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Background: Medical images, including results from X-rays, are an integral part of medical diagnosis. 
Their interpretation requires an experienced radiologist. One of the main problems in developing countries 
is access to timely medical diagnosis. Lack of investment in health care infrastructure, geographical isolation 
and shortage of trained specialists are common obstacles to providing adequate health care in many areas of 
the world. In this work we show how to build and deploy a Deep Learning computer vision application for 
the classification of 14 common thorax disease using X-rays images.
Methods: We make use of the FAST.AI and pytorch framework to create and train the DenseNet-121 
model to classify the X-ray images from the ChestX-ray14 data set which contains 112,120 frontal-view X-ray 
images of 30,805 unique patients. After training and validate our model we create a web-app using Heroku, 
this web-app can be accessed by any mobile device with internet connection.
Results: We obtained 70% for detecting pneumothorax for the one-vs-all task. Meanwhile, for the 
multilabel-multiclass task we are able to achieve state-of-the-art accuracy with fewer epochs, reducing 
drastically the training time of the model. We also demonstrate the feature localization of our model by 
using the Grad-CAM methodologies, feature which can be useful for early diagnostic of dangerous illnesses. 
Conclusions: In this work we present our study of the use of machine learning techniques to identify 
diseases using X-ray information. We have used the new framework of Fast.AI, and imported the resulting 
model to an app which can be tested by any user. The app has an intuitive interface where the user can 
upload an image and obtain a likelihood for the given image be classified as one of the 14 labeled diseases. 
This classification could assist diagnosis by medical providers and broaden access to medical services to 
remote areas.
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Introduction

Medical images, including results from X-rays, are an 
integral part of medical diagnosis. Their interpretation 
requires an experienced radiologist, a human whose skills 
are scarce and who can commit mistakes when tired. But at 
face value, the X-ray diagnostic uses simple features from 
the image, such as black and white intensity, contours and 
shapes, all properties which an artificial intelligence (AI) can 
handle well.

And indeed, in recent years, the idea of using AI as a 
means of assisting diagnostic (classification) has taken hold, 
thanks to the increase of computational speed (e.g., with 
graphical processing units, a.k.a. GPUs), the availability of 
large and well-documented data sets, and the development 
of deep learning techniques, in particular convolutional 
neural networks (CNNs). The results of a number of studies 
training CNNs to diagnose diseases using 2D and 3D 
images are rather impressive, reaching near 100% accuracy 
in such diverse pathologies as lung nodules or Alzheimer’s, 
see Ref. (1) for a recent overview. Moreover, in some cases 
the performance of the AI exceeds that of radiologists, see, 
e.g., the study of CheXNet (2).

One of the main problems faced by people in developing 
countries is access to timely medical diagnosis. Lack of 
investment in health care infrastructure, geographical 
isolation and shortage of trained specialists are common 
obstacles to providing adequate health care in many areas of 
the world.

Yet the use of AI is still limited for various reasons, 
technical and sociological. For example, images are only 
one aspect of the patient history which can be supplemented 
with clinical signs, e.g., whether the patient has fever. 
Currently, the availability of databases with additional 
clinical information is scarce, but databases with better 
labelling could substantially improve the AI training in 
the near future. A more important issue is related to the 
natural variability of a large training data set, and the need 
to remove modelling when interpreting the image. This has 
led to the development of new techniques beyond CNNs 
(supervised learning) to incorporate a more bottom-up 
approach: unsupervised machine learning. Nevertheless, 
all these studies rely on a large number of neuron layers, 
typically dozens, and good quality images. The trained 
neural network (NN) can then be used in a powerful 
computer station to help diagnosis.

Given our interest in portability, we need to develop 
a different strategy. We cannot deploy machine learning 

algorithms which depend on too many layers, and we 
cannot rely on the acquisition of precise images. Instead, 
we have to strike a balance between the desired outcomes 
(portability and reliability) and the real-life situations a 
clinician may encounter on field.

This note presents our results to help the early 
diagnosis of a number of life-threatening conditions in 
remote areas with the use of new methodologies (based 
on Machine Learning) and their capability to be deployed 
into mobile devices. We use the latest developments in AI 
environments which are portable and fast, in particular 
Fast.AI (3), to develop an artificial NN to be deployed as 
a smartphone app, or in one of Google’s AI development 
kits, or in Raspberry PI, as a tool to assist physicians in their 
diagnostic. A beta version of the app can be tested in the 
Heroku environment (4) and all the code developed during 
this project can be obtained in GitHub (5).

