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Objective: The aim of this review is addressing the mechanisms of asbestos carcinogenesis, including chronic 
inflammation and autophagy-mediated cell survival, and propose potential innovative therapeutic targets to 
prevent mesothelioma development or improve drug efficacy by reducing inflammation and autophagy.
Background: Diffuse malignant pleural mesothelioma is an aggressive cancer predominantly related to 
chronic inflammation caused by asbestos exposure. Millions of individuals have been exposed to asbestos 
or to other carcinogenic mineral fibers occupationally or environmentally, resulting in an increased risk of 
developing mesothelioma. Overall patient survival rates are notably low (about 8–14 months from the time of 
diagnosis) and mesothelioma is resistant to existing therapies. Additionally, individuals carrying inactivating 
germline mutations in the BRCA-associated protein 1 (BAP1) gene and other genes are predisposed to 
developing cancers, prevalently mesothelioma. Their risk of developing mesothelioma further increases upon 
exposure to asbestos. Recent studies have revealed the mechanisms and the role of inflammation in asbestos 
carcinogenesis. Biomarkers for asbestos exposure and malignant mesothelioma have also been identified. 
These findings are leading to the development of novel therapeutic approaches to prevent or delay the 
growth of mesothelioma.
Methods: Review of full length manuscripts published in English from January 1980 to February 2021 
gathered from PubMed.gov from the National Center of Biotechnology Information and the National 
Library of Medicine were used to inform this review. 
Conclusions: Key regulators of chronic inflammation mediate asbestos-driven mesothelial cell 
transformation and survival through autophagic pathways. Recent studies have elucidated some of the key 
mechanisms involved in asbestos-induced chronic inflammation, which are largely driven by extracellular 
high mobility group box 1 (HMGB1). Upon asbestos exposure, mesothelial cells release HMGB1 from 
the nucleus to the cytoplasm and extracellular space, where HMGB1 initiates an inflammatory response. 
HMGB1 translocation and release also activates autophagy and other pro-survival mechanisms, which 
promotes mesothelioma development. HMGB1 is currently being investigated as a biomarker to detect 
asbestos exposure and to detect mesothelioma development in its early stage when therapy is more effective. 
In parallel, several approaches inhibiting HMGB1 activities have been studied and have shown promising 
results. Moreover, additional cytokines, such as IL-1β and TNF-α are being targeted to interfere with the 
inflammatory process that drives mesothelioma growth. Developing early detection methods and novel 
therapeutic strategies is crucial to prolong overall survival of patients with mesothelioma. Novel therapies 
targeting regulators of asbestos-induced inflammation to reduce mesothelioma growth may lead to clinical 
advancements to benefit patients with mesothelioma. 
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Introduction

Malignant pleural mesothelioma, a rare and aggressive 
malignancy due to mesothelial cell transformation, is the 
most common cancer caused by prolonged asbestos exposure 
(1,2). At the time of diagnosis, diffuse pleural mesothelioma, 
which must be distinguished from the exceedingly rare, 
localized forms, is very often at advanced stages and 
median survival rates are approximately 8–14 months (3). 
Mesothelioma is resistant to current therapies; however, 
potential biomarkers for early diagnosis and combinatory 
therapies are being tested in clinical trials. 

Studies of asbestos carcinogenesis revealed that asbestos 
induces cell death, mostly by necrosis in human mesothelial 
cells (HM), and that necrotic cells release high mobility 
group box 1 (HMGB1) into the cytoplasm and the 
extracellular space (4) (Figure 1). HMGB1 is a prototypical 
damaged-associated molecular pattern (DAMP) that 
initiates the inflammatory process. It recruits macrophages, 
which release pro-inflammatory cytokines interleukin-
1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) 
acting on neighboring HM (4). Upon asbestos exposure, 
active secretion and cytoplasmic accumulation of HMGB1 
also activates autophagy, allowing HM to evade asbestos-
induced cell death (5). Autophagy is an essential and 
physiological pathway that allows cells to modulate cell 
survival and protect against stress and nutrient deprivation. 
Autophagy upregulation in transformed cells is associated 
with resistance to chemotherapies. Therefore, inhibiting 
autophagy has been proposed as a possible therapeutic 
approach to promote drug sensitivity and reduce tumor 
growth (5,6). The objective of this literature review is 
examining the possible innovative therapeutic targets to 
reduce inflammation and chemoresistance to prevent or 
delay mesothelioma development while addressing the 
mechanisms of asbestos carcinogenesis, including chronic 
inflammation and autophagy-mediated cell survival. 
We present the following article in accordance with the 
Narrative Review Reporting Checklist (available at https://
dx.doi.org/10.21037/pcm-21-12).

