step (protein precipitation) (41). They discovered 
that GM2 (34:1) and the ratio of GM2 (34:1) to GM3 (34:1) 
were highly effective markers for distinguishing GM2 
gangliosidoses from normal controls with 100% sensitivity 
and 100% specificity (41). Those markers were also able 
to differentiate GM2 gangliosidoses from other lysosomal 
storage disorders that may have secondary accumulation of 
gangliosides, including Niemann–Pick disease types A/B 
and C, GM1-gangliosidosis, Fabry disease, Gaucher disease 
and Krabbe disease (41). Remarkably, they also observed 
elevated levels of GM2 (34:1) in a patient with GM2 activator 
deficiency (41). Therefore, GM2 (34:1) potentially can be 
used to streamline the diagnosis of GM2 activator deficiency.

Other biomarkers

Welford et al. conducted an investigation into various 
biomarkers in plasma for gangliosidoses, including 

lysoGM2 and lysoGM1, neurofilament light chain (NF-L), 
and glial fibrillary acidic protein (GFAP) (42). LysoGM2 
and lysoGM1 are deacylated derivatives of GM2 and 
GM1 gangliosides, respectively (43). NF-L is a neuron 
cytoskeletal protein and serves as a blood biomarker for 
neuronal damage (44). GFAP, on the other hand, is an 
astrocyte cytoskeletal filament as well as a biomarker for 
reactive astrocytosis (45). Using LC-MS/MS, Welford et al. 
observed elevated levels of lysoGM2 and lysoGM1 in almost 
all GM2 gangliosidosis patients, as well as in those with GM1 
gangliosidosis (42). Additionally, through immunoassay, 
they also detected elevated NF-L and GFAP in those 
patients (42). However, although these biomarkers could 
be used for treatment monitoring, they are not sufficiently 
specific for the diagnosis of GM2 gangliosidosis (42). GM2 
activator deficiency was not investigated in this study. With 
a multiplex LC-MS/MS, Pettazzoni et al. quantified several 
lysosphingolipids and found lysoGM2 was elevated in 10 out 
of 13 patients of Tay-Sachs and Sandhoff diseases but not 
detected in other diseases (46). Yet, lysoGM2 was reported 
to be normal in the plasma of a patient with a GM2 
activator deficiency (47), indicating a limited clinical utility 
of lysoGM2. 

Molecular genetic analysis of the GM2A gene is an 
indispensable step in ultimately diagnosing GM2 activator 
deficiency. To date, 26 cases of GM2 activator deficiency 
have been reported, ascribed to a range of identified genetic 
variants including missense, nonsense, frameshift mutations, 
and deletions (24,48-66).

