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Introduction

The advent of immune checkpoint blockers (ICB) for 
the treatment of advanced non-small cell lung cancer 
(NSCLC) has generated, besides indisputable benefits, 
new clinical challenges for physicians, aiming to provide 
every treated patient with the best outcomes in terms of 
both length and quality of survival. The arising toxicities 
in the spectrum of auto-immunity require awareness and 
a prompt management (1), while the need for a correct 

patient selection has prompted the development of several 
pathological, clinical and molecular biomarkers to predict 
immunotherapy benefits (2). Of most interest, novel clinic-
radiological features associated to ICB treatment have been 
recognized in solid malignancies and in NSCLC. Indeed, 
hyperprogression and pseudo-progression question the 
respective paradigms that an anti-cancer agent should not 
foster tumor growth and that tumor response should be 
accompanied by disease dimensional decrease. Owing to 
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the spread of immunotherapy strategies, clinicians and 
radiologists involved in the care of cancer patients receiving 
ICB should be aware of these patterns, whose recognition 
and management may result crucial for improving patients 
outcomes. 

Hyperprogressive disease: prevalence and 
clinical predictors 

Programmed cell death protein 1 (PD-1) and programmed 
cell death ligand 1 (PD-L1) inhibitors, restoring the 
immune response against cancer cells, have significantly 
prolonged survival compared to chemotherapy, with a five-
year survival rate of 15-20% in pretreated patients (3). 
However, a rapid progression, upon immune checkpoint 
blockade, known as hyperprogressive disease (HPD), has 
recently been reported in a relatively small subgroup of 
NSCLC patients (4,5). The existence of HPD was initially 
suggested by the crossing of Kaplan Mayer survival curves 
in the CheckMate 057 (6) study and in the cohort 1 of 
Atlantic trial including EGFR-mutated and ALK-rearranged 
patients (7). 

Since the beginning of 2017, HPD has been described 
in several studies (Table 1). Firstly, Champiat et al. reported 
an acceleration of tumor growth in 12 (9%) out of 131 
evaluable cancer patients treated with anti-PD-1/PD-L1 
agents within phase I trials. In this study, tumor growth 
rate, representing the variation of tumor volume during 
time, was computed before (TGR ref) and during (TGR 
exp) anti-PD-1/PD-L1 therapy. HPD was defined as disease 
progression by RECIST and a 2-fold increase in the TGR 
ratio (TGR exp/TGR ref). HPD was not associated with 
either specific tumor type or higher baseline tumor burden, 
while it was significantly related to higher age and worse 
survival outcome (8). Of note, no cases of HPD in lung 
cancer patients were reported in the study by Champiat 
et al. (out of 13 treated patients).

Using similar TGR criteria, Kanjanapan et al. (16) and 
reported HPD in 7% of 352 cancer patients in phase I 
trials (with a higher proportion of HPD in female patients) 
testing ICB. Sasaki et al. (14) described HPD in 21% of 
62 gastric cancer patients (with a significant correlation 
between HPD and absolute neutrophil count, C-reactive 
protein levels, baseline tumour burden, presence of liver 
metastases and performance status) receiving anti-PD-1 
agents. HPD was reported also in 10 (29%) out of 34 
patients with recurrent and/or metastatic head and neck 
squamous cell carcinoma treated with PD-1/PD-L1 

inhibitors by Saâda-Bouzid et al. (10). In this study, HPD 
was defined as an increase of at least 2-fold in tumor growth 
kinetics (TGK) (which measures the variation of the sum 
of the largest diameters of target lesions per unit of time), 
compared to TGK before immunotherapy. HPD was 
not associated with local or distant recurrence, but it was 
significantly related to regional recurrence.