Methods

The data set and analysis framework

We use the ChestX-ray14 data set (6) which contains 
112,120 frontal-view X-ray images of 30,805 unique 
patients. The images are frontal view of chest X-rays 
PNG images in 1,024×1,024 resolution. Meta-data for all 
images contains: image index, finding labels, patient ID, 
patient age, patient gender, view position, original image 
size and original image pixel spacing. Each image contains 
the annotations up to 14 different thoracic pathology 
labels. The labels were assigned using automatic extraction 
methods on radiology reports. The database from NIH is 
available on-line through the link: https://nihcc.app.box.
com/v/ChestXray-NIHCC/folder/36938765345.

The 14 common thorax disease categories are: 
atelectasis, cardiomegaly, effusion, infiltration, mass, 
nodule, pneumonia, pneumothorax, consolidation, oedema, 
emphysema, fibrosis, pleural thickening, and hernia.

Regarding the analysis of the dataset, in this project we 
use AI techniques in the framework of Fast.AI (3), a library 
which simplifies accurate and fast training of NNs using 
modern best practices. It includes out-of-the-box support 
for vision, text, tabular, and collaborative filtering models. 
Another main advantage of Fast.AI is the simplification 
of the data processing made by the data block application 
programming interface (API), and the implementation of 
the fit one cycle method (7) and mixed precision training 
(8). The fit one cycle method allows us to drastically reduce 

https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345
https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345
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the training time by allowing changes during the training 
in the learning rates and momentum (hyper-parameters). 
This method can reduce the time to train big NN models, 
but also stabilize it by helping the optimization algorithm 
to prevent falling into saddle points. The mixed precision 
training uses half-precision floating point numbers, 
without losing model accuracy or having to modify hyper-
parameters. This nearly halves memory requirements and, 
on recent GPUs, speeds up arithmetic calculations.

Selecting and processing the data

Since we are interested in distinguishing different types of 
diseases, we will focus on the dataset with labels of at least 
one disease. In the data set there are 51,759 images with 
at least one disease (non-healthy). On this data set, we will 
perform two types of analyses: (I) one vs. all and (II) multi-
label classification.

In the first type of analysis, we will train an algorithm to 
identify patients with a specific disease, which we choose to 
be Pneumothorax for illustrative purposes, versus any other 
type of disease in the sample. In the second type of analysis, 
we will tackle a more difficult but realistic situation: often 
diseases do not occur in isolation, e.g., atelectasis tends to 
appear in conjunction with cardiomegaly or consolidation, 
or both. This more complex situation is called co-
occurrence, which in terms of the data analysis corresponds 
to a problem of multi-label classification.

Below we describe how we select and process the data in 
these two situations:

One vs. all problem (i.e., pneumothorax vs. all)
We separate the data set in two categories, one with the 
label pneumothorax the other with all the images with 
no pneumothorax label (atelectasis, pneumonia, ...). 
Specifically, we first read from the metadata information 
available in the file Data_Entry_2017.csv the images names 
and findings, selecting the entries with the pneumothorax 
label to one folder and all the others to a different folder. 
After this selection one ends up with the following set of 
samples:

	P n e u m o t h o r a x :  5 , 3 0 2  i m a g e s ,  r e s o l u t i o n 
1,024×1,024 8-bit gray scale;

	No-pneumothorax: 46,457 images, resolution 
1,024×1,024 8-bit gray scale.

Next, we prepare the data for testing and validation 
using the Fast.AI data block API, which automatically loads 
the data from their respective folders, assign their labels 
according to the name of the folders and split the full data 
into training (80%) and validation (20%) data sets. The data 
block API ensure the use of correct labels, the correct train/
validation (or test) split, the correct normalization of the 
images and all the augmentations transformation we later 
apply1. After this selection and transformations, we end up 
with:
	Train size (80%): 41,408 items, items dimension: 

224×224 three channels, transformation applied;
	Validation size (20%): 10,351 items, items dimension: 

224×224 three channels, no transformations;
	Batches which are set to 64 items per batch, so they 

can fit on a regular GPU memory.
We select the following transformations to be applied to 

the train data set:
	Random rotation (clockwise or counter-clockwise) in 

an angle range between 0 and 30 degrees;
	Fifty percent chance of an image to be zoomed by a 

1.3 scale;
	One hundred percent chance of an image be selected 

to randomly modify brightness and contrast within a 
range between 0 and 0.4;

	Normalize the items according to the stats of each 
batch, i.e., take the mean and the standard deviation 
of each channel and normalize the image using them2.