Methods

Literature gathered to inform this review was obtained from 
PubMed.gov from the National Center of Biotechnology 
Information and the National Library of Medicine. 
Searches included full length manuscripts published in the 
English language in high impact journals between the dates 
of January 1980 and February 2021. 

Discussion

Asbestos cytotoxicity and mesothelioma detection

Asbestos describes two families of six different fibers 
including chrysotile, amosite, crocidolite, anthophyllite, 
tremolite, and actinolite. These fibers have different 
carcinogenic properties. Amphiboles, including tremolite, 
anthophyllite, amosite, and crocidolite, are more pathogenic 
and remain in tissues for many years. Serpentine is mostly 
made up of chrysotile fibers. Its widespread use accounts 
for about 95% of global asbestos and is the most common 
fiber mined worldwide. Chrysotile was mined in the 
United States until 2002 (7). Although chrysotile is less 
carcinogenic than crocidolite asbestos due to its reduced 
bio-persistence as well as the dimension and aspect ratio 
(fiber length to diameter), which are essential factors to 
determine carcinogenicity, experimental evidence show that 
prolonged and continuous chrysotile exposure also causes 
transformation of HM through continuous HMGB1 release 
and TNF-α secretion (8). 

Asbestos has been identified as a carcinogen since the 
1960s, but the asbestos-driven carcinogenic process was 
not fully understood until recent years (3). Early studies 
suggested asbestos fibers mechanically interfere with 
chromosomal segregation during mitosis and cause DNA 
damage in HM, which eventually becomes mesothelioma (9).  
Additionally, HM susceptibility to asbestos cytotoxicity 
was initially proposed to be associated predominantly with 
apoptosis (10). However, these hypotheses have since been 
ruled out, and current studies suggest that asbestos-induced 

Keywords: Mesothelioma; asbestos; inflammation; high mobility group box 1 (HMGB1); IL-1β; autophagy

Received: 25 March 2021; Accepted: 13 July 2021; Published: 30 September 2021.

doi: 10.21037/pcm-21-12

View this article at: https://dx.doi.org/10.21037/pcm-21-12

https://dx.doi.org/10.21037/pcm-21-12
https://dx.doi.org/10.21037/pcm-21-12


Precision Cancer Medicine, 2021 Page 3 of 12

© Precision Cancer Medicine. All rights reserved. Precis Cancer Med 2021;4:27 | https://dx.doi.org/10.21037/pcm-21-12

carcinogenesis is mainly due to the inflammatory response 
caused by asbestos deposits, and that the chemical structure 
of some types of asbestos fibers may play an important role in 
the malignant transformation of HM (3,11,12).

Compared to other cell types, HM are more vulnerable 
to asbestos cytotoxicity (13,14). Once inhaled, asbestos 
fibers remain in situ in the pleura and, over time, induce 
HM transformation that is largely ascribed to the chronic 

inflammatory response driven by the release of HMGB1. 
In efforts to remove inhaled asbestos fibers, macrophages 
and mesothelial cells attempt to envelop and phagocytize 
these fibers, which causes a wide range of cytotoxic effects 
including intracellular oxidation, DNA damage, cell cycle 
delay, cell death, and release of superoxide and cytokines 
(15,16). Moreover, the release of reactive oxygen and 
nitrogen species (ROS and RNS) (17,18) and the pro-

