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The diagnostic landscape of prostate cancer has evolved 
rapidly, from prostate-specific antigen (PSA) testing to 
exciting new technologies that allow visualization of the 
disease, moving away from random sampling to targeted 
biopsies. Multiparametric magnetic resonance imaging 
(mpMRI) is a new modality that combines T2-weighted 
(T2W), diffusion-weighted (DW) and dynamic contrast-
enhanced (DCE) sequences, each designed to reveal 
specific microstructural features typically associated with 
malignancy such as increased vascularity and cellularity. 
Recent studies such as PROMIS and PRECISION have 
shown that mpMRI has a high negative predictive value, 
optimises cancer detection rates and reduces the number 
of biopsies needed in the active surveillance setting, where 
patients with lower risk disease are regularly monitored 
after diagnosis rather than immediately treated (1-3). 
Despite these developments, a significant challenge in 
the post-mpMRI era is the sudden emergence of new, 
previously uncharacterised MRI phenotypes, the clinical 
importance of which is not yet fully clear. The radiological 
grading of prostate mpMRI is now routine in clinical 
practice and relies on assigning a degree of suspicion to 
a particular MRI lesion or area, thus helping clinicians 
decide whether a biopsy or intervention is warranted. These 
systems work fairly well and provide a common language for 
radiologists, urologists and pathologists. Nonetheless, they 
rely on a significant degree of subjectivity, have moderate 
reproducibility among radiologists and ultimately discretize 
multiple continuous variables with the potential of losing 

valuable predictive and prognostic information (4).
Texture analysis refers to a collection of techniques that 

quantify the grey-level patterns and pixel interrelationships 
in an image in order to recognise patterns of variation often 
imperceptible to the human eye (5). In many studies, this 
involves selecting regions of interest (ROIs) in an MR image 
and extracting a set of statistical features using a (usually 
grey-level) co-occurrence matrix (GLCM), a mathematical 
construct that expresses the frequency of grey-level 
combinations within the ROI in a tabular form. Texture 
analysis has been applied in the field of prostate cancer 
with significant success. In a well-known study, Wibmer 
and colleagues used T2WI and DWI from 147 patients 
who underwent a radical prostatectomy (RP) and calculated 
the ability of Haralick features to differentiate cancer from 
non-cancer using whole-mount pathology as a reference 
standard (6). The authors found that this distinction is 
possible and that features such as energy and entropy on 
ADC maps correlate with cancer grade expressed by the 
Gleason score. Other authors have used template mapping 
biopsies as the reference standard (7). It is important to 
note that GLCM-based feature extraction, although very 
common in the literature, is not the only possibility. For 
example, spectral features calculated by wavelet functions 
are sometimes used for analysis, but such methods are more 
computationally intensive and less popular (8). 

Generally, co-occurrence matrix-based analyses are 
applied in one modality at a time and in the prostate 
mpMRI domain features are extracted separately for T2WI, 
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DWI and DCE, while their joint distribution tends to be 
disregarded. This is somewhat counterintuitive, considering 
it is the simultaneous, combined review of all mpMRI 
sequences by the expert radiologist that confers mpMRI 
its full potential. In their paper, Chaddad and colleagues 
propose a new approach for extracting radiomic features 
from prostate MRIs by using a joint intensity matrix (JIM) 
that calculates the joint intensity distribution between 3D 
images of two different modalities (T2WI and DWI) (9). 
This is a significant departure from the usual GLCM-
based approaches, which generally tend to ignore encoding 
relationships between different mpMRI sequences. The 
JIM computation described could be a significant step 
towards fully exploiting intensity values from all three 
mpMRI modalities for the purpose of deriving clinically 
useful radiomic signatures.

In more detail, the authors analysed data obtained from 
99 patients with biopsy-confirmed, MRI-localised prostate 
cancer from the SPIE-AAPM-NCI and the Cancer Imaging 
Archive (TCIA). The patients were divided into three 
Gleason grade groups (3+3, 3+4 and ≥4+3) and GLCM/
JIM were computed for all ROIs in order to extract 
quantitative features using 19 functions originally proposed 
by Haralick. To select the features with the greatest ability 
to discriminate between the three different Grade groups, 
a combination of non-parametric analysis of variance and 
correlation analyses was used while accounting for multiple 
comparisons through a Holm-Bonferroni correction. 
Finally, GLCM and JIM-derived features were used to train 
a random forest algorithm to classify tumours to a specific 
Gleason group in a binary fashion (i.e., one grade category 
against the rest). 

Interestingly, five JIM-derived features (contrast, 
homogeneity, difference variance, dissimilarity and inverse 
difference) were shown to be significantly different across 
the three Gleason groups. Area under the curve (AUC) 
evaluation of the random forest classifier demonstrated that 
JIM-based features performed better than GLCM-based or 
standard characteristics alone, although no formal statistical 
comparison was made. In addition, combining JIM and 
GLCM features increased AUC values even further 
(reaching 78.4%, 82.35% and 64.76% for Gleason 3+3, 3+4 
and ≥4+3, respectively). 