Saposin A deficiency

Saposins are four small non-enzymatic proteins localized 
within lysosomes, namely saposin A, B, C, and D (67). All 
four saposins derive from a common precursor protein, 
referred to as prosaposin, which is encoded by the PASP 
gene (67). Prosaposin molecule contains four distinct 
functional domains (68). Upon transport to lysosomes, 
prosaposin undergoes hydrolysis, releasing these domains as 
individual saposin proteins (69). Saposin A functions as an 
activator protein for galactosylceramidase, facilitating the 
breakdown of GalCer to ceramides (70). Saposin A is also 
involved in the degradation of GlcCer by β-glucosidase; 
thus, its function partially overlaps with that of saposin C, 
although the role of saposin A in the degradation of GlcCer 
is to a lesser extent (70). The inability to degrade GalCer 
can result in Krabbe disease, which is typically caused by a 
deficiency in galactosylceramidase (OMIM 245200) (71). 
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Saposin A deficiency (OMIM 611722) was first reported by 
Spiegel et al., who described a case of a six-month-old girl 
with atypical Krabbe disease characterized by progressive 
encephalopathy and abnormal myelination (72). The 
significantly decreased galactosylceramidase activity in the 
leukocytes of this girl, which was around 1% of the average 
of the normal range, initially led to a misdiagnosis of 
Krabbe disease due to galactosylceramidase deficiency (72). 
Nevertheless, they observed that the galactosylceramidase 
activity in fibroblasts was normalized in the presence of 
detergents, which suggested an activator deficiency (72). 
Saposin A deficiency was subsequently confirmed by 
identifying a homozygous mutation within the saposin 
A domain of the PSAP gene (72). Although the authors 
stated that the unexpected decrease in galactosylceramidase 
activity could be attributed to compromised sample 
integrity (72), the significantly reduced enzyme activity 
does not seem to be solely due to the non-fresh sample, 
as non-fresh samples typically exhibit mild to moderate 
reductions. In the second documented case of saposin A 
deficiency, Kose et al. also noticed that galactosylceramidase 
activities in both dried blood spots (DBS) and leukocytes 
were decreased, although the activity in leukocytes was 
above the affected range for typical Krabbe disease (73). 
In the third case of saposin A deficiency reported by 
Calderwood et al., galactosylceramidase enzyme activity 
in leukocytes was also slightly below the normal range but 
above the affected range (74). Those reports suggest that 
saposin A possibly plays a role in stabilizing the enzyme 
or increasing the maximal velocity of the enzyme (70). 
While galactosylceramidase activity in a freshly collected 
specimen might be less affected by saposin A defect, enzyme 
activity in a non-fresh specimen might be considerably 
compromised, significantly increasing the likelihood of 
being misdiagnosed as galactosylceramidase deficiency. 
While directly assessing saposin A functionality is currently 
not available in a clinical laboratory setting, quantification 
of saposin A amount in plasma can be achieved by 
time-delayed fluorescence immunoassays (75) or by 
immunoblotting (70). Nevertheless, these methods are only 
appropriate in the scenarios where genetic variants cause 
reduced or entirely absent protein expression or critical 
antigenicity alterations. 

Due to the malfunction of saposin A, the impairment in the 
degradation of GalCer in skin fibroblasts was observed (72).  
Therefore, a prominent elevation of GalCer in fibroblast 
extractions was revealed using TLC, along with the 
elevations of GlcCer, lactosylceramides, and ceramides 

to a lesser extent (73). Considering the overlapping 
functionalities of saposin A and C but the relatively lesser 
role of saposin A in GlcCer degradation (70), GlcCer 
may lack distinctiveness as a biomarker. Moreover, an 
elevation of ceramides in saposin A deficiency became an 
enigmatic riddle, since as a product of GalCer and GlcCer 
degradation its elevation in saposin A deficiency is not 
anticipated. Unfortunately, this point was not discussed 
in the original report. Hence, more investigations were 
conducted on GalCer and its related metabolites as 
appropriate biomarkers for Krabbe disease, including 
saposin A deficiency.

GalCer

It was reported that GalCer primarily accumulated in 
localized globoid cells in the brain of Krabbe disease 
patients, but its total amount was generally low (76). While 
a slight elevation was detected in the kidney, no elevations 
were observed in the urine, CSF, and skin fibroblasts of 
Krabbe disease patients (77-79). To date, there have been 
no studies on GalCer levels in the blood of Krabbe disease 
patients that have yielded significant findings. Dawson 
reported a notable increase in the liver tissue, suggesting 
liver biopsy could be potentially valuable for diagnostic 
purposes (80). However, the invasive nature of biopsies has 
constrained the applicability of GalCer as a biomarker. 