Figure 1 Key signaling pathways in asbestos-induced chronic inflammation and mesothelioma pathogenesis as well as related therapeutic 
approaches. Asbestos fibers cause necrotic mesothelial cell death and the consequent release of HMGB1 into the extracellular space. 
Extracellular HMGB1 initiates inflammatory response. It induces the accumulation of immune cells, as well as activates the NLRP3 
inflammasome and NF-κB pathway, which causes secretion of many pro-inflammatory cytokines, including TNF-α and IL-1β. These 
factors bind to their respective receptors on neighboring mesothelial cells and promote the survival and transformation of mesothelial cells. 
Moreover, HMGB1 also induces autophagy in mesothelial cells following asbestos exposure that further promotes the cell survival and 
malignant transformation. The accumulation of survived mesothelial cells carrying DNA defects induced by asbestos and asbestos-generated 
ROS and RNS eventually leads to mesothelioma development. Many potential targets have been identified to interfere with the above 
carcinogenic process. For example, HMGB1 antagonist BoxA, anti-HMGB1 and anti-RAGE monoclonal antibodies can efficiently inhibit 
HMGB1 activities; Ethyl pyruvate reduces HMGB1 translocation and release by down-regulating the HMGB1-RAGE axis; IL-1 receptor 
antagonist Anakinra prevents the activity of IL-1β; and anti-inflammatory drug aspirin was also found to have anti-HMGB1 function. 
Created with Biorender.com.
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inflammatory microenvironment induced by asbestos causes 
even more DNA damage, which over the course of several 
decades may lead to malignant transformation of HM and 
mesothelioma onset (19).

Crocidolite and amosite fibers have high biopersistence 
and contain high amounts of iron that form iron-rich 
chemical structures (ferruginous bodies), and some other 
asbestos fibers harbor iron as a surface impurity (11). 
Elevated levels of iron favor excessive ROS production 
and DNA damage catalyzed by oxidation: common 
hallmarks of cancer (20). Studies suggest that asbestos-
driven carcinogenesis is associated with ferroptosis, 
an iron-dependent cell  death pathway induced by 
overproduction of ROS (21). Recent data show that 
asbestos fibers induce distinctive necrotic cell death, and 
the cells initially undergo lysosome-dependent cell death 
(LDCD) and then undergo ferroptosis (22). The necrotic 
macrophages induce iron-dependent oxidative damage 
and DNA double-strand breaks in mesothelial cells, which 
contribute to asbestos carcinogenesis (22). Furthermore, 
the tumor suppressor activity of BAP1 has been recently 
linked to promoting ferroptosis by modulating the 
repression of cystine/glutamate antiporter SLC7A11 
expression (3,23,24). It was reported that cells carrying 
BAP1 mutations are defective in regulating SLC7A11 and 
ferroptosis, which uncovers a novel mechanism linking 
ferroptosis to tumor suppression (3,23,24). 

Some recent studies  indicate the Epithel ia l  to 
Mesenchymal Transition (EMT) as an important event 
in asbestos-induced HM transformation (8,25). EMT 
is an essential pathogenic process in tumor progression 
allowing epithelial cells to acquire characteristics of 
mesenchymal cells (26). Data suggests that HM exposed 
to asbestos undergo EMT, and this transition is mediated 
by the increased secretion of transforming growth factor β 
(TGF-β) (25), HMGB1, and TNF-α (8,25), which are all 
driven by asbestos exposure. Moreover, asbestos induces 
ROS production that activates TGF-β secretion (27) and 
the activation of activator-protein-1 (AP-1) (28,29), an 
important regulator of inflammation, cell proliferation, and 
transformation, ultimately influencing asbestos cytotoxicity 
(30,31). It was demonstrated that upregulation of the 
AP-1 component Fra-1 in response to asbestos modulates 
malignant transformation of mesothelial cells (31,32). It 
was also found that because of the “field effect” of asbestos 
exposure and/or germline mutations, multiple foci of 
transformed cells may develop simultaneously: accordingly, 
mesothelioma is often a polyclonal malignancy (33).

Inflammatory factors in mesothelioma

Chronic inflammation is caused by unresolved acute 
inflammation and promotes the development of several 
diseases (34-36). Numerous findings indicate that chronic 
inflammation is also a hallmark of cancer (37) and is 
involved in the development (4,12,38) and progression (39) 
of mesothelioma. 