Moving to the specific setting of advanced NSCLC, 
HPD was reported in 13.8% of 406 cases treated 
with single agent PD-1/PD-L1 inhibitors in a French 
multicentric study by Ferrara et al. (4). In this study, HPD 
was defined as disease progression by RECIST and >50% 
increase in the TGR variation during ICI compared 
to TGR before immunotherapy (TGR exp-TGR ref 
>50%). HPD significantly correlated with more than two 
metastatic sites before ICI compared to non-HPD (62.5% 
vs. 42%, P=0.006) and worse overall survival compared to 
conventional disease progression [3.4 months (95% CI: 
2.8–7.5) vs. 6.2 months (95% CI: 6.3–7.9), P=0.003]. This 
study was the largest multicentric analysis exploring HPD 
in a dedicated NSCLC population, and included also a 
control chemotherapy cohort. Interestingly, HPD was 
described only in three (5%) of 59 NSCLC patients treated 
with single agent chemotherapy in very advanced lines, 
suggesting that HPD may be a new pattern specifically 
related to ICI. 

Recently, Kim et al. described HPD (defined by volume-
based growth kinetics) in 17% of 220 advanced NSCLC 
patients after single-agent ICI. HPD was associated with 
a significantly lower median PFS (1.2 vs. 4.1 months, 
P<0.001) and median OS (7.1 vs. 15.9 months, P=0.09) and 
did not correlate with patients’ clinical characteristics (15).

Kato et al. (9) investigated potential genomic markers 
associated to HPD in 102 stage IV cancer patients treated 
with ICB. HPD was defined as a time to treatment failure 
(TTF) <2 months, increase of more than 50% in tumor 
burden compared with pre-immunotherapy imaging and a 
>2-fold increase in progression pace (progression rate in the 
first two months of immunotherapy/progression rate in the 
previous 2 months before starting immunotherapy). Overall, 
HPD was identified in six patients (~6%): four patients 
(NSCLC, endometrial carcinoma, urothelial carcinoma, 
triple negative breast cancer) had MDM2 amplifications and 
two NSCLC patients had EGFR mutations.

In addition, MDM2/MDM4, EGFR and 11q13 (including 
CCND1, FGF3, FGF4, FGF19) amplifications were found in 
two (50%), one (25%) and three (75%) of four patients with 
HPD upon ICB and available next generation sequencing 
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Table 1 HPD according to different research groups 

Author
Prevalence and 
study setting

Agent and treatment line Criteria for HPD
Clinical or biological 
predictors of HPD

Champiat; 
Clin Cancer 
Res 2017 (8)

9% (12/131); 
phase I trial

Anti-PD-1 or anti-PD-L1 
monotherapy. Different 
treatment lines

RECIST progression after first evaluation and 
≥2-fold increase of the TGR between the 
reference and the experimental periods

≥65 years old

Kato; Clin 
Cancer Res 
2017 (9)

6% (6/102); 
stage IV cancer 
patients 

Anti-PD-1, anti-PD-L1, anti-
CTLA4 or other investigational. 
Different treatment lines

TTF <2 months, >50% increase in 
tumor burden compared with baseline 
preimmunotherapy imaging, and >2-fold 
increase in progression pace

MDM2/MDM4 and 
EGFR alterations. 
DNMT3A alterations 
(multivariate analysis)

Saâda-
Bouzid; Ann 
Oncol 2017 
(10)

29% (10/34); 
head and neck 
cancer

Anti-PD-1 or anti-PD-L1 
monotherapy. Different 
treatment lines

TGK (variation of largest diameter of target 
lesions per unit of time) ratio ≥2

Locoregional 
recurrence 

Singavi; 
ESMO 2017 
(11)

5 patients; 
solid tumours 
(oesophageal, 
lung, renal cell 
carcinoma) 

Anti-PD-1 agents. Different 
treatment lines

Progression at first restaging on 
immunotherapy, increase in tumor size >50%, 
>2-fold increase in TGR

MDM2/MDM4, EGFR, 
amplifications on 
11q13 (CCND1, FGF3, 
FGF4, FGF19)

Matos Garcia; 
ASCO 2018 
(12)

15% (33/214); 
solid tumors 

Anti-PD-1 or anti-PD-L1 
as monotherapy or combo 
with other agents. Different 
treatment lines

