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Introduction

Of the 7.7 billion world population, approximately  
1.3 billion live with some form of vision impairment while 
36 million are blind (1,2). Acute macular degeneration 
(AMD), diabetic retinopathy (DR), central serous 
retinopathy (CSR) and macular hole (MH) are four common 
and potentially vision impairing pathologies in the field of 
ophthalmology. The prevalence of AMD and DR in the 

United States is estimated to be 1.75 (3) and 4.1 million (4),  
respectively. Probable US annual incidence for CSR and 
MH can be inferred from a study limited to Olmsted 
County, Minnesota which found the annual incidence 
of CSR and MH to be 9.9 per 100,000 men and 1.7 per 
100,000 women (5) and 5.0 per 100,000 men and 11.6 per 
1,000,000 women (6), respectively. These four pathologies 
are often diagnosed using optical coherence tomography 
(OCT), which is an imaging test that takes cross sectional 
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images of the retina using light waves. However, these four 
pathologies have some similarities in their presentation on 
the OCT images which can lead to misdiagnosis. 

In the last few years, machine learning and training of 
deep neural networks has started to emerge in many fields 
of medicine to help physicians in diagnosis and treatment of 
patients. For example in the field of dermatology, training 
of deep neural networks has helped in distinguishing 
benign from malignant melanoma (7). It has been used to 
grade brain tumors on histological specimens and magnetic 
resonance images (8,9). Machine learning has also been 
used to detect high-grade small bowel obstruction on 
abdominal radiographs (10) and to detect colorectal polyps 
on colonoscopy (11). 

Positive results have been found in the use of machine 
learning to diagnose some ophthalmological diseases 
such as glaucoma (12) and diabetic macular edema (13). 
The next stage in the field of machine learning is to 
develop techniques by which the accuracy of the deep 
neural networks can be improved. One possible method 
by which this can be done is through data augmentation 
(DA) and this approach is examined in this analysis. The 
objective of this research is to examine the effect of DA on 
the accuracy of a deep neural network on differentiating 
AMD, CSR, DR, MH and normal OCT images from each 
other. 

Methods

Image gathering

The open source Optical Coherence Tomography Image 
Database was used to acquire normal OCT images and 
OCT images for AMD, CSR, DR and MH (14). From 
this database 55 images of AMD, 102 images of CSR, 107 
images of DR, 102 images of MH and 206 normal images 
were extracted and used in the machine learning analysis. 
In order to facilitate the machine learning, each set of 
images was separated into three groups: training, validation 
and testing. The testing group was fixed at 20 images 
each, while the training and validation groups accounted 
for the remaining images in a 70:30 ratio, respectively. 
The training, validation and testing images were selected 
randomly from the total images gathered. The images 
categorized into training, validation and testing were fixed 
for both the model run with DA and the model run without 
DA. No preprocessing was performed on any of the images. 
Machine learning deep convolutional neural network

Deep convolutional neural networks contain an architecture 
that is similar to the organization of the human brain. This 
results in the network being able to process and analyze data 
in a manner similar to humans (15). Keras (16), an open 
source neural network library, was used as a deep learning 
framework in order to retrain the deep convolutional 
neural network Visual Geometry Group 16 (VGG16) (17). 
VGG16 was chosen for its high performance level for 
image classification and its light structure (18-20). VGG16 
was developed at Oxford University and contains 13 
convolutional layers which process image features ranging 
from edges and colors to more complex features such as 
faces. VGG16 also contains 3 fully connected layers which 
perform nonlinear combination of the image features in 
the convolutional layers (21). The VGG16 architecture 
had been pretrained with the ImageNet dataset (22) which 
contains more than 14 million images. The last three 
convolutional layers, the last max pooling layer and dense 
layers of the neural network were retrained in this analysis 
with the OCT images. The training and validation images 
were inputted into the model and then afterwards the test 
images were run in order to analyze how well the model 
works. 

DA

Overfitting is a concern when training neural networks. 
If the network is not exposed to enough variability in the 
images or if it is trained on the same images in too many 
batches it may start to overfit and focus on aspects of the 
image that are unrelated to the pathology. One method by 
which overfitting was decreased in this model development 
was by adding a dropout layer. This resulted in 50% of 
the neurons to be randomly turned off during the training 
step resulting in a reduction in the chances of overfitting 
to occur. Another method by which overfitting may be 
reduced is through DA. 

VGG16 was retrained two times separately, one model 
with DA and one model without DA. DA consisted of the 
following changes to the images that were inputted into 
the model: rotation, width and height shear, horizontal flip 
and Gaussian noise. Rotation was set to 10% and width and 
height shear were each set to 10%. This resulted in some 
of the images that were inputted into VGG16 to be altered 
based on these parameters before retraining of the model. 
In addition, Gaussian noise was added to the images before 
retraining. Gaussian noise consists of distortion of the high 
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frequency features of a model via addition of statistical 
noise based on the Gaussian distribution. All of these DA 
techniques help to better account for machine and user 
variability when taking OCT images. 