Psychosine

Psychosine, also known as galactosylsphingosine, is a 
cytotoxic byproduct resulting from GalCer deacylation and 
accumulates in the brain of Krabbe disease patients (81).  
The elevation of psychosine in the DBS from a saposin A 
deficiency patient was also reported (74). Several techniques 
were employed to measure psychosine levels in human 
and animal tissues, including TLC, HPLC, MS, and 
NMR spectroscopy (82-85). LC-MS and LC-MS/MS 
methods were also developed to quantify psychosine levels 
in mouse CSF and serum (86,87). Chuang et al. utilized 
HPLC-MS/MS to quantitatively detect psychosine in 
DBS from newborns and observed elevated psychosine 
levels in infantile patients with Krabbe disease (88). 
Subsequently, Turgeon et al. further validated this method 
and affirmed the significant potential of psychosine in 
DBS as a newborn screening biomarker (89). The role of 
psychosine in newborn screening for Krabbe disease was 
further confirmed through the analysis of longitudinal data 
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and improved LC-MS/MS methods (90-92). LC-MS/MS 
methods for simultaneously quantifying psychosine and 
glucosylsphingosine (lyso-Gb1) in plasma, serum and CSF 
were also developed (93,94). It is worth noting that the 
lower limit of quantitation (LLOQ) for psychosine in CSF 
was 0.1 pg/mL, compared to the LLOQ of 0.03 ng/mL  
in plasma (94). It suggests that CSF has the potential 
to detect even minor fluctuations in psychosine levels, 
rendering it a more sensitive specimen type than plasma (94).  
Nonetheless, the invasive collection procedure makes 
CSF unsuitable for treatment monitoring. The utilization 
of psychosine in plasma and serum as a biomarker for 
diagnosing and monitoring Krabbe disease still requires 
further investigations.

When evaluating patients suspected of Krabbe disease, it 
is essential to proceed with caution to prevent misdiagnosis, 
as both galactosylceramidase and saposin A deficiencies can 
exhibit reduced galactosylceramidase activity. Particularly in 
cases where a molecular genetic analysis of GALC, the gene 
encoding galactosylceramidase, returns negative findings, 
the subsequent testing should involve molecular analysis 
of the PSAP gene. The diagnosis of saposin A deficiency 
is confirmed when molecular analysis reveals homozygous 
or compound heterozygous pathogenic variants within 
the saposin A domain of the PSAP gene. Alternatively, the 
presence of one allele carrying a heterozygous pathogenic 
variant within the saposin A domain, along with another 
deleterious allele affecting the entire prosaposin protein, can 
also establish the diagnosis. In the three reported patients, 
homozygous pathogenic or likely pathogenic variants in 
the coding region of the saposin A domain, including the 
single base pair deletion c.207_209del, the missense variant 
c.209T>G, and the missense variant c.257T>A, were 
identified (72-74). 

Saposin B deficiency

Saposin B was initially discovered by Mehl et al. and 
demonstrates broad-ranging specificity (10,95). It can extract 
sphingolipids of multiple types from the membrane and 
deliver them to their respective enzymes for degradation (10).  
Saposin B primarily stimulates the hydrolysis of GM1 
gangliosides, sulfatides, and globotriaosylceramide (Gb3) 
(96-98). Sulfatides are digested by arylsulfatase A, the 
deficiency of which causes metachromatic leukodystrophy 
(MLD) (OMIM 250100) (99). Gb3 is a substrate for 
α-galactosidase, a defect which leads to Fabry disease 
(OMIM 301500) (100). GM1 ganglioside degradation relies 