TTF <2 months and: (I) increase of ≥40% in 
target tumor burden compared to baseline or 
(II) increase ≥20% in target tumor burden plus 
multiple new lesions

None

Kim; Ann 
Oncol 2019 
(13)

55 (21%) 
according TGK 
(14); 54 (20%) 
according TGR 
ratio (6); 98 (37%) 
according  
TTF <2 months; 
NSCLC 

Anti-PD-1 or anti-PD-L1 
monotherapy. Different 
treatment lines

defined by tumor growth kinetic ratio ≥2, TGR 
ratio ≥2 or TTF <2 months 

Lower frequency of 
circulating effector 
memory (CD45RA-

CCR7-) CD8 T-cells, 
and higher frequency 
of severely exhausted 
(TIGIT+PD1+) CD8 
T-cells

Kim; ASCO 
2018 (15)

17% (37/220); 
NSCLC

Single agent immunotherapy. 
Line of therapy not specified

defined by tumor growth kinetics on prior 
versus immunotherapy (details not provided)

None

Ferrara; JAMA 
Oncol (11)

14% (56/406); 
NSCLC

Anti-PD-1 or anti-PD-L1 
as monotherapy or in 
combination with other agents. 
Different treatment lines

Disease progression at the first evaluation 
with >50% change in TGR 

>2 metastatic 
sites prior to 
immunotherapy

Kanjanapan; 
Cancer 2019 
(16)

7% (12/182); 
solid tumors

Anti-PD-1, anti-PD-L1, anti-
CTLA4 or other investigational 
drugs as monotherapy or 
combos. Different treatment 
lines

RECIST 1.1 progression at the first on-
treatment scan and ≥2-fold increase in TGR 
between experimental and reference period

Female gender

Lo Russo; 
Clin Cancer 
Res 2019 (5)

26% (39/187); 
NSCLC

Anti-PD-1 or anti-PD-L1 
as monotherapy or combo 
with anti-CTLA4. Different 
treatment lines

TTF <2 months, increase ≥50% in the sum of 
target lesions major diameters, appearance of 
at least two new lesions in an organ already 
involved, spread of the disease to a new 
organ, ECOG PS worse ≥ 2 during the first  
2 months. HPD on the basis of 3 concomitant 
out of the 5 possible criteria

Clustered 
macrophages with 
epithelioid morphology 
and co-localization 
of CD163, PD-L1, 
and CD33 markers 
(defined as complete 
phenotype)

Table 1 (continued)
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(NGS) data. The only NSCLC patient with HPD had 
MDM2, FGF3, FGF4 and FGF19 amplifications. In this 
study, HPD criteria were progression at first restaging on 
ICI, increase in tumor size >50% and >2-fold increase in 
TGR (11).

Most of research groups have included pre-baseline 
tumour assessment and defined HPD according to a 
substantial change in pace of tumour growth, in order to 
avoid that rapid progression to ICB may simply reflect the 
natural history of a very aggressive disease (20). However, 
pre-baseline imaging may not be always available in first line 
setting. Furthermore, both RECIST and iRECIST criteria, 
only evaluate changes in tumor size, understating the real 
tumor burden (non-target lesions, such as bone metastases, 
lymphangitis, pleural and peritoneal effusions). In this 
regard, two research groups defined HPD with different 
criteria not including the assessment of pre-baseline tumor 

growth.
Lo Russo et al. (5) defined patients with HPD those who 

fulfilled at least three of the following clinical/radiological 
criteria: (I) spread of the disease to a new organ between 
baseline and first radiologic evaluation; (II) increase ≥50% 
in the sum of target lesions major diameters between 
baseline and first radiologic evaluation; (III) appearance 
of at least two new lesions in an organ already involved 
between baseline and first radiologic evaluation; (IV) TTF 
<2 months; (V) clinical deterioration with decrease in 
ECOG performance status ≥2 during the first two months 
of treatment. HPD was identified in 39 (25.7%) of 152 
NSCLC patients and was characterized by a significantly 
worse OS compared to non-HPD patients [4.4 months (95% 
CI: 3.4–5.4) vs. 17.7 months (95% CI: 13.4–24.1)]. 