Overall, two VGG16 models were retrained—one with a 
dropout layer but without DA and one with both a dropout 
layer and DA. 

Statistical analysis

Statistical analysis of the model’s output on the testing 
images was performed using R Software [2017] (23). 
The analysis consisted of sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
Matthews correlation coefficient (MCC) and F1 score. 
MCC quantifies the quality of a binary classification and 
is often used to assess how well a classification model 
is performing. It is especially useful when the different 
categories of images that are being inputted into the model 
have a different number of images. MCC ranges from –1 
to 1 with –1 being a completely inaccurate classifier and 
1 being a completely accurate classifier (24). F1 score is 
another measure of the performance of a classification 
model. It consists of the harmonic average of the sensitivity 

and the PPV. F1 score ranges from 0 to 1 and a model with 
a score closer to 1 is considered to be more accurate. 

A confusion matrix is created to display the accuracy 
of the models on the testing images and determine which 
categories the model had the most confusion with. The 
columns contain the true classification of the images while 
the rows represent the model’s prediction on the images. 

Receiver operating characteristic (ROC) curves are also 
generated for each of the four ophthalmological pathologies 
and for normal with and without DA. Area under the curve 
(AUC) is calculated for each ROC curve. AUC gives insight 
into how well the model can distinguish between classes 
with a value closer to 1 indicating a better model. 

Results

After the 20 test images for each of the Ophthalmology 
diseases and for normal were run in the model, sensitivity, 
specificity, PPV, NPV, MCC and F1 score were calculated 
as shown in Table 1. This was repeated with the model that 
used DA. Average sensitivity, specificity, PPV, NPV, MCC 
and F1 across the five categories of AMD, CSR, DR, MH 
and normal all increased in value and had smaller standard 
deviations with the model run with DA as compared to 

Table 1 Statistical analysis for each ophthalmological condition and normal with and without data augmentation

Ophthalmological 
condition 

Sensitivity Specificity PPV NPV MCC F1 Score

Without data augmentation

AMD 0.850 0.913 0.708 0.961 0.714 0.773

CSR 0.650 0.950 0.765 0.916 0.639 0.703

DR 0.900 0.975 0.900 0.975 0.875 0.900

MH 0.900 1.000 1.000 0.976 0.937 0.947

Normal 1.000 0.988 0.952 1.000 0.970 0.976

Average ± SD 0.860±0.116 0.965±0.031 0.865±0.111 0.965±0.028 0.827±0.129 0.860±0.105

With data augmentation

AMD 0.900 1.000 1.000 0.976 0.937 0.947

CSR 0.950 0.988 0.950 0.988 0.938 0.950

DR 0.950 0.975 0.905 0.987 0.908 0.927

MH 0.900 0.988 0.947 0.975 0.905 0.923

Normal 1.000 0.975 0.909 1.000 0.941 0.952

Average ± SD 0.940±0.037 0.985±0.009 0.942±0.034 0.985±0.009 0.926±0.016 0.940±0.005

PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; AMD, Acute macular degeneration; 
CSR, central serous retinopathy, DR, diabetic retinopathy; MH, macular hole.
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the one without. Specifically, MCC, which is often used as 
a benchmark to measure how well a model works had an 
average increase from 0.83 to 0.93. 

A confusion matrix, shown in Figure 1, was also created 
in order to better understand which of the categories of 
AMD, CSR, DR, MH and normal the model had the most 
confusion with. This was again performed for both the 
model with and without DA. Each of the Ophthalmology 
diseases and the normal OCT group stayed the same or 
increased in accuracy for the test images once DA was 
added to the model. 

Further, receiver operating curves (ROC) were developed 
for each of the Ophthalmology diseases and for normal 
OCT and area under the curve (AUC) was calculated for 
each ROC. Figure 2 shows these ROC and the AUC for 
the models run with and without DA. The average AUC 
increased from 0.91 without DA to 0.97 with DA.