on β-galactosidase 1, and its deficiency underlies GM1-
gangliosidosis (OMIM 230500, 230600, 230650) and 
mucopolysaccharidosis type IVB (OMIM 253010) (101).  
The accumulation of these sphingolipids and their 
derivatives concurrently would strongly indicate saposin B 
deficiency (OMIM 249900). Shapiro et al. reported that two 
siblings with characteristic symptoms of MLD exhibited 
a defect in sulfatide degradation, despite having nearly 
normal arylsulfatase A activity (102). Subsequent studies 
confirmed that those siblings were indeed affected by 
saposin B deficiency (103,104). Fujibayashi et al. developed 
a simple immunoblotting method using an anti-saposin 
B antibody to screen for saposin B deficiency (105). This 
method applies exclusively to patients with deleterious 
mutations that lead to reduced protein expression or critical 
antigenicity alterations. Fischer et al. set up an enzyme assay 
using purified arylsulfatase A and radiolabeled sulfatide to 
evaluate the activating effect of saposin B (106). This assay 
relies on the principle that the degradation of sulfatides by 
the purified arylsulfatase A requires the presence of either 
a detergent like taurodeoxycholate or functional saposin B 
protein (106). To eliminate the use of hazardous radioactive 
materials and laborious preparation procedure, Norris et al. 
also developed an ESI-MS/MS method to quantify saposin 
B activity based on the same strategy and demonstrated this 
nonradioactive method was reliable, fast and specific (107).  
These initiatives have made it possible to measure saposin 
B activity in human specimens for the diagnosis of saposin 
B deficiency. However, there have been no reports of 
establishing such a diagnostic test in a clinical laboratory 
setting yet.

Sulfatides

Urinary excretion of sulfatides is a characteristic biochemical 
feature of MLD (108). Sulfatides can be measured by TLC, 
spectrophotometry, HPTLC, or HPLC methods (109-112). 
Hsu et al. developed an ESI-MS/MS method to measure 
sulfatides in brain and pancreatic tissues (113). Whitfield 
et al. expanded an MS/MS method for urine sulfatide 
measurement and detected substantially increased levels 
of multiple hydroxy and non-hydroxy species of sulfatides 
in the urine samples from MLD patients (114). Cui et al. 
made further enhancements to the MS/MS method by 
synthesizing a new non-physiological sulfatide as an internal 
standard (115). Through MS/MS coupled with solid-phase 
extraction, Kuchař et al. identified five sulfatide isoforms, 
namely C22:0, C22:0-OH, C24:0, C24:1-OH, and C24:0-
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OH sulfatides, which exhibited the most significant 
distinctions between urine samples from MLD patients and 
the control group (116). LC-MS/MS methods on DBS and 
dried urine spots (DUS) were also established (117,118). 
Barcenas et al. demonstrated that the sulfatide levels in the 
DUS from MLD patients did not overlap with those from 
non-MLD patients, whereas such an overlap existed in the 
DBS from MLD and non-MLD patients, indicating that 
DUS is a better specimen type compared to DBS (118). 

Lysosulfatides

Lysosulfatides, the deacylation product of sulfatides, were 
detected by HPLC and reported to be elevated in the 
tissues of MLD patients (119). Several methods based 
on matrix-assisted laser desorption ionization time-of-
flight (MALDI-TOF) MS methods were also developed to 
measure lysosulfatides (120-122). Mirzaian et al. established 
a LC-MS/MS method, by which they could quantify a 
wide range of sulfatide and lysosulfatide species in urine 
and plasma (123). Their findings suggested that sulfatides 
in plasma might lack sufficient sensitivity to reliably 
distinguish all MLD patients from healthy individuals, and 
that lysosulfatides might not be reliably quantifiable due to 
a potential interfering ion from sulfatides (123). Cao et al. 
also developed an LC-MS/MS method to quantify sulfatides 
and lysosulfatides in CSF (124). While there are various 
specimen types available for MLD biomarker measurement, 
urine sulfatides measurement, instead of lysosulfatides, 
likely remains the most clinically valuable test.

Gb3

As a biomarker for the X-linked disorder Fabry disease 
(OMIM 301500) (125), Gb3 is anticipated to also serve as a 
potential discriminative marker for distinguishing saposin B 
deficiency from arylsulfatase A deficiency. Methods such as 
TLC, gas chromatography (GC), and HPLC were initially 
developed to measure Gb3 at an earlier time (126-128).  
Zeidner et al. established a rapid and sensitive ELISA 
method to quantify Gb3 levels in plasma using an antibody 
with a distinct affinity for Gb3 (129). MS/MS method was 
also established by Boscaro and collaborators to measure 
Gb3 in human plasma and urine (130). Auray-Blais et al. 
utilized LC-MS/MS to quantify Gb3 on filter paper and 
found that it remained stable for 7 weeks in DBS (131). 
A new strategy of internal standard synthesis potentially 
expanded the capacity to measure various forms of Gb3 

