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Deep learning 

Deep learning models (DLMs) have made groundbreaking 
advances in many artificial intelligence (AI) fields such as 
speech recognition, image analysis, and game playing (1,2). 
As biomedical research and medicine march into a big data 
era, it is foreseeable that DLMs will play an increasing 
important role in analyzing biomedical data. 

Early-stage DLMs, often referred to as artificial 
neural network (ANN), were inspired by biological brain 
information processing. Although nowadays DLMs 
constitute a broader family of machine learning methods, 
the most common form of DLM is deep neural networks 
(DNNs), which contain one visible layer, multiple 
hidden layers and one output layer (if supervised). Each 
hidden layer consists of a set of hidden nodes (“neurons”) 
fully connected to the nodes in adjacent layers, and 
the hierarchical hidden layers are believed to represent 
statistical structures of different degree of abstractions. 
Interestingly, as we have limited knowledge of how neurons 
in human brain acquire and store knowledge, we generally 
do not know what the so-called “neurons” in DLMs encode 
and how they learn a mapping function from inputs to 
outputs. In other words, contemporary DLMs largely 
behave as “black boxes”. 

The needs of visible DLMs 

Impressed by the great performance of DLMs, more and 
more researchers focus on the latent variables involved 
in the neural networks and how they learn more accurate 
classifications (3). It’s not only interesting to analyze the 
input-output relationship of the classifier, but also to look 
at what is going on inside the hidden layers of the network. 

The “transparent” DLMs could help us understand how 
the model processes signals, explain the predictions and 
gain the reason of task failure. This is especially true in the 
biomedical field when researchers not only seek for the 
model with the best prediction accuracy but also with the 
best biological explanation. For example, when applied to 
mining cancer omics data or systematic perturbation data, 
researchers may want to know the biological mechanisms 
that lead to cancer and use such knowledge to guide 
prescription of effective drugs. 

Several visualization techniques have been used to 
understand and visualize DLMs in the field of image 
recognition such as layer activation, filter visualization 
and image occlusion (4). However, it’s more challenging 
to “visualize” the hidden representation of biological data, 
because it is difficult for human to process patterns that 
do not have familiar visual cues. Therefore, there is an 
urgent need of visible neural networks (VNNs) that could 
make the hidden representations “transparent” from the 
perspective of biology to provide investigators a direct 
view of what hidden representations stand for (5). The 
VNNs will contribute to the cognition and development 
of DLMs suited for biomedical research. Designing 
VNNs for biomedical data could take advantage of the 
availability of prior knowledge, which could be encoded 
into the model to make the network apparent from the 
perspective of biology. For example, to model the cell 
signaling transduction system, the prior knowledge of the 
gene ontology (GO) could be used (6). Chen et al. showed 
that the deep belief network (DBN) could use hierarchical 
structure to capture the statistical patterns embedded 
in transcriptomic data corresponding to the biological 
signaling system. Furthermore, with the prior knowledge 
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of yeast transcription factor (TF)-gene interaction database 
and GO database, latent variables could be mapped to TFs 
and GO terms to make the network visible (7). 

An example of VNN

More recently, Ma et al. developed a DLM, called DCell, 
to study how gene interactions impact cell growth (8). 
DCell is a VNN capable of inferring the biological 
representation between gene-disruption genotypes (single/
pairs of gene deletion) and cell-growth phenotypes (cell 
growth) through a hierarchy of cell subsystems in the 
context of the ontology of cellular systems. The model 
mimics the biological processes of the deletion of a gene or 
pair of genes, propagated through the cellular hierarchy, to 
impact the parent subsystems containing them and finally 
lead to functional changes in small complexes, signaling 
pathways, organelles and ultimately a predicted cell growth 
phenotype. To visualize the “blackbox” between the input 
and the output, prior knowledge is incorporated into the 
model. The subsystems and their hierarchical relationship 
of DCell are based on Gene Ontology (GO) and the 
Clique-eXtracted Ontology (CliXO) database (9), which 
provide a hierarchy of biological concepts scaling from 
genes to proteins to organelles to whole cells, and including 
structures, functions, and hypotheses. DCell enables the 
authors to “visualize” latent variables by labeling them using 
corresponding GO and CliXO terms. The DCell captures 
system structure by inferring the biological information of 
the hidden representation and studying the mechanisms 
leading to the outcome of variations in phenotype. 

