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Introduction

Glioblastoma (GBM) has an invasive and aggressive 
behavior and is the most common malignant primary brain 
tumor in adults. The multidisciplinary treatment, composed 
of surgical resection, radiation, and chemotherapy, has 
provided an improvement in survival time. The extent 
of resection (EOR) has been reported to be the leading 
prognostic factor for enhanced survival in patients when the 
EORs range 70–98% (1-5).

However, eloquent areas of the brain are distinctive 
structures concerning resection because potential 
impairments in the quality of life often limit the goal of total 
resection (6,7). However, several factors affect total resection 
in infiltrative tumors. Considering anatomical limitations, 
“butterfly” GBM, multiple lesions, and leptomeningeal 
dissemination are challenging conditions for total resection 
in clinical practice (8-10). Awad et al. reported a significant 
interaction between EOR and preoperative tumor volume. 
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The EOR alone did not correlate with survival after 
adjusting for other factors. Therefore, the interaction 
between the EOR and preoperative volume was an essential 
predictor for improved survival (11). In the literature, there 
is a lack of evidence on the factors that correlate with EOR. 
The purpose of this study was to identify which factors are 
associated with EOR. Therefore, the confounders should be 
controlled before time-to-event analysis will be conducted 
in GBM patients. 

Methods 

The study was a retrospective cohort review of electronic 
medical records from our hospital information system. We 
enrolled consecutive patients who were newly diagnosed 
with GBM. The inclusion criteria for the study were 
patients who had histologically-confirmed GBM, which 
was consistent with the World Health Organization 
classification (12) by a pathologist at Songklanagarind 
Hospital between January 2000 and December 2018. The 
data collected for analysis comprised of the demographics, 
neuroimaging, treatment, and outcome. 

Magnetic resonance images (MRI) of the brain were 
reviewed prospectively to demonstrate tumor location, the 
extent of tumor invasion, and tumor size. Adapted from 
Lacroix et al. (1), the degree of tumor necrosis, mass effect, 
and enhancement were determined. Tumor volume was 
quantified from preoperative MRI and postoperative MRI 

or contrast-enhanced computerized tomography (CT) or 
both of the brain. 

The EOR was defined from the studies of Vecht et al.  
and Bloch et al. (13,14). Gross total resection was defined 
as less than 5% of residual tumor was observed on 
postoperative neuroimaging. Partial resection was defined 
as resection less than 95% of residual tumor that was visible 
on postoperative neuroimaging. The biopsy was defined 
as an operation for tissue diagnosis only, and no attempt 
was made to remove the tumor. Additionally, percent of 
resection was assessed by postoperative T1W with contrast 
imaging. 

The eloquent areas for tumor removal involved the 
motor cortex, sensory cortex, visual center, speech center, 
basal ganglion, hypothalamus, thalamus, brainstem, and 
dentate nucleus (1). Multiple GBMs were defined as at 
least two separated foci of enhancing tumors. This group 
included two types: multifocal and multicentric GBMs. 
A multifocal GBM was defined where the centers of the 
tumor had a short distance apart between each other that 
tumor cells migrate elsewhere and develop into a new 
tumor center, as shown in Figure 1A. Multicentric GBM 
was defined as the centers of tumor clearly separated from 
each other, for example, different lobes or bilateral brains, 
with no apparent route of dissemination, as shown in Figure 
1B (15,16). Furthermore, the hypervascular sign was defined 
as visualizing vascular structures inside or around a tumor 
(flow void sign) in neuroimaging (8). 

Figure 1 Types of multiple glioblastomas. (A) Multifocal glioblastoma has the centers of tumors located a short distance apart; (B) 
multicentric glioblastoma has the centers of tumors that belong to different lobes or bilateral brains with no apparent route of dissemination. 
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Tumor volume estimations were performed using the 
Smart Brush tool of BrainLAB® software (Feldkirchen, 
Germany) by outlining the pathologies across neuroimaging 
modalities, as shown in Figure 2. The study was performed 
with the permission of the Ethical Committee of the 
Faculty of Medicine, Songklanagarind Hospital, Prince of 
Songkla University (REC 61-293-10-1).

Statistical analysis

The patient characteristics, imaging factors, and therapeutic 
factors were analyzed using descriptive analysis presented 
as proportions and mean ± standard deviation (SD). The 
extension of resection was dichotomized into total resection 
and non-total resection groups. Therefore, the association 
between several factors and the extension of resection were 
analyzed by binary logistic regression. The candidate risk 
factors with P<0.10 from the univariate regression analysis 
were entered into the multivariable regression model. The 
Hosmer-Lemeshow goodness-of-fit test and concordance 
statistics were used to fit the model. Furthermore, 
multicollinearity between variables in the model was 
checked by the variance inflation factor (VIF) and tolerance 

methods. Moreover, the sample size was calculated using 
the level of significance 0.05 and power 0.8. Statistical 
analysis was performed with the R program version 3.4.1 (R 
Foundation, Vienna, Austria). 