Throughout this chronic inflammatory process, the pro-
inflammatory cytokine TNF-α is secreted and activates 
pro-tumoral transcription factors (such as NF-κB), which 
promotes HM survival and contributes to the pathogenesis of 
asbestos (12). Knocking out TNF-α receptors was sufficient 
to protect against asbestos-induced fibroproliferative lesions 
(40), which underscores the importance of TNF-α signaling 
in asbestos-induced inflammation. Early studies in asbestos-
driven carcinogenesis suggest that HMGB1 is released from 
the nucleus to the cytoplasm and to the extracellular space 
where HMGB1 induces an inflammatory response (4,12). 
Once HMGB1 is released into the extracellular space, it binds 
directly with IL-1β and increases the production of TNF-α 
and macrophage inflammatory protein 2 (MIP-2 or CXCL2), 
which have pro-inflammatory activity (41). Together these 
factors contribute to the chronic inflammatory process 
resulting in survival of HM that can undergo transformation 
and give rise to mesothelioma. 

At the site of accumulated asbestos deposits the chronic 
inflammatory response is also driven by the activation 
and formation of the NOD-like receptor family member 
containing a pyrin domain (NLRP3) inflammasome. The 
active NLRP3 inflammasome primed by asbestos promotes 
a pro-inflammatory microenvironment in the pleura by 
recruiting macrophages and releasing IL-1β, TNF-α, 
and HMGB1 (Figure 1). TNF-α binds to its receptor and 
activates NF-κB, which promotes the survival of HM and 
also induces the transcription of inflammatory cytokine 
genes (42). Activation of the NLRP3 inflammasome in 
macrophages and HM after asbestos exposure initiates 
the downstream inflammatory response by secretion of 
pro-inflammatory cytokines (43). In addition to NLRP3 
inflammasome activation by asbestos sensing, the presence 
of ROS modulates inflammasome formation. Asbestos 
exposure causes oxidation of the antioxidant thioredoxin-1 
(Trx1) and thioredoxin interacting protein (TXNIP) 
release: both contribute to the activation of the NLRP3 
inflammasome (42,44). Moreover, the inflammasome is 
also activated and regulated by DAMP including HMGB1 
(19,45-49). The activated NLRP3 inflammasome controls 
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and promotes the secretion of IL-1β and IL-18 by caspase-1 
cleaving pro-IL-1β and pro-IL-18 to their mature forms 
(50,51). IL-1β secretion is essential to inflammation-
induced mesothelioma because IL-1β regulates other 
cytokines contributing to mesothelioma development 
(52,53). Since IL-1β levels regulate the secretion of other 
pro-inflammatory cytokines, IL-1 receptor antagonists 
have been proposed as a therapeutic strategy to reduce 
inflammation in mesothelioma (38,54,55). 

It was shown that following asbestos exposure, IL-1β 
secretion was reduced in NLRP3-deficient mice compared 
to wild type mice. However, there was no significant 
difference regarding the incidence of mesothelioma 
between the two groups (56), which suggested that asbestos-
induced inflammation is initially inflammasome-dependent, 
but NLRP3 may not be essential during the later stage 
of chronic inflammation that causes mesothelioma 
development following asbestos exposure. Instead, the 
chronic inflammation at the site of asbestos deposits is 
supported by the active release of HMGB1, initially by 
dying HM, and over time by accumulating macrophages 
that actively secrete HMGB1 extracellularly. Accordingly, 
asbestos-exposed individuals have elevated HMGB1 serum 
levels and its levels further increased during mesothelioma 
development, suggesting that HMGB1 can be a potential 
biomarker for asbestos exposure and early detection of 
mesothelioma (4,39,57,58).

