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Introduction

Quantitative phase imaging (QPI) is a method of phase-
contrast microscopy which quantifies the phase shift that 
occurs when light passes through an optically dense object 
(1,2). Unlike other conventional phase-contrast methods, 
QPI creates a phase shift image independent of the bright 
field image. The method is very useful in providing 
quantitative information about cells such as the morphology 
and cell dry mass (3). This method can, therefore, provide 
enormous information about cells. In the past, however, 
applying information obtained from QPI based cell 
profiling into practical translational solutions has been 
challenging due to limited access to analytical tools capable 
of making full sense of this data (4). Recent advances in 
Artificial intelligence and machine learning (5) suggest 
opportunities in applying QPI to medical diagnostics (6). 
The goal of this paper is to discuss artificial intelligence (AI), 
machine learning, QPI and how these techniques can be 
combined in medical diagnostics.

AI

AI can be described as machines (or computers) that mimic 
“cognitive” functions usually associated with the human 
mind, for example; “learning” and “problem-solving” (7). A 
more comprehensive definition of AI is “a system’s ability 
to correctly interpret external data, to learn from such data, 
and to use those learnings to achieve specific goals and tasks 
through flexible adaptation.” (8). It is very common for tasks 
previously thought to be unachievable by machines to be 
removed from the definition of AI once machines achieve 
that task. This is known as the AI effect (9). AI involve the 
use of algorithms. 

Machine learning

Machine Learning,  seen as a  sub-set  of  art i f icial  
intelligence (10), relies on patterns and inference to 
study algorithms and statistical models with the goal 
of performing tasks without explicit instructions (11). 
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In machine learning, the algorithm basically learns the 
associations of predictive data using examples in data (10). 
Using exploratory data analysis through unsupervised 
learning is known as data mining (12).

Deep learning

Deep learning, a machine learning method based on 
artificial neural networks, involves feeding an algorithm 
with large data sets with the goal of discovering the 
representations needed for classification or detection (13). It 
may be supervised or unsupervised. 

Supervised learning

Supervised Learning, is the machine learning task of 
mapping input to an output based on input-output pairs (7). 
The outputs of interest in supervised learning are typically 
defined by a human supervisor. The goal of learning 
associations is to be able to predict future outputs based 
on input after the algorithm has been trained to make 
predictions. 

Unsupervised learning

Unsupervised learning, unlike supervised learning, learns 
associations in a dataset without any external definition of 
associations of interest. It, therefore, identifies previously 
undiscovered associations instead of relying on known 
ones (10).

Quantitative phase imaging and deep learning in 
cell diagnostics

The diverse properties of cells in the body changes based 
on pathophysiological conditions (14). It is a known fact 
for example that various parasitic infections and diseases 
alter red blood cell properties (15). Alterations in the 
deformability of red blood cells have for example been 
documented in cases of malaria, sickle cell anemia, diabetes, 
just to name a few (16). Complete blood count, the 
universally accepted method for hematological examination 
of red cell properties, is population-based and fails to focus 
on individual red cell properties (4). Profiling individual 
red cells can, therefore, be a game-changer in screening 
diseases based on individual red blood cells (17). QPI, a 
method that uses the differences in intracellular refractive 
index distribution as an imaging contrast for label-free 

imaging (18), can serve as a viable method for profiling 
individual cells. The challenge, however, is that the data 
will be accompanied by variations in each cell, a challenge 
which hitherto would mean difficulty in analyzing the 
resultant data due to lack of proper analytics tools. With 
the improvement in computing power and deep learning 
however, we can increasingly make sense of this massive 
data. For example, QPI and machine learning have been 
combined to help in the diagnosis of malaria infections (19), 
sickle cell (20), and sperm cell analysis (21). It is therefore 
proposed that, in the future, QPI can be combined with 
machine learning in order to provide novel diagnostic 
solutions.

Ethical considerations

It is obvious that large amounts of data sets will be needed 
in order to these train machine learning algorithms. It is 
essential that biases in the patient selection are avoided 
in order to ensure that samples used are representative 
enough. It is also important to ensure that data used in AI 
research are ethically sourced and not weaponized to attack 
vulnerable populations.

Final thoughts

There is great promise in combining QPI with machine 
learning and it can potentially lead to affordable, 
groundbreaking diagnostic solutions. 
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