Note that the images fed into the CNN are set to be 
224×224 with three channels due to hardware limitations 
and the size of the batch (64 images) to fit into the GPU 
memory, as well as coding implementation—the CNN 
architecture we are using (DenseNet) was originally 
designed to work with three channels (RGB), so the input 
layer is designed to take inputs (tensors) with the dimension 
(batch size, C =3, x size, y size) where C is the number of 
channels from the image.

In Figure 1 we show the effects of the transformations 

 
1 Note that the pixel values can vary from 0 to 255 for each of the three channels in an RGB image, or one single channel for Gray-Scale, 
and we re-scale this range to −1 to 1 to input the values in a CNN.
2 Note that in pytorch when we normalize images we have to provide the mean and the std. for each channel, in TensorFlow we can use 
sklearn.preprocessing.StandardScaler to do the same.
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Figure 1 Random transformations applied in one selected image. The random rotation and change in brightness are applied to consider the 
variations of image quality and arrangement one can encounter in medical facilities in remote areas.
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we apply in the train data set items. They are designed to 
emulate some of the issues which different situations could 
lead to. For example, brightness variance can occur when 
the technician exposes the patient to a more energetic 
X-ray beam (higher keV X-rays) or long exposure time, 
which greatly increases the contrast of the image, but also 
increases the radiation dose received by the patient; or 
in the case of film X-ray, the exposure time to chemicals 
can drastically reduce contrast of the image, leading to 
erroneous feature differentiation.

Multi-label classification
For the multi-label case we prepare a new csv file which 
contains the name of the image (in our input data set the 
names are formatted as 00025252_045.png) and the label 
of the diseases found in the respective images. This file will 
be used by the data block API to correctly label the images. 
The file Data_Entry_2017.csv contains all the metadata 
with the name of each image together with the findings and 
other information that can be used for future applications.

To create the multi-class label file we use a python script 
with two main functions: one to extract the information 
from the Data_Entry_2017.csv metadata and another 
function to write the new csv file with the columns contain 
the path to the images, their respective findings and a new 
column with a one-hot encode3 to represent the presence or 
not of each disease (class) in a given image, in Figure 2 we 
show the structure of the Data_Entry_2017.csv.

The Fast.AI API contains a very convenient method 
to prepare and load the images into our CNN model 
called ImageDataBunch, which contains a series of 
useful functions which one can use for AI purposes. For 
example, for the multi-label classification one can use the 
ImageDataBunch.from_csv(), which automatically identifies 
the images and multi-class labels we are loading into the 
CNN, e.g., np.random.seed (42).

data = ImageDataBunch.from_csv(path, label_delim=’|’, 
csv_labels=’label list.csv’, label_col=1,\ delimiter=’,’, valid_
pct=0.2,ds_tfms=tfms,bs=64, size=224,num_workers=3).
normalize()

This set of commands will automatically load the images 
in batches of 64, re-size the images form 1,024×1,024 to 
224×224, load the labels from labellist.csv and normalise 
according to the pytorch standard, and split the dataset into 
80% test images and 20% for validation.

A very important aspect in our analysis is how often one 
disease appears together with others, i.e., the rate of co-
occurrences. We can check the co-occurrences of a disease 
using scikit-learning feature extraction library, and in  
Figure 3 we show the matrix of number of co-occurrences in 
the data set. This information is key to introduce the proper 
weights used in the loss function and lead to the positive 
identification of a given class. These values can help us to 
better calibrate the weights for each class in order to avoid 
situations like a model who can only predict the class where 
one has the higher number of targets.

 
3 In digital circuits and machine learning, one-hot is a group of bits among which the legal combinations of values are only those with a 
single high [1] bit and all the others low [0].

Figure 2 Extract of the label data frame for the multi-label classification task. Fast.AI can handle multi-label classification targets and image 
names are given in a proper structured way, which we provide a new csv file. The one-hot encode represents the presence [1] or absence [0] 
of a particular disease in the list: atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, 
edema, emphysema, fibrosis, pleural thickening and hernia.
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The model architecture and training

Our architecture will be based on the DenseNet-121 model 
with the last layers (header) modified for our purposes. 
Specifically, our CNN model consists on the following 
parts:

	The body of  the  model  i s  the  same as  the 

DenseNet-121, described in Figure 4 (third column) 

(DenseNet-121);