Results 

Clinical characteristics

The clinical manifestations of the 173 patients with GBM 
are shown in Table 1. GBM was predominant in males and 
common in adults. The mean ± SD age was 51.2±15.3 years 
(range, 8–87 years). The patients usually presented with 
hemiparesis and progressive headache. One-quarter of the 
cases had a seizure at presentation. The common GBM 
location involved the frontotemporal lobe.

Using 3D tumor volume software, the mean ± SD tumor 
volume was 54.9± 40.6 mL, and 82.7% of the GBM were 
solitary tumors, while 17.3% were multiple tumors.

In this study, the total resection rate was 22.0%, while 
the rates of partial resection and biopsy were 63.0% and 
15.0%, respectively. Half of the patients (64.7%) underwent 
radiotherapy alone after resection, while patients who 

Figure 2 Tumor volume estimation. (A) 3D-tumor morphology was created from the selected areas in multiple-plains of neuroimaging; (B,C) 
axial and sagittal plains of CT of the brain show a selected tumor area using the Smart Brush tool; (D) display window shows the tumor 
volume. 
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Table 1 Baseline characteristics (N=173)

Factor N (%)

Sex 

Male 97 (56.1)

Female 76 (43.9)

Age

<60 123 (71.1)

≥60 50 (28.9)

Age, years, mean ± SD 51.2 (15.3)

Signs and symptoms

Hemiparesis 87 (50.3)

Headache 85 (49.1)

Seizure 43 (24.9)

Cranial nerve palsy 33 (19.1)

Behavior change 22 (12.7)

Alteration of consciousness 23 (13.3)

Aphasia 14 (8.1)

Preoperative Karnofsky performance status 

<80 90 (52.0)

≥80 83 (48.0)

Number of the tumor at the first time of presentation

Single tumor 143 (82.7)

Multiple tumor 30 (17.3)

Multifocal type 27 (15.6)

Multicentric type 3 (1.7)

Tumor involvement 

Temporal 60 (34.7)

Frontal 51 (29.5)

Parietal 32 (18.5)

Corpus callosum 19 (11.0)

Periventricular 7 (4.0)

Occipital 7 (4.0)

Thalamic/Basal ganglion 5 (2.9)

Brainstem 3 (1.7)

Pineal 1 (0.6)

Cerebellum 1 (0.6)

Suprasellar 1 (0.6)

Table 1 (continued)

Table 1 (continued)

Factor N (%)

Eloquent area* 99 (57.2)

Midline shift 

<0.5 75 (43.4)

≥0.5 98 (56.6)

Hypervascular signs

No 114 (65.9)

Yes 59 (34.1)

Leptomeningeal dissemination at first time of  
presentation*

18 (10.4)

Maximum diameter of the tumor, cm, mean ± SD 5.3 (1.75)

Tumor volume, mL, mean ± SD 54.9 (40.6)

IDH1 profile 

Wild-type 162 (93.6)

Mutation 11 (6.4)

MGMT promoter methylation (N=84)

Unmethylation 3 (3.6)

Methylation 81 (96.4)

Surgery 

Total resection 38 (22.0)

Partial resection 109 (63.0)

Biopsy 26 (15.0)

Radiotherapy alone 112 (64.7)

Temozolomide with radiotherapy 61 (35.3)

Postoperative Karnofsky performance status

<80 105 (60.7)

≥80 68 (39.3)

*, eloquent areas defined as tumor that involved motor cortex, 
sensory cortex, visual center, speech center, basal ganglion,  
hypothalamus, thalamus, brainstem or dentate nucleus. 

received adjuvant chemotherapy were 35.3% of all patients. 
In detail, Temozolomide was used in one-third of the 
patients because the cost of temozolomide is not reimbursed 
by all medical insurance programs in Thailand. 