Matos et al. (12) used a similar definition (TTF <2 months 
and increase in measurable lesions of >10 mm plus the 

Table 1 (continued)

Author
Prevalence and 
study setting

Agent and treatment line Criteria for HPD
Clinical or biological 
predictors of HPD

Kamada; 
PNAS 2019 
(17)

11% (4/37); 
gastric cancer

Nivolumab monotherapy. 
Different treatment lines

TTF <2 months; >50% increase in tumor 
burden compared with pre-treatment imaging, 
and >2-fold increase in progression pace

PD-1+ effector 
(CD45RA-) T-regulatory 
(Foxp3+ CD4+) cells. 1 
patient with HPD had 
MDM2 amplification 

Sasaki; 
Gastric 
Cancer 2019 
(14)

21% (13/62); 
gastric cancer 

Nivolumab monotherapy. 
Different treatment lines

>2-fold increase in TGR Absolute neutrophil 
count, C-reactive 
protein levels, baseline 
tumour burden, 
presence of liver 
metastases and worse 
ECOG performance 
status were associated 
with HPD

Xiong; 
iScience 2018 
(18)

2 patients; 
solid tumours 
(renal cell and 
oesophageal 
carcinoma)

Anti-PD-1 monotherapy. 
Different treatment lines

as by Kato et al. TSC2, VHL mutations, 
transcriptional 
upregulation of 
oncogenic pathways, 
including IGF-1, ERK/
MAPK, PI3K/AKT, and 
TGF-ß. Elevated innate 
lymphoid cells ILC3

Ratner; New 
Engl J Med 
2018 (19)

3 patients; adult 
T-cell leukemia 
lymphoma 
patients

Nivolumab monotherapy. 
Details not provided

Details not provided None

HPD, hyperprogressive disease; TGR, tumor growth rate; TTF, time to treatment failure; TGK, tumor growth kinetic; NSCLC, non-small cell 
lung cancer; ECOG PS, Eastern Cooperative Oncology Group Performance Status.
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following: (I) increase of ≥40% in target tumour burden 
compared to baseline; or (II) increase of ≥20% in target 
tumour burden plus multiple new lesions). Among 
214 patients with solid tumours treated ICB (53% in 
combinations with other ICB), they found 33 cases 
(15%) of HPD. HPD was not associated with clinical 
characteristics and correlated with poor OS [4.8 months 
(95% CI: 3.4–7.3 months) vs. 8.7 months (95% CI: 6.3–
10.2 months) in non-HPD progressor group (HR =1.87; 
95% CI: 1.1–3.3; P=0.03)]. Recently, a similar percentage 
(13.1–14.3%) of HPD was found in 135 NSCLC treated 
with ICB according to one-dimensional or volumetric 
criteria. However, the discordance rate was of 16.3% and 
the volumetric definition was the only one correlated with 
a worse overall survival (21). 

Finally, the definitions of fast progression (FP, ≥50% 
increase in the sum of long diameters within six weeks 
from baseline) and early deaths (ED, death due to disease 
progression within 12 weeks from the start of ICB) were 
proposed as surrogate of HPD and reported in 4.7% and 
5.6% respectively of NSCLC patients treated with second 

or third line atezolizumab in the phase III OAK trial (22). 
However, the exact overlap between FP, ED and HPD is 
not evaluable in clinical trials due to the lack of collected 
pre-baseline imaging and in a recent panel session at the 
American Association for Cancer Research Annual Meeting 
2019 in Atlanta, panelists unanimously concurred that the 
collection of pre-baseline scans in clinical trials should be 
standard in the future in order to properly assess HPD (23). 

Figure 1 depicts an emblematic case of HPD in an 
advanced, pretreated NSCLC patient. 