From a clinical perspective this development could have 
interesting applications, such as the detection of Gleason 
upgrading in patients managed by mpMRI-based active 
surveillance. In this scenario, where the main objective 
is not cancer detection (as the diagnosis has already been 

made) but the accurate and well-timed recognition of 
pathological progression in an otherwise fit and well patient, 
it very well might be that a JIM-based approach could yield 
previously unobtainable, clinically useful features that are 
superior to conventionally computed ones. 

Despite optimism regarding the clinical applicability of 
this and many similar quantitative imaging studies, there 
is a need for caution. The AUC for detecting cancers with 
Gleason ≥4+3 or greater (which are of particular clinical 
interest) was only moderately high. Such findings reinforce 
general concerns regarding the analytical validation (i.e., 
the measurement of accuracy, precision, repeatability, 
reproducibility and feasibility) and the qualification (i.e., 
demonstration of surrogacy and association with a clinical 
endpoint) of quantitative imaging metrics that have long 
been raised (10). These are not due to a lack of novel and 
interesting ideas, but more due the fact that most studies 
on prostate MRI to-date are single-centre, have a small 
sample size and focus heavily on very particular patient 
populations, which could significantly bias results and 
prevent generalizability and clinical application. 

The performance of machine learning classifiers (random 
forests, support vector machines and neural networks are 
all being evaluated) and the results of highly dimensional 
multivariate analyses heavily depend on the structure of the 
underlying dataset. Therefore, it is crucial that analytical 
validation and qualification of an imaging biomarker is 
performed in a population appropriate for the clinical 
question at hand. For example, using RP specimens as a 
reference standard is common in texture analysis papers as 
it allows MR image registration to specific prostate areas. 
However, using primarily RP as a reference standard could 
result in an unacceptably high false positive rate of imaging 
features in the real diagnostic setting, where patients with 
low risk cancers or benign conditions are regularly seen. 
To overcome this, the ideal validation cohort for diagnostic 
biomarkers should include patients with a variety of 
underlying pathologies. Equally, features associated with 
pathological progression in active surveillance patients 
should be rigorously tested for reproducibility, repeatability 
and surrogacy in large, regularly imaged cohorts.

Adding one more layer of complexity to the overall 
problem, there is substantial heterogeneity in the way 
various authors address high data dimensionality. This is 
a constant difficulty in imaging research as long lists of 
potential markers can be generated from a small number 
of patients. This means that false discovery rates often 
have to be tightly constrained through the selection of 
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a subset of features and the use of statistical learning for 
parameter estimation rather than maximum likelihood (11). 
In their paper, Chaddad et al. extracted the best performing 
features from a highly dimensional dataset using non-
parametric analysis of variance and correlation analysis, 
but extraction is sometimes done using methods such as 
sequential forward floating feature selection. This approach 
has been used by Litjens et al. to isolate computer-extracted 
features that distinguish cancer from benign confounding 
conditions (12). Alternatively, Wibmer and colleagues used 
generalized estimating equations for similar purposes, while 
other authors average features of the same type or resort 
to dimensionality reduction through analysis of principal 
components (6,13). 

This variability contributes towards a general feeling 
of lack of standardization, which makes evidence synthesis 
extremely difficult and brings in mind the dictum: “If you 
torture the data long enough, it will confess”. It would 
be a missed opportunity if quantitative imaging followed 
the footsteps of genetic biomarker research, where it 
has been repeatedly shown that in order to achieve even 
moderate overlap between two lists of predictive genes 
several thousand discovery samples are necessary, a standard 
that most published papers do not conform to (14). This 
is something that needs to be addressed and the imaging 
community is making considerable effort to devise road 
maps for imaging biomarker development in cancer  
research (15). Such roadmaps advocate parallel tracks 
for technical validation, increased standardization, 
continuous re-assessment of existing imaging biomarkers, 
the publication of all findings (including false-positive or 
false-negative), rigorous statistical methodology to avoid 
overfitting and the implementation of multicentre studies 
for biomarker qualification, however costly or complex. 

In conclusion, computer-extracted texture features 
using a joint intensity rather than a simple grey-level co-
occurrence matrix appear to be good at discriminating 
low from high-grade cancer on bi-parametric MRI. This 
could be a significant step towards calculating features in 
a way more consistent with the multiparametric approach 
currently used for prostate cancer risk stratification, 
especially if this calculation can be extended to incorporate 
all three mpMRI modalities. These results have to be 
corroborated by other authors and validated in large, 
multicentre cohorts with a wider spectrum of pathologies 
and clinical presentations, but they are encouraging and 
could also have clinical utility in the active surveillance 
setting. 
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