Genetic susceptibility and mesothelioma 

During the past decade, numerous studies have confirmed 
and expanded upon our discovery that mesothelioma 
is frequent in families carrying germline mutations of 
BAP1 and other tumor suppressor genes (59,60). BAP1 
heterozygous inactivating mutations reduce the ability of 
the cells to repair the DNA and reduce the ability of cells 
to undergo cell death in response to genetic damage i.e., 
haploinsufficiency. These dual effects on DNA repair and 
cell death favor further accumulation of genetic damage that 
can ensue in malignant transformation and mesothelioma 
development, a process that can be enhanced by asbestos 
exposure (61-63). Additionally, reduced levels of BAP1 
induce aerobic glycolysis, which favors tumor growth (64).  
About 30% of carriers of germline BAP1 mutations have 
developed diffuse malignant mesothelioma (62). The 
critical role of BAP1 in mesothelioma is supported by 
the frequent somatic biallelic inactivation of this gene 
in sporadic mesothelioma, which account for more than 

60% of mesotheliomas (65,66), a malignancy in which 
recurrent genetic mutations are rare (67-69). Moreover, 
mouse models carrying heterozygous inactivating germline 
BAP1 mutations are more susceptible to asbestos-induced 
mesothelioma, i.e., Gene X Environment interaction 
(38,63), and BAP1 germline mutations interact with other 
tumor suppressor gene mutations to favor mesothelioma 
development, i.e., Gene X Gene interaction (70). 

Mesothelioma also develops in carriers of germline 
mutations of other tumor suppressor genes known to cause 
other tumor predisposition syndromes, such as BLM, 
BRCA1 and BRCA2, TP53, and ATM. Mesotheliomas 
developing in carriers of germline BAP1 mutations, or of 
other tumor suppressor genes, have a significantly improved 
prognosis compared to sporadic (not genetically linked) 
and, most often, asbestos-induced mesotheliomas (71-74). 
We have recently reviewed the role of genetics in causing 
mesothelioma (3), the BAP1 cancer syndrome (75), and the 
role and mechanisms of Gene X Environment interaction 
in human cancer including mesothelioma (62) in detail, and 
therefore we will not further discuss these issues here.

Autophagy as a mechanism for pre-cancer cell survival in 
response to chronic inflammation in mesothelioma

A recent study by Xue et al. (5) identified a key mechanism 
by which HMGB1 favors mesothelioma development. It 
was found that asbestos induces HMGB1 translocation 
from the nucleus to the cytoplasm, which leads to the 
activation of autophagy in HM (5). It was also shown 
previously that asbestos exposure causes DNA damage, 
such as double-strand breaks (76,77), which are associated 
with the loss of nuclear HMGB1 (78). Therefore, following 
asbestos exposure, increased cytoplasmic HMGB1 induces 
autophagy, which allows the cells to escape cell death 
despite DNA damage (79). In contrast, when HM were 
silenced for HMGB1, autophagy activation was reduced 
and HMGB1-silenced HM exhibited increased cell death by 
apoptosis and necrosis upon asbestos exposure (5). Similarly, 
murine mesothelial cells from Hmgb1 conditional knockout 
mice exposed to asbestos demonstrated lower autophagy 
activation and increased apoptosis and necrosis compared 
to primary mesothelial cells harvested from Hmgb1 wild-
type mice (5). Moreover, asbestos-induced autophagy 
was completely inhibited by treating HM with BoxA (5),  
an HMGB1 antagonist (5,39,80,81). These findings 
demonstrated that HMGB1-driven autophagy contributes 
to mesothelial cell transformation upon asbestos exposure, 
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which further suggest that targeting HMGB1 or inhibiting 
autophagy might help prevent or delay mesothelioma.

Possible therapeutic approaches to reduce chronic 
inflammation and cancer cell survival in mesothelioma

Sporadic mesothelioma is resistant to current therapies, and 
depending on histology, overall patient survival is about 
8–14 months from diagnosis. In contrast, median survival 
for mesothelioma patients carrying germline mutations 
is 5–7 years (3,82-84). The standard first-line therapy for 
sporadic mesothelioma consists of cisplatin and pemetrexed 
combination chemotherapy which may increase median 
survival by about 3 months, whereas the role and type of 
surgery continues to be investigated (3,85-89). The addition 
of bevacizumab to cisplatin-pemetrexed further extends 
median survival to about 18 months, while immunotherapy 
may help a fraction of patients with pleural mesothelioma 
(90-92). Novel therapies are being investigated. For 
example, several reagents including HMGB1 inhibitors, 
IL-1 receptor antagonists, anti-inflammatory drugs, and 
autophagy inhibitors have been identified and demonstrated 
their effects in reducing mesothelioma in vitro (Figure 1) 
and in vivo animal models. Current understandings of these 
developing therapies are discussed below. 