Potential underlying mechanisms of 
hyperprogressive disease

Up to now,  several  mechanisms of  HPD such as 
T-regulatory cell expansion, T-effector cell exhaustion, 
modulation of pro-tumorigenic immune subset, aberrant 
inflammation and oncogenic pathway activation have been 
proposed (24), and both translational and in vivo studies 
have tried to identify a common underlying biology for 
HPD phenomenon. In post-therapy tumors from patients 

Figure 1 An emblematic case of hyperprogression triggered by a single nivolumab administration. The patient had undergone left 
pneumonectomy in 1999. Ground-glass opacities in the conta-lateral lung appeared in 2009 and were initially followed with a wait-and-see 
approach, eventually requiring first-line chemotherapy with carboplatin and pemetrexed in 2017, allowing disease stabilization followed by 
progression (images in second columns from the left, representing baseline nivolumab imaging). At nivolumab initiation (late 2017), clinical 
conditions were good (EGOG performance status 0). Two weeks after the first dose of nivolumab the patients started complaining the abrut 
onset of dyspnea and dry cough and a first CT-scan was performed (third column from the left). Laboratory exams and fibrobronchoscopy 
excluded both lung infection and immune-mediated toxicity, narrowing the differential diagnostics towards HPD. Despite steroid therapy 
and antibiotics, patient’s conditions progressively worsened and an additional CT-scan performed less than two months form nivolumab 
administration showed further increase of lung lesions. The patient passed away two months after the single dose of nivolumab.

Single nivolumab dose

Almost  3 y 2 months
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with esophageal and renal cell carcinoma experiencing 
HPD during ICB, somatic mutations were found in tumor 
suppressor genes such as TSC2 and VHL, along with 
transcriptional up-regulation of oncogenic pathways, 
inc lud ing  IGF-1 ,  ERK/MAPK,  PI3K/AKT,  and 
TGF-ß (18). However, as for MDM2/4 amplification and 
EGFR mutations, how these molecular alterations could 
mediate an acceleration of tumor growth during ICB is 
currently unknown. Similarly, concomitant LKB1 and KRAS 
mutations were found in 3 (18%) out of 16 NSCLC patients 
experiencing HPD according to a volumetric definition (21).

A potential explanation may be found in the tumor 
suppressive role of PD-1, as reported in human T-cell 
lymphoma, where PD-1 seemed to down-regulate PI3K 
intracellular signaling (25,26). In this regard, a rapid 
progression was described in the first three patients with 
adult T cell leukemia after one single dose of nivolumab in 
a phase II trial (19). 

The putative role of both innate and adaptive immunity 
in driving HPD has been recently investigated. Lo Russo 
et al. (5) identified clustered macrophages with epithelioid 
morphology and co-localization of CD163, PD-L1, and 
CD33 markers (defined as complete phenotype) as related 
to HPD in NSCLC patients. In addition, murine models 
and patients derived xenografts suggested that anti-PD1 
antibody may drive HPD through reprogramming M2 
immunosuppressive macrophages via Fc-Fc-receptor 
signal. Other innate immune cells such as neutrophils may 
also play a role in HPD, and high neutrophil lymphocyte 
ratio correlated both with poor survival outcome (27) and 
HPD (21) in NSCLC upon ICB.

HPD could also be mediated through the involvement 
of immunosuppressive T cells. In fact, Kamada et al. (17) 
reported an enhanced proliferation of PD-1+ T-regulatory 
cells in two gastric cancer patients with HPD during ICB. 
Tissue samples from these patients showed increased 
Ki67+ effector (CD45RA- Foxp3+ CD4+) T-regulatory 
cells compared to non-HPD patients. In vitro and in vivo 
models confirmed that PD-1 deficient T-regulatory cells are 
highly proliferative and immunosuppressive, supporting the 
hypothesis that PD-1 blockade besides releasing the brakes of 
CD8+ T cells against tumor may also paradoxically increase 
immune suppression in the tumor microenvironment 
through the involvement of T-regulatory cells. 

Finally, pre-existing systemic immunity could also play a 
role in HPD as recently reported by Kim et al. In particular, 
lower circulating effector memory (CCR7- CD45RA-) CD8+ 
T-cells and higher severely exhausted (TIGIT+PD1+) CD8+ 

T-cells before ICI were found in HPD compared to non-
HPD progressors NSCLC patients (13). 