through MS (132). While Gb3 can be reliably measured 
in plasma and urine, Young et al.’s study revealed that 
plasma Gb3 levels were elevated exclusively in male 
patients with the classic form of Fabry disease, and the levels 
exhibited a wide range overlapping with those in the normal 
control group (133). Therefore, plasma Gb3 was not deemed 
an ideal marker for Fabry disease and urine Gb3 may possess 
greater diagnostic potential as a biomarker (133). Kuchař et al. 
reported that urinary Gb3 was significantly elevated in a 
saposin B deficiency patient, in addition to elevations of  
sulfatides (134).

Lyso-Gb3 and methylated Gb3

Lyso-Gb3 is a deacylation product of Gb3 by acid 
ceramidase (135). Togawa et al. reported that plasma 
lyso-Gb3 levels were elevated in both male and female 
Fabry patients, whereas plasma Gb3 levels in male 
patients with variant forms of Fabry disease and female 
patients were indistinguishable from those in the control 
group, suggesting that lyso-Gb3 may serve as a better 
biomarker compared to Gb3 (136). Auray-Blais et al.’s 
study demonstrated that urinary lyso-Gb3 is a reliable 
independent biomarker for Fabry disease (137). With 
UPLC-MS/MS, Gold et al. reported that both lyso-Gb3 
and lyso-ene-Gb3 can be reliable biomarkers (138). Lavoie 
et al. developed a multiplex LC-MS/MS method to analyze 
lyso-Gb3 analogs in urine and identified the most abundant 
analogs with m/z 802, 820, and 836 as promising urinary 
biomarkers for Fabry disease (139). Metabolomic profiling 
with a time-of-flight (TOF)-MS unveiled more potential 
novel biomarkers for Fabry disease, including methylated 
Gb3-related isoforms (140). Abaoui et al.’s study suggested 
that methylated Gb3 isoforms are the intermediate 
metabolites between Gb3 and lyso-Gb3, thereby expanding 
the biomarker panel for Fabry disease (141). Regarding 
saposin B deficiency, further investigations into lyso-Gb3 
are necessary to assess its potential clinical utility as a 
biomarker.

GM1 gangliosides

It has been reported that saposin B deficiency does not 
lead to the accumulation of keratan sulfate, which is 
a hallmark of mucopolysaccharidosis type IVB (142). 
Since saposin B is necessary for the degradation of GM1 
gangliosides by β-galactosidase 1, it was hypothesized that 
saposin deficiency may result in the accumulation of GM1 
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gangliosides (143,144). However, only a slight elevation of 
GM1 gangliosides was observed in the skin fibroblasts from a 
patient with saposin B deficiency, while a higher elevation of 
GM3 gangliosides was detected instead (145). Due to limited 
research on GM1 gangliosides and the related metabolites as 
biomarkers for saposin B deficiency, it is not recommended 
to include them in clinical diagnostic testing currently.

Saposin B deficiency is the most common sphingolipid 
activator deficiency, with more than 30 cases have been 
reported (146-148). The diagnosis of saposin B deficiency is 
established through molecular genetic analysis of the PSAP 
gene, which identifies either pathogenic variants within 
the saposin B domain on each allele, or one allele with a 
pathogenic variant in the saposin B domain and another 
allele with a pathogenic variant located outside of saposin B 
domain but damaging the entire prosaposin protein.