Discussion

The confusion matrix shows that the model without DA 
had significant difficulty in distinguishing AMD from CSR. 
Of the true CSR test images the model predicted 65% of 
them to be CSR and 30% to be AMD. Further, of the true 
AMD test images the model predicted 85%, second lowest 
of the five categories, to be AMD and the remaining 15% 
to be CSR. In the model run with DA of the true CSR 
test images, 95% were predicted to be CSR and of the 
true AMD test images, 90% were predicted to be AMD, 
indicating that DA significantly helped the model to better 
distinguish CSR from AMD and vice versa. It is possible 

that AMD and CSR had increased confusion because of the 
limited number of total images of AMD that were inputted 
into the model as compared to the other diseases and 
normal. Further CSR has some similar qualities on OCT as 
AMD and can be hard to distinguish (25). Another indicator 
that the number of images may have played a factor in the 
lower accuracy for some diseases than others is that the 
category of normal OCT had the highest number of images 
inputted into the model and without DA the model had 
100% test accuracy. As such, the DA techniques used in this 
analysis may be especially useful when there are a limited 
number of training images. 

The AUC for each of the ROC curves increased for the 
model run with DA as compared to the one without. AUC 
for CSR had the highest increase from 0.74 to 0.95. In 
addition, AUC for AMD jumped from third highest (0.94) 
in the model without DA to the highest (0.99) in the model 
with DA. These results again indicate the value of the DA 
techniques when the images are limited and/or when the 
images have similar features that may make it harder to 
distinguish from one another. 

Other research

Research has been performed on machine learning for 
various ophthalmological pathologies using OCT images 
(26-28) and multispectral microscopy images (29). Even 
though OCT machines have some standardization and set 
calibration, there exists inter-machine variability and user 
generated variability. This variability combined with the 
variability in the presentation of each ophthalmological 

Figure 1 Confusion Matrix for ophthalmological diseases and normal with and without data augmentation. The columns contain the true 
classification of the images while the rows represent the model’s prediction on the images. 
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pathology makes it very difficult for deep neural networks 
to improve in their accuracy significantly. DA can help to 
generate variability from one image so that the model is 
able to analyze this variability during the training stage 
rather than seeing it for the first time during the testing 
stage. Since neural networks are often trained using data 
obtained from one machine in one location, DA can help to 
account for some of the variability between machines and 
user generated variability. Further, DA can be especially 
useful when there are a limited number of images available 
for input into the model. For example, in this analysis, only 
a total of 55 AMD images were gathered from the database. 

After setting aside images for testing, the deep convolutional 
neural network was limited to a relatively small number of 
images for training and validation. This may have led to 
some of the confusion between AMD and CSR. However, 
after DA the model seemed to be better able to distinguish 
AMD from other pathologies as indicated by the increase in 
statistical measures such as MCC and in AUC.

Future

The model was trained on a limited number of OCT 
images. Acquiring a larger quantity and better quality OCT 

Figure 2 ROC curve and AUC for each ophthalmological disease and normal with and without data augmentation. AUC is shown in 
the legend. AMD, Acute macular degeneration; ROC, receiver operating characteristic; DA, data augmentation; CSR, central serous 
retinopathy, DR, diabetic retinopathy; MH, macular hole; AUC, area under the curve.
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images can help to improve the accuracy of the model. Next 
steps in this field of research include creating an application 
in which physicians can input an OCT image and the top 
three diagnoses with percentages are outputted. This can 
be used by physicians as a tool to strengthen support for 
their own diagnosis or to consider a diagnosis that was low 
on their differential but high on the model’s. Further, OCT 
is an imaging technique used not only by ophthalmologists 
but also by cardiologists in imaging coronary arteries, 
by oncologists for detecting esophageal dysplasia and by 
dermatologists for detecting skin carcinomas. As such 
it may be possible for non ophthalmological medical 
professionals to use deep convolutional neural networks as 
an aid in detecting pathologies in OCT images in their field 
of medicine. 

Limitations

The current model in this analysis has only been trained to 
identify AMD, CSR, DR, MH and normal OCT images. 
It will have to be properly trained to decipher other OCT 
image pathologies. The model does not account for the 
patient’s symptoms or time course of the symptoms which 
can significantly influence the differential diagnosis. Further, 
automated classification of images is very difficult because 
of the variability in the image (brightness, zoom, rotation 
etc) and because of the variability in the presentation of the 
pathology in the image. 

Conclusions

The deep neural network trained was able to distinguish 
AMD, CSR, DR and MH and normal eye OCT images 
with appreciable MCC and F1 score. These and other 
statistical measures of the model increased when the same 
model was run with DA techniques, including rotation, 
shear, flipping and Gaussian noise. Further, the AUC for 
the ROC curves for each of the ophthalmological diseases 
and for normal increased once DA was added. The average 
AUC for the model using DA increased by 0.06 to 0.97, 
indicating that model performs well. The model without 
DA had the greatest difficulty in distinguishing AMD 
from CSR. The addition of DA significantly reduced this 
confusion. Future steps in this field include obtaining larger 
numbers and higher quality of OCT images in order to 
further improve the model. Further, creating an application 
with this model can serve as an aid for physicians in real-
time diagnosing of OCT images.
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