Pseudo-progression in NSCLC

Before the routine availability of ICB, oncological 
community dealt with pseudo-progression (pseudoPD) 
almost exclusively in the field of neuro-oncology, where 
radiation-induced damages in the tumor microenvironment, 
engendering inflammation, mimic uncontrolled tumor 
growth (28). Somewhat similarly with regard to ICB 
administration, the observation of pseudoPD features (initial 
tumor growth followed by dimensional decrease and actual 
disease response) depends on ICB mechanisms of action. 
Anti-PD-1/PD-L1 agents, as well as anti-CTLA-4 ones, 
release immune phenotypes, especially T lymphocytes, 
against cancer cells, acting thus far not directly against these 
latter. The indirect way ICB act against tumor is indeed 
through the recruitment of effective anticancer immune 
cells within tumor lesion, that as a consequence may 
undergo apparent increase in dimension, while malignant 
elements are actively being eliminated (29).

The first recognition of ICB-related pseudoPD 
in melanoma, the f irst  tumor type in which ICB 
administration turned out to be effective, prompted the 
definition of novel criteria to be adopted for cancer patients 
undergoing immunotherapy (immune related response 
criteria, irRC) (30). Further modifications of these criteria, 
moving from the dimensional lesion evaluation of irRC, 
brought towards irRECIST and, finally, to immune 
RECIST (iRECIST) (31,32). The most relevant feature 
of these latter is represented by the introduction of the 
“immune-unconfirmed progression”, suggesting ICB can 
be maintained after the first radiologic evidence of tumor 
progression, conceiving a potential subsequent of delayed 
disease response.

Looking at clinical trials, up to 10% and 7% respectively 
of melanoma and renal cell carcinoma patients receiving 
ICB underwent pseudoPD. The occurrence of pseudoPD 
in NSCLC patients is less frequent (up to 3%) (22,33-37), 
reaching higher proportion if initial disease progression 
according to RECIST is followed by stabilization (and 
not by disease response, as in “conventional” pseudoPD). 
Considering the absolute number of cases undergoing ICB 
and the relevance of the clinical decision to be taken at the 
moment of the first sign of disease progression, pseudoPD is 
still a relevant issue in NSCLC. Considering the relative rare 
occurrence of pseudoPD during ICB in NSCLC patients, an 
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extensive use of iRECIST for the daily clinical practice does 
not seem to be justified. Considering that no reliable markers 
of progression are available, careful evaluation of patients’ 
disease related symptoms and performance status, together 
with radiological evaluation, should guide physicians’ choices 
and help to better recognize atypical patterns of response 
such as pseudoPD (38). 

Recognizing and managing pseudo-progression

Tables 2 and 3 gather several clinical information regarding 
cohorts (35,37,39) and case reports (40-60), respectively, 
of pseudoPD during ICB in NSCLC. A predisposition 
towards pseudoPD cannot be envisaged owing to tumor 
histology, smoking history and PD-L1 expression. The 
strong representation of nivolumab as the treatment 
received by patients who experienced pseudoPD is likely to 
be ascribed to its wider administration, especially in the first 
years since ICB availability, compared to other agents. 

“Time-to-pseudoPD” may be in addition variable, 
ranging from days since treatment initiation (typically with 
the abrupt onset of symptomatology) to months after ICB 
start (more often represented by a pure radiological finding). 
Several reported events of pseudoPD are characterized 
by relevant clinical worsening and this challenges the idea 
that a radiological progression may be deemed a potential 
pseudoPD only if accompanied by a stable or improved 
clinical status. In one case, the initial pseudo-progressive 
phase was accompanied by a decrease in the serum tumor 
marker CYFRA 21-1 (54), suggesting a potential role for 
circulating biomarkers, including cell-free DNA (cfDNA), 
in addressing pseudoPD and HPD (see Section “Critical 
considerations”) (61).