Saposin C deficiency

Saposin C protein was first isolated by Ho et al. (149). 
Similar to saposin B, saposin C also exhibits a broad 
specificity. Saposin C can stimulate the degradation 
of GlcCer by acid β-glucosidase, the degradation of 
GalCer by galactosylceramidase, and the degradation of 
sphingomyelins by sphingomyelinase (150-152). Saposin 
C deficiency (OMIM 610539) was initially reported by 
Christomanou et al., who demonstrated that a variant 
form of Gauche disease presented by a patient stemmed 
from the absence of Saposin C (153). In contrast to typical 
Gaucher disease (OMIM 230800, 230900, 231000) caused 
by acid β-glucosidase deficiency, patients with saposin C 
deficiency exhibited a normal β-glucosidase activity when 
a synthetic substrate such as 4-methylumbelliferyl-β-D-
glucopyranoside was used for enzyme assay (154,155). When 
a natural substrate such as GlcCer was used, saposin C 
deficiency patients had reduced β-glucosidase activity (153).  
Chang et al. introduced a fluorescence immunoassay for 
quantifying saposin C concentration in plasma (75). Meikle 
et al. utilized this method to assess the amount of saposin 
C protein in DBS (156). Those methods are convenient in 
cases where saposin C deficiency is due to mutations leading 
to reduced expression or the absence of saposin C or 
antigenicity alterations. Yoneshige et al. directly quantified 
the activity of synthetic saposin C using imiglucerase 
(Cerezyme®), which is a recombinant analogue of 
β-glucosidase, and artificial fluorescent substrates embedded 
into the liposome to mimic intra-lysosomal membrane (157). 

This strategy can be employed by a clinical lab to determine 
saposin C activity in patient samples. Nonetheless, it’s worth 
noting that the clinical use of this strategy as a diagnostic 
tool for saposin C deficiency has not been reported yet.

A variety of biomarkers have been discovered for Gaucher 
disease, including tartrate-resistant acid phosphatase 
(TRAP), angiotensin-converting enzyme (ACE), cathepsin 
K, Chitotriosidase, pulmonary and activation-regulated 
chemokine (PARC/CCL18), chemokines macrophage 
inflammatory protein (MIP)-1α and MIP-1β, ferritin, GlcCer, 
GM3 gangliosides and lyso-Gb1 (158,159). Elevations of 
chitotriosidase activity, chemokine CCL18, GlcCer, and 
lyso-Gb1 were also observed in the plasma of patients with 
saposin C deficiency (154,159,160). Since many of these 
biomarkers are associated with secondary abnormalities 
and lack sufficient specificity and sensitivity (158),  
only GlcCer and its related metabolites are discussed in the 
following section.

GlcCer

GlcCer was initially detected using methods such as GC 
and HPLC (161-163). Samuelsson et al. developed a GC-
MS method for GlcCer detection (164). Murata et al. 
also reported a direct inlet-chemical ionization MS that 
was better for the determination and structural studies of 
cerebroside species including GlcCer (165). Hillborg et al.  
first reported the elevation of GlcCer in plasma from 
Gaucher patients (166). Multiple studies further confirmed 
that its plasma levels were elevated in Gaucher disease 
(161,162). Through an ESI-MS/MS method, Whitfield et al.  
observed a general increase in all species of GlcCer in the 
plasma of Gaucher patients; however, there was a substantial 
overlap between the levels detected in the affected group 
and those in the normal group (167). They also noticed 
that the ratio of GlcCer (C16:0)/lactosylceramide (C16:0) 
was approximately four times higher in the patient than 
in normal individuals, indicating its potential as a valuable 
diagnostic biomarker (167). When exploring newborn 
screening biomarkers with LC-MS/MS, Meikle et al. also 
reported that GlcCer (C16:0) was elevated only in 3 of  
5 Gaucher patients with sensitivity and specificity 
of 60 and 100, respectively (156). Therefore, those 
studies suggest that the ratio of GlcCer (C16:0) to 
lactosylceramide (C16:0), instead of GlcCer (C16:0) alone, 
holds the potential of greater clinical value and is worthy 
of further investigations.
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Lyso-Gb1