Since the HMGB1 release appears necessary for 
mesothelioma progression, targeting HMGB1 has 
been explored as a potential therapy for mesothelioma 
(19,39,93,94). As discussed, HMGB1 is released into the 
extracellular space by HM exposed to asbestos fibers and the 
consequent HMGB1-RAGE interaction activates NF-κB. 
Ethyl pyruvate (EP), a derivative of pyruvic acid, has shown 
effective to reduce inflammation (95,96). The main effect 
of EP is the down-regulation of the HMGB1-RAGE axis, 
with the consequent reduced expression of inflammatory 
cytokines and of NF-κB. Pellegrini et al. showed that 
EP may act as an HMGB1-RAGE axis inhibitor in 
mesothelioma and that EP inhibited the translocation of 
HMGB1 from the nucleus to the cytoplasm, the release 
into the extracellular space, and led to reduced RAGE 
expression as well, resulting in the inhibition of NF-κB  
activity (93). In mouse mesothelioma xenografts, EP 
therapy resulted in both smaller tumor volume and reduced 
HMGB1 serum levels compared to untreated mice (93). 
Furthermore, pre-treatment with EP prior to the exposure 
to asbestos in both HM and in mice resulted in a reduced 
number of transformed foci in vitro and decreased HMGB1 
serum levels in vivo (93). EP has been included in some food 

products and used as therapeutics in various diseases other 
than cancer; thus, its use is considered to be safe for human 
health (97,98). These findings of HMGB1 inhibition by 
EP in cancer, and especially in mesothelioma, point to EP 
as a potential novel therapy that could be tested in clinical 
trials. Additionally, a recent study showed that heparan 
sulfate octadecasaccharide (18-mer-HP) can neutralize the 
pro-inflammatory activity of the HMGB1-RAGE axis and 
protect against acetaminophen/paracetamol-induced acute 
liver failure in a mouse model (99), which makes 18-mer-HP  
a potential candidate to target HMGB1 release induced 
by asbestos exposure that is worth investigating in future 
studies. 

Acetylsalicylic acid (ASA), or aspirin, is well known for 
its anti-inflammatory effects and, after 5 years of continuous 
therapy, aspirin reduced the incidence of colorectal 
cancer (CRC) by 30% and reduced the risk of metastases 
in early stage CRC (100). Treatment with ASA and its 
deacetylated metabolite salicylic acid (SA) demonstrated 
specific modulation of HMGB1 in vitro and in vivo, and 
effectively lowered HMGB1 serum levels and reduced 
tumor growth in mouse mesothelioma xenografts compared 
to untreated mice (101). In malignant mesothelioma cells 
secreting HMGB1, ASA and SA suppressed anchorage-
independent cell growth in tissue culture (101). HMGB1 
is a chemoattractant, therefore when HMGB1 is secreted 
into the extracellular space it induces the migration and 
recruitment of granulocytes, macrophages, and other cell 
types (102,103). ASA inhibited the chemoattractant activity 
of HMGB1 and, consequently, reduced cell migration (101). 
Thus, it appears possible that individuals exposed to asbestos, 
and those carrying germline BAP1 mutations, would benefit 
from aspirin treatment given reducing HMGB1 secretion 
should delay the onset or progression of mesothelioma (101). 
When cells secrete HMGB1 into the extracellular space, 
HMGB1 binds to the surface of macrophages (104). BoxA, 
the DNA-binding domain for HMGB1, competes with 
HMGB1 for these binding sites. By inhibiting HMGB1 from 
binding to the surface of the macrophages, less HMGB1-
induced proinflammatory cytokines are released from the 
macrophages (104). In studies of HMGB1 inhibition as 
treatment for sepsis, BoxA attenuated HMGB1-driven 
release of IL-1β and TNF-α from macrophages by more 
than 75% (104). In asbestos-exposed HM treated with BoxA, 
macrophages secreted less TNF-α than untreated controls (4).  
Similarly to aspirin, BoxA also reduced mesothelioma growth 
in vitro and in vivo (39,101,105). In a comparative study of 
aspirin and BoxA as HMGB1 antagonists, both treatments 
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inhibited the chemoattractant activity of HMGB1 and 
therefore reduced cell migration in vitro (101). In mouse 
mesothelioma xenografts, both treatments reduced tumor 
growth, however, BoxA-treated mice survived longer than 
ASA-treated mice (101). 