The EOR was dichotomized into total resection and 
non-total resection subgroups. The non-total resection 
group had a greater number of corpus callosum tumors, 
multiple tumors, and greater tumor volume than the total 
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Table 2 Clinical characteristics divided by the extent of resection 

Factor Total resection, N (%) Non-total resection, N (%) P value

Sex 0.62

Male 20 (52.6) 77 (57.0)

Female 18 (47.4) 58 (43.0)

Age, year 0.10

<60 23 (60.5) 100 (74.1)

≥60 15 (39.5) 35 (25.9)

Preoperative Karnofsky performance status 0.12

<80 24 (63.2) 66 (48.9)

≥80 14 (36.8) 69 (51.1)

Frontal tumor involvement 0.46

No 25 (65.8) 97 (71.9)

Yes 13 (34.2) 38 (28.1)

Temporal tumor involvement 0.64

No 26 (68.4) 87 (64.4)

Yes 12 (31.6 48 (35.6)

Parietal tumor involvement 0.35

No 29 (76.3) 112 (83.0)

Yes 9 (23.7) 23 (17.0)

Occipital tumor involvement 0.17

No 35 (92.1) 131 (97.0)

Yes 3 (7.9) 4 (3.0)

Tumor of corpus callosum 0.07*

No 37 (97.4) 117 (86.7)

Yes 1 (2.6) 18 (13.3)

Periventricular tumor 0.61

No 37 (97.4) 129 (95.6)

Yes 1 (2.6) 6 (4.4)

Thalamic/basal ganglion tumor 0.58*

No 38 (100.0) 130 (96.3)

Yes 0 (0.0) 5 (3.7)

Table 2 (continued)

resection group, as shown in Table 2. Multiple GBMs were 
found in 30 (17.3%) patients, and 2 (5.3%) patients of the 
multiple tumors were total resection. Additionally, all of 
those was the multifocal type of multiple GBM. In tumor 
volume (N=168), the success rate of total resection in the 

group with a tumor volume ≥30 mL group was 16.2% 
(19/117) of all patients, while the group with a tumor 
volume <30 mL was totally resected in 37.3% (19/51) of all 
patients. Other clinical characteristics were not different 
between the two groups. 
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Table 2 (continued)

Factor Total resection, N (%) Non-total resection, N (%) P value

Brainstem tumor 0.52*

No 37 (97.4) 133 (98.5)

Yes 1 (2.6) 2 (1.5)

Cerebellar tumor 0.22*

No 37 (97.4) 135 (100.0)

Yes 1 (2.6) 0 (0.0)

Pineal tumor 1.0*

No 38 (100) 134 (99.3)

Yes 0 (0.0) 1 (0.7)

Suprasellar tumor 1.0*

No 38 (100) 134 (99.3)

Yes 0 1 (0.7)

Eloquent area involvement† 0.78

No 17 (44.7) 57 (42.2)

Yes 21 (55.3) 78 (57.8)

Leptomeningeal dissemination at first time of presentation 0.97

No 34 (89.5) 121 (89.6)

Yes 4 (10.5) 14 (10.4)

Hypervascular signs 0.43

Negative 27 (71.1) 87 (64.4)

Positive 11 (28.9) 48 (35.6)

Midline shift, cm 0.57

<0.5 18 (47.4) 57 (42.2)

≥0.5 20 (52.6) 78 (57.8)

Number of the tumor at the first time of presentation 0.02*

Single tumor 36 (94.7) 107 (79.3)

Multiple tumor 2 (5.3) 28 (20.7)

Tumor volume, mL (N=168) 0.003

<30 19 (50.0) 32 (24.6)

≥30 19 (50.0) 98 (75.4)

IDH1 profile 1.0*

Wild-type 36 (94.7) 126 (93.3)

Mutation 2 (5.3) 9 (6.7)

MGMT promoter methylation 1.0*

Methylation 20 (100.0) 61 (95.3)

Unmethylation 0 (0.0) 3 (4.7)
†, eloquent areas defined as tumor that involved motor cortex, sensory cortex, visual center, speech center, basal ganglion, hypothalamus, 
thalamus, brainstem, dentate nucleus; *, P value of Fisher’s exact test.
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Factors associated with total resection 

Binary logistic regression was used to analyze factors 
predicting total resection as shown in Table 3. In univariate 
analysis, the significant factors were single GBM [odds ratio 
(OR), 4.71; 95% CI, 1.06–20.76] and tumor volume <30 mL 
(OR, 3.06; 95% CI, 1.44–6.48). Therefore, the candidate 
factors, which had a P-value <0.10 from univariate analysis, 
were entered into the multivariable regression model. The 
factors associated with complete resection were single GBM 

(OR, 6.81; 95% CI, 1.47–31.38) and tumor volume <30 mL 
(OR, 3.79; 95% CI, 1.72–8.34) in the multivariable analysis 
with the backward elimination method. Moreover, we 
repeated the multivariable analysis with a forward selection 
procedure and obtained identical results. 