Lyso-Gb1 is a product of GlcCer deacylation by acid 
ceramidase (135). The elevations of lyso-Gb1 in the spleen, 
hepatic, and brain tissues of Gaucher patients, as well as 
in human fetuses affected with type 2 Gaucher disease, 
were reported (168-171). In those studies, the detection 
methods included TLC, GLC, or HPLC (168-170).  
Oshima reported using a GC-MS method to identify 
lyso-Gb1 in the spleen tissue of Gaucher patients (172). 
An HPLC-FAB-MS method was also established, which 
enabled accurate quantification of lyso-Gb1 due to its ability 
to effectively separate lyso-Gb1 from psychosine (173).  
Dekker et al. utilized an LC-ESI-MS/MS technique to 
quantify lyso-Gb1 and revealed a significant elevation of 
more than 200 folds in the plasma of Gaucher patients, 
without an overlap with the control group (159). 
Comparable elevations of lyso-Gb1 were also observed in 
the plasma of two patients with saposin C deficiency (159). 
Rolfs et al. also detected increased lyso-Gb1 levels in the 
plasma of patients with Gaucher disease using HPLC-MS/
MS and determined an optimal cut-off of 12 ng/mL with 
both sensitivity and specificity of 100% (174). Their study 
provides strong evidence that lyso-Gb1 is an exceptionally 
sensitive and specific biomarker for Gaucher disease (174). 
Mirzaian et al. optimized the LC-ESI-MS/MS method 
by incorporating an isotope-labelled lyso-Gb1 standard 
to improve test sensitivity and enable the measurement 
of lyso-Gb1 in unconcentrated urine samples (175). They 
further demonstrated elevated lyso-Gb1 levels in the urine 
of symptomatic type 1 GD patients (175). Zhang et al. 
developed a hydrophilic interaction liquid chromatography 
(HILIC)-MS/MS method to reliably detect lyso-Gb1 
in DBS, thus streamlining the utilization of lyso-Gb1 in 
newborn screening as a biomarker for Gaucher disease (176). 
Quantification of lyso-Gb1 in CSF was also reported (94). 
Hence, lyso-Gb1 stands as a highly sensitive and convenient 
biomarker for the diagnosis of Gaucher disease, as well as 
saposin C deficiency, as systematically reviewed by Revel-Vilk 
et al. (177). Moreover, metabolomics studies have unveiled 
related lyso-Gb1 analogs as potential biomarkers (178). 
Subsequent investigations have explored their role in the 
diagnosis of Gaucher disease (179-181). Nevertheless, those 
analogs will require further assessments in future research. 

To date, 15 cases of saposin C deficiency have been 
reported (14,153-155,160,182-184). The diagnosis of 
saposin C deficiency is confirmed through molecular 
analysis of the PSAP gene, which reveals the presence of 

two pathogenic variants in-trans, with at least one affecting 
the saposin C domain, while the other impacting either 
saposin C or the entire protein.

Saposin D deficiency

Saposin D, as an activator for sphingomyelinase and 
ceramidase, facilitates the breakdown of sphingomyelins 
and ceramides (185,186). Matsuda et al. reported that 
a mouse model of saposin D deficiency presented with 
the accumulation of ceramides in the brain tissues (187). 
However, saposin D deficiency has not been reported 
in humans, potentially due to the broad specificity of 
other saposin proteins, particularly saposin C, which 
can compensate for the dysfunction of saposin D in the 
degradation of sphingomyelins and ceramides (150,188). 
Although it has been reported that pathogenic variants 
within the saposin D domain of the PSAP gene are 
associated with Parkinson’s disease (189), this discovery 
remains a topic of controversy (190,191).