Monoclonal antibodies (mAb) for HMGB1 and for 
its RAGE receptor inhibited HMGB1 activity in vitro 
and in vivo (39). In mesothelioma cell lines, both anti-
HMGB1 and anti-RAGE antibodies induced cytotoxicity 
and reduced viability (39). Targeting HMGB1 and RAGE 
significantly reduced cell viability, underscoring the key 
role of the HMGB1-RAGE axis in cell growth and thus 
its potential value as a therapeutic target (39). Similar to 
aspirin and BoxA, anti-HMGB1 and anti-RAGE antibodies 
reduced anchorage-independent cell growth in vitro (39).  
Additionally, HM exposed to asbestos and treated with 
either BoxA or anti-HMGB1 mAbs exhibited a two-
week delay in foci formation, an in vitro measure of cell 
transformation, and an overall reduced number of foci 
compared to controls exposed to asbestos and not treated 
with any anti-HMGB1 therapy (39). Also, in mouse 
mesothelioma xenografts, treatment with anti-HMGB1 
antibody reduced tumor growth (39). 

The NLRP3 inflammasome is responsible for the 
secretion of several pro-inflammatory factors, which 
contribute to HM transformation upon asbestos exposure. 
Since IL-1β, which is released by the NLRP3 inflammasome, 
initiates the secretion of many other cytokines, several 
research groups have studied IL-1 receptor antagonists to 
inhibit cytokine transcription and activity (106,107). Pre-
treatment with Anakinra, an IL-1 receptor antagonist, 
followed by asbestos-exposure reduced the levels of NLRP3, 
IL-1β, IL-6, IL-8, HMGB1, vascular endothelial growth 
factor (VEGF), and granulocyte-colony stimulating factor 
(G-CSF) (43). Moreover, Anakinra treatment increased 
Nf2+/- and Cdkna2+/- mice survival exposed to asbestos 
(38,68), suggesting that Anakinra may mitigate mesothelioma 
progression by reducing inflammation.

Conclusions

Chronic inflammation caused by asbestos drives mesothelial 
cell transformation. Developing early detection methods 
and novel therapeutic approaches is essential to promote 
overall survival of patients with mesothelioma. Recent 
studies have elucidated some of the key mechanisms 
involved in asbestos-induced chronic inflammation, which 
are largely driven by extracellular HMGB1 (Figure 1). 

HMGB1 is initially released by HM undergoing asbestos-
induced necrosis, and later it is released by macrophages 
which are recruited at the site of asbestos deposits in 
tissues by the presence of extracellular HMGB1. These 
macrophages actively secrete HMGB1, thus propagating 
the inflammatory process and the secretion of IL-1β and 
other pro-inflammatory cytokines, such as TNF-α, which 
leads to the subsequent activation of NF-κB, a pro-survival 
pathway. HMGB1 activates autophagy and additional 
mechanisms that promote cell survival. These pro-survival 
mechanisms allow some of the mesothelial cells exposed to 
asbestos to escape cell death despite asbestos-induced DNA 
damage. This information is leading to the design of novel 
therapeutic approaches. HMGB1 is being investigated 
as a biomarker to detect asbestos exposure and to detect 
mesothelioma development in its early stage. In parallel, 
several approaches are being investigated to target and 
inhibit HMGB1 activities, a strategy that both in vitro and 
in mice has shown promising results to reduce mesothelial 
cell transformation and mesothelioma growth. Moreover, 
additional cytokines, such as IL-1β and TNF-α are being 
targeted to interfere with the inflammatory process 
that drives mesothelioma growth. It is hoped that these 
mechanistically driven novel therapies will result in clinical 
improvements for patients with mesothelioma in the near 
future.
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