Discussion 

GBM is the most common primary malignant tumor in 

Table 3 Univariate and multivariable for total resection 

Factor
Univariate analysis Multivariable analysis

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Gender

Male Ref

Female 1.19 (0.58–2.46) 0.62

Age-year

<60 Ref

>60 1.86 (0.87–3.96) 0.10

Signs and symptoms

Motor weakness* 1.37 (0.65–2.85) 0.39

Seizure* 0.51 (0.19–1.32) 0.16

Aphasia* 0.99 (0.26–3.76) 0.99

Preoperative Karnofsky performance status

<80 Ref

>80 0.55 (0.26–1.17) 0.12

Tumor involvement 

Frontal lobe* 1.32 (0.61–2.86) 0.47

Temporal lobe* 0.83 (0.38–1.80) 0.64

Parietal lobe* 1.51 (0.63–3.61) 0.35

Occipital lobe* 2.80 (0.60–13.1) 0.19

Periventricular* 0.58 (0.06–4.98) 0.62

Corpus callosum* 0.17 (0.02–1.36) 0.09

Brainstem* 1.79 (0.15–20.3) 0.63

Eloquent area*† 0.90 (0.43–1.86) 0.78

Leptomeningeal dissemination at first time of presentation

No Ref

Yes 1.01 (0.31–3.29) 0.97

Table 3 (continued)
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adults and has aggressive behavior. 
The EOR has been shown to be an important prognostic 

factor for survival (1-5). Because GBM is an infiltrative 
tumor, the rates of total tumor resection were reported in 
the range of 17.6–40% (5,17). In clinical experience, the 
EOR depends on several factors, but no evidence has been 
reported in the literature.

A GBM rising bilaterally at the corpus callosum usually 
builds a "butterfly" pattern on the axial view. The biopsy 
is the common EOR of the butterfly GBM in 64.1–69% 
of the patients (18,19). In the present study, total resection 
was performed in 0.6% (1/173) of all patients because 
surgical resection of a corpus callosum tumor is a challenge 
to balance between maximum resection for prolonged 
survival time and a permanent neurological deficit (19). 
Consequently, tumor infiltration at corpus callosum was not 
significantly with total resection. 

The incidence of multifocal tumors ranged from 11.7% 
to 12.8%, and patients with multifocal tumors experienced 
a significantly shorter survival compared with the solitary 
GBM group (20-22). The success rate of total resection 
in multiple GBM was 1.2% (2/173) of all patients in 
the present study, and Patil et al. reported that 87.2% 
of multiple GBM underwent either a biopsy or partial 

resection. Therefore, residual tumors from non-total 
resection rapidly progress and were correlated with a poor 
prognosis (22). 

Additionally, tumor volume <30 mL in GBM was the 
prognostic factor that was significantly associated with total 
resection. The surgical approach in smaller tumors is more 
comfortable to manipulate than the larger tumors (11,23). 
In this study, a large GBM was significantly associated with 
the degree of brain edema and midline shift that directly 
interfered with the degree of tumor resection. 

According to our knowledge, the present study is the 
first paper to mention the factors associated with the EOR, 
which were reported only as potential prognostic factors 
in GBM. Therefore, a survival analysis of the patients 
with GBM should be stratified by these factors because 
EOR may be the confounder. Awad et al. reported that 
EOR alone did not correlate with survival after adjusting 
for other factors because EOR and preoperative tumor 
volume significantly interact with each other (11). The 
stratification, according to the number of tumors or tumor 
volume and multivariable analysis, is methods to control 
the confounding effect, which should be the approach in a 
future survival study of GBM (24,25). 

Alternatively, propensity scores are an increasingly 

Table 3 (continued)

Factor
Univariate analysis Multivariable analysis

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Midline shift-cm

<0.5 Ref

>0.5 0.81 (0.39–1.67) 0.57

Number of the tumor at the first time of presentation

Multiple Ref Ref

Single 4.71 (1.06–20.76) 0.04 6.81 (1.47–31.38) 0.01

Tumor volume, mL

≥30 Ref Ref

<30 3.06 (1.44–6.48) 0.003 3.79 (1.72–8.34) 0.001

IDH1 profile

Wild-type Ref

Mutation 0.77 (0.16–3.76) 0.75

*, data show only “yes group” while reference groups (no group) are hidden; †, eloquent area defined tumor involved motor cortex,  
sensory cortex, visual center, speech center, basal ganglion, hypothalamus, thalamus, brainstem, dentate nucleus. 
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popular method to adjust for confounding in observational 
studies that cannot conduct the randomized control trial. 
Before evaluating the association of the EOR and survival 
of GBM patients, the pretreatment variables associated with 
the EOR should be adjusted by propensity scores (26,27). 

Conclusions

Not all GBMs are amenable to complete surgical resection. 
Multiple lesions and tumor volume ≥30 mL are the 
potentially limiting factors. Therefore, the EOR should 
be controlled from confounding factors by stratification, 
multivariable analysis, or propensity scores before 
performing a survival analysis.
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