If virtually every anatomic site seems to potentially 

harbor pseudoPD foci, they tend to develop almost 
exclusively within already known lesions, making the 
appearance of a new lesion suspect for real progression. 
PET imaging, whose use could potentially help to 
determine the nature of progression (pseudoPD versus real 
PD) does not add particular information, as immune cells 
infiltrating tumor sites are metabolically active and their 
recruitment may mimic real progression even at functional 
imaging. 

Remarkably, the most relevant features of pseudoPD 
are represented by pathologic ones, with an enrichment in 
immune cells (especially T lymphocytes) to the detriment 
of tumor ones. In this sense, the concept of re-biopsy, 
introduced in the field of precision medicine in NSCLC 
as a tool to address molecular treatment, can be favorably 
translated in the immunotherapy domain as an element of 
differential diagnosis between real and pseudo progression. 

PseudoPD management relies on symptomatic therapy 
in cases that require it; several patients reported in Table 2  
received indeed steroid therapy, mainly in order to reduce 
mass effects, and pleuro- or pericardio-centesis were 
performed in the case of serous effusions. Albeit patients 
experiencing pseudoPD may have a worse prognosis 
compared to the ones who obtain a typical response (37), 
maintaining ICB when pseudoPD is clinically suspected 
may nevertheless engender positive survival outcomes, as 
beyond-progression strategies are advantageous (22,62). 

Figure 2 depicts the unpublished history of a patient 
experiencing pseudoPD while undergoing pembrolizumab 
for a highly expressing PD-L1 (≥50%) NSCLC.

Critical considerations

ICB are a pillar of NSCLC cancer therapy and their role 

Table 2 Clinical features of pseudoPD in patients cohorts

Reference Patients PseudoPD
Time-to-
pseudoPD 

PseudoPD sites Outcomes

Katz; J Thorac Oncol 
2018 (35)

228 3 (2%) < 3 months Two: primary tumor 2 out of 3 patients alive (3 years 
since nivolumab beginning)

One: new lung lesions

Fujimoto; J Thor Oncol 
2019 (37)

542 14 (3%) Median 1 month All known lesions with 
additional new lesions in 
3 cases

 mPFS after pseudoPD:  
7.3 months; mPFS of typical 
response: NR (P<0.001)

Hendriks; J Thorac Oncol 
2019 (39)

255 with brain 
metastases

2 (0.8%) brain 
pseudoPD

NA Known and new brain 
lesions

NA

NA, not available; mPFS, median progression-free survival; NR, not reached.
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appears in progressive widening, as beside advanced disease, 
new disease setting such as the locally-advanced and the 
localized ones are respectively already treated and under 
clinical evaluation (63,64). In this regard, the awareness 
concerning HPD and pseudoPD should be therefore even 
more reinforced. 

Putting evidence in clinical context, as reported 
pseudoPD and HPD patterns in NSCLC have been 
described only in the advanced setting and almost only 
when anti-PD-1/PD-L1 agents were administered as 
monotherapy (more rarely, in combination with anti-
CTLA-4 drugs). No evidence is thus far available regarding 
the potential biologic differences between metastatic 
diseases and less extended ones, that could account for 
a lower predisposition to HPD and pseudoPD. The 
rapidly evolving scenario of NSCLC treatment is defining 
combinatorial therapies involving ICB as the first-line 
treatment of advanced disease, involving anti-PD-1/
PD-L1 combined either with chemotherapy (and anti-
angiogenic compounds) or CTLA-4 agents (65). Again 
without concrete proofs, due to their mechanism of action, 