Prosaposin deficiency

Prosaposin deficiency (OMIM 611721), also known 
as combined saposin deficiencies, is attributed to the 
impairment of the entire prosaposin protein. Harzer et al.  
reported two siblings presented with an atypical form of 
Gaucher disease that was characterized by more severe 
symptoms, the accumulation of GlcCer and ceramides 
in liver tissue, as well as the partially reduced activities of 
galactosylceramidase, β-glucosidase, and ceramidase (192). 
Those two siblings possessed homozygous mutations 
in the initiation codon of the PSAP gene, which could 
have led to either the absence of prosaposin protein or 
mistargeting of prosaposin into medium instead of transport 
to lysosomes (193). Additional biochemical findings in 
those siblings included the absence of both saposin B and 
C in lysosomes, as well as the elevations of various neutral 
glycolipids in multiple tissues, including mono-, di-, tri-,  
and tetrahexosylceramides such as GlcCer, GalCer, 
lactosylceramides, and digalactosylceramides, in addition to 
sulfatides, ceramides, GM3 and GM2 gangliosides (194,195).

There have been 10 reported cases of prosaposin 
deficiency (134,192,196-200). Summarizing those ten cases 
reveals that patients with prosaposin deficiency typically 
present with more severe clinical symptoms, including 
hepatosplenomegaly, microcephaly, hypotonia, seizures, 
optic atrophy, and other manifestations (198,199). Multiple 
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types of sphingolipids accumulate in various tissues, 
including lyso-Gb1, lyso-Gb3, psychosine, ceramides, 
GlcCer, lactosylceramides, GalCer, Gb3, sulfatides and GM3 
gangliosides (198,199). Therefore, quantitative analysis of 
plasma lysosphingolipids by LC-MS/MS demonstrated a 
specific pattern of combined saposin deficiency, particularly 
elevations of both lyso-Gb1 and lyso-Gb3 (199). The 
enzyme assays revealed varying degrees of reduced activities 
in galactosylceramidase, β-glucosidase and ceramidase in 
leukocytes or fibroblasts, whereas the activities of other 
enzymes such as sphingomyelinase and neuraminidase 
remained within the normal range (192,199). Hence, a 
plasma or urine lysosphingolipid panel test that incorporates 
lyso-Gb1 and lyso-Gb3 could serve as a valuable tool for 
the early diagnosis of prosaposin deficiency. The diagnosis 
is confirmed through molecular genetic analysis, which 
identifies two in-trans pathogenic variants resulting in the 
malfunction of the entire prosaposin protein (199). The 
reported pathogenic variants caused frameshift, premature 
stop, or a splicing error in the PSAP gene, leading to the 
absence or loss of function of prosaposin protein and 
affecting multiple saposin proteins (134,198,199). Similar 
to saposin A deficiency, it is crucial to proceed with 
caution when discrepancies exist between reduced enzyme 
activities and negative molecular genetic analysis of the 
relevant enzyme genes. This is especially important when 
elevated levels of multiple biomarkers associated with 
different activator proteins are detected. In such cases, it is 
appropriate to pursue molecular analysis of the PSAP gene 
to confirm the diagnosis of prosaposin deficiency.

Conclusions

Lysosomal degradation of glycosphingolipids relies on 
the presence of SAPs. It is challenging to diagnose SAP 
deficiencies as affected individuals usually exhibit normal 
enzyme activities despite presenting with typical clinical 
features. Biomarkers such as GM2 ganglioside (34:1), 
sulfatides, lyso-GB1, lyso-Gb3, and psychosine are valuable 
for addressing this diagnostic complexity, and molecular 
genetics analysis serves as the essential confirmatory 
test. In cases of saposin A and prosaposin deficiencies, 
it’s noteworthy that abnormal enzyme activities can be 
observed. This could potentially result in the misdiagnosis 
of corresponding enzyme deficiencies. In such scenarios, 
discrepancies between reduced enzyme activities and 
negative findings in molecular genetic analysis of the 
relevant enzyme genes may indicate the necessity of a 

follow-up molecular test targeting the PSAP gene.
Ongoing research in this field may further advance our 

understanding of SAP deficiencies and improve the current 
diagnostic and therapeutic approaches.
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