The architecture of DCell could be thought of as a 
combination of supervised and unsupervised learning. It not 
only predicts cell growth (discrimination) but also infers 
the state of the subsystems (transparency) by simulation of 
DCell embedded in the structure. One advantage of the 
DCell is the sufficient amount of training cases compared 
with most biomedical tasks. DCell uses the big data of 
effects on yeast cell growth phenotype of deletion of each of 
23 million pairs of genes (10), which effectively reduces the 
risk of over-fitting. 

DCell could explain a genotype-phenotype association. 
To understand how deletion of a given pair of genes 
affects cell growth, Ma et al. examined the output of each 
subsystem when DCell input was set to related gene 
deletion, and quantified and prioritized which subsystems 
(GO terms) contributed most to DCell output phenotype 
using a designed metric called relative local improvement in 

predictive power (RLIPP). To make the DCell accessible for 
researchers to query genes of interest, Ma et al. developed 
an interactive website, http://d-cell.ucsd.edu, that visualizes 
the explanation of the growth phenotype (the activated cell 
subsystems) for any single or pair of yeast genes. 

Same with every new model, it’s important to validate 
and interpret the simulated results and prove its efficacy. 
Ma et al. used several examples to show that the predictions 
inferred from DCell are testable. For example, the simulated 
genotype (PMT1&IRE1)-phenotype (negative genetic 
interaction) association and genotype (REV7&RAD57)-
phenotype (slow growth) association successfully agree 
with the findings from independent experiments. Ma et al. 
also showed that DCell had the ability of discovering new 
biological processes by validating previously undocumented 
CliXO terms. 

In summary,  DCell  makes excit ing progress in 
discovering the statistical pattern in gene interaction 
datasets and making the DLMs visible from the perspective 
of biological processes. It is a comprehensive model 
with the incorporation of DLMs, knowledge bases, and 
visualizations. 

The future applications of DLMs in biomedical 
field

Nowadays, biomedical fields are collecting unprecedented 
amounts of data. Deep learning as a popular artificial-
intelligence method provides a powerful tool for surveying 
and classifying biomedical data. In particular, the 
hierarchical organization of hidden nodes in DLMs closely 
reflect the hierarchical and compositional organization 
of cellular signaling systems, and their utilities remain to 
fully exploited. In the last decade, researchers have applied 
DLMs to biomedical fields, such as biomedical image 
analysis, genomics, proteomics, chemoinformatics, and drug 
discovery (11,12). Even though there are many advanced 
DLMs, such as CNN and generative adversarial network 
(GAN), most successful studies in biomedical fields selected 
architectures that suited to the problems at hand. For 
example, for a position-sensitive task such as medical image 
analysis, DLMs including CNN, ResNet and GoogleNet 
could be used to perform the classification task. For a task 
that is not position-sensitive, such as learning the statistical 
patterns of hierarchical cell signaling systems embedded in 
transcriptomic data, the unsupervised deep belief network 
(DBN) appears to be more appropriate. 

Although the challenges remain, we foresee that with 
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more diverse systematic perturbation data from large 
projects, such as The Cancer Genome Atlas (TCGA) 
and the Library of Integrated Network-Based Cellular 
Signatures (LINCS) projects, we anticipate that novel 
DLMs and algorithms that fully take advantage of all 
available data to derive VNN will be developed, and such 
development will significantly advance biomedical research, 
with the potentials to transform research at both bench and 
bedside in several areas. 
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