it may be speculated that chemotherapy would downsize 
the possibility of both HPD and pseudoPD, whereas 
anti-CTLA-4 agents, synergizing with anti-PD-1/PD-
L1 ones in fostering immune system, may maintain some 
degree of risk. In this regard, while in clinical trials testing 
first-line pembrolizumab or atezolizumab/bevacizumab 
in combination with platinum-based chemotherapy 
[Keynote-189, Keynote-407, IMpower150 (66-68)], a 
clear and early separation of survival curves is observed, 
in CheckMate 227 comparing first-line nivolumab and 
ipilimumab vs platinum based chemotherapy (69), PFS 
curves crosses between three and six months and the 
progression rate is higher in the double immune checkpoint 
blockade arm (15.8% vs. 11.9%). These data could suggest a 
decreased risk of HPD with chemotherapy-immunotherapy 
combinations and a potential high rate of HPD with PD-1/
PD-L1 inhibitors combined with anti-CTLA-4 ones. 
In CheckMate 227, HPD could also explain the lower 
access to subsequent treatments in patients discontinuing 
double immune checkpoint blockade for reasons other 
than toxicity: 34.4% versus 49.2% in the chemotherapy 

Figure 2 PseudoPD in PD-L1 highly expressing NSCLC. A 77-year-old ex-smoker patient was diagnosed with stage IV NSCLC not 
otherwise specified, EGFR and ALK wild-type, PD-L1 60% (left panel). He began first-line pembrolizumab with general subjective 
improvement, whereas first radiologic evaluation after three circles was compatible with disease progression (central panel). This latter 
turned out to be a pseudoPD, as pembrolizumab was maintained because of the good tolerance and satisfying clinical conditions, leading 
indeed to the eventual disease response (right panel).

Apperance 

Baseline                                                After cycle 3                                         After cycle 5
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arm. With regard to pseduoPD, its occurrence has not 
been reported in published clinical trials evaluating the 
mentioned ICB combinations for the treatment of untreated 
NSCLC patients (66-69).

Nevertheless, ICB monotherapy will still be an option 
in the first-line treatment of PD-L1 ≥50% cases and for 
patients who cannot afford a combination regimen as 
first-line therapy for clinical reasons, thus reinforcing the 
attention pseudoPD and HPD will deserve even in the next 
future. 

Interestingly, pseudoPD may sometimes radiologically 
mimic HPD, in fact 10.7% of NSCLC patients with 
HPD at first CT-scan subsequently experienced tumor 
shrinkage and prolonged clinical benefit and were classified 
as pseudoprogressors (20). In this regard, it will be crucial 
to distinguish between HPD and pseudoPD as early as 
possible, even before re-imaging. In this regard, a recent 
study showed that genome instability number in cfDNA 
rises rapidly with HPD but falls with pseudoPD when 
measured at 3–6 weeks after immunotherapy start (61). 
Finally, it could be difficult to differentiate the early 
disease flare which may occur after the end of an EGFR-
TKI treatment (70), from HPD and pseudoPD, especially 
if ICB is used immediately after EGFR-TKI therapy 
discontinuation. However, in most of the studies few EGFR 
mutated patients were included and HPD was not related to 
the previous treatment type.

Finally, if pseudoPD does not harbor an intrinsic 
detrimental effect (i.e., patients experiencing this pattern of 
response still benefit from immunotherapy), HPD represent 
an element of real unmet clinical need. In this case indeed 
ICB generate harm, and efforts should be addressed 
towards the prediction of patients more likely to experience 
HPD. Three major elements may be suggested aiming to 
reduce HPD impact: (I) provide an common definition of 
HPD supported also by scientific societies and regulatory 
agencies, (II) continuing in studying cellular mechanisms 
involved in HPD, in order to (III) identify common clinical, 
pathological, radiological and immunological predictors of 
HPD in order to avoid single agent immune checkpoint 
blockade in these patients in favor of experimental 
immunotherapies or combinatorial treatment strategies. 

Concluding remarks

The astonishing benefit generated by immunotherapy in 
NSCLC can be resumed by the long-term survival outcomes 
observed even in the advanced setting, among which a non-

negligible quote of pretreated patients (15–20%) can be 
deemed potentially cured (3). These unprecedented results 
have not been obtained without a deal of drawbacks, such as 
HPD and pseudoPD. The understanding, recognition and 
management of the two response patterns is crucial in the 
perspective of a progressing improvement in survival rates, 
thanks to the incorporation of ICB in settings other than 
the advanced one and with combinatorial therapy. 
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