	For the classification layer, we remove the last 

layer from DenseNet-121 and replace it with the 

Figure 3 Number of co-occurrences for each disease in the data set. Note, for example, that Infiltration is always co-occurrent with some 
other disease label, and that some diseases often come together, e.g., effusion and atelectasis.
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following layers:
	 AdaptiveConcatPool2d layer;
	 Flatten layer;
	 A block with [nn.BatchNorm1d, nn.Dropout, 

nn.Linear, nn.ReLU] layers.
In our loss function we use the weights from each class 

calculated according to the scikit-learn class weight method, 
defined as: 

1 2( [ , , ])
samples

classes

n
n n n∗ 

 [1]

Where nsamples is the total number of images in the 
training sample, nclasses is the number of classes (2 in the case 
of one vs. all), and n1, n2, … are the number of images for 
each class. This function from sklearn returns the weight 
for each class in our training sample, information we pass 
onto the weights in the loss function, which mitigates the 
problem of having more images from one class than another 
class, i.e., imbalanced classes data sets.

The network is trained end-to-end using Adam as an 
optimizer (9) with standard parameters (β1 =0.9 and β1 
=0.999). We trained the model using the fit one cycle 
method (7), which consist in the following steps: initializes 
the training with a given learning rate and momentum; 
in the middle of the training phase the learning rate is 
increased up to a given maximum value while the momentum 

is reduced; and close to the end of the training the learning 
rate is reduced again and the momentum increased, as 
shown in Figure 5. This method gives more stable results by 
avoiding the optimization process to fall into saddle points 
and requires less epochs to fully train our model.

Another useful parameter for training our CNN is the 
weight decays4. After each epoch, the weights of the NN are 
multiplied by a smaller factor between 0 and 1. This is one 
of the various forms of regularization of the NN training, 
together with batch size and dropout (10). One can choose 
a weight decay which allows us to use a bigger initial value 
for the learning rate and thus reduce the time of training 
during the fit one cycle.

For the one-vs-all case we choose the Cross Entropy 
Loss with weights defined for each class to take into account 
the high imbalance between the pneumothorax case vs. all 
the others. Specifically, to apply the weights into our loss 
function we do as follows:

class_weights = torch.FloatTensor(weights).cuda() loss_
func = nn.CrossEntropyLoss(weight=class_weights)

where the weights are calculated by the Equation [1], the 
function cuda() just moves the numbers calculated for the 
weights to the GPU memory where our CNN is loaded. 
The weights are passed to the loss function by the argument 
weight from the cross entropy loss class.

The Cross Entropy Loss function, in the case of the class 

Figure 4 DenseNet architectures for ImageNet. Note that each “conv” layer shown in the table corresponds the sequence: batch 
normalization, rectifier linear function and a convolutional layer (BN-ReLU-Conv).

 
4 Do not confuse this term with class weights. The class weights are used to balance the number of images of each class.
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weight argument being specified, can be described as:

( , ) [ ] [ ] log exp( [ ])
j

j
loss x class weight class x class x j

  
= − +     

∑  [2]

with x as the image input for the respective class.
Another important aspect for the Cross Entropy Loss 

is the reduction method, which specifies the reduction 
to apply to the output. The pytorch framework gives 
three options: none, mean and sum, we choose mean in our 
analysis. For the multi-label classification task we choose 
BCEWithLogitsLoss. This loss combines a Sigmoid layer 
and the BCELoss in one single layer. By combining the 
operations into one layer, one takes advantage of the log-
sum-exp trick (11) for numerical stability.

The BCEWithLogitsLoss for the multi-label case with 
class weights is described by:

1 , ,

, , , , , ,

( , ) { , , }

[ log ( ) (1 ) log(1 ( ))]
c c c N c

n c n c c n c n c n c n c

l x y L l l

l w p y x y xσ σ

Τ= =

= − ⋅ + − ⋅ −



 [3]

where c is the class number (c >1 for multi-label binary 
classification, c =1 for single label binary classification), n is 
the number of the sample in the batch and pc is the weight of 
the positive answer for the class c. Note that pc >1 increases 
the recall, whereas the choices with pc <1 increase the 
precision. Also note that we used the default option mean as 
reduction method to BCEWithLogitsLoss.

Before training, one has to define the range of the 

learning rate to be used in the fit one cycle method. To 
compute the best range for the learning rate we used the 
function learner.lr_find(), which will perform a test run, 
starting with a very small learning rate and increasing 
it after each mini-batch until the loss function starts 
exploding. Once the loss starts diverging, the lr_find()will 
stop the range test run. In Figure 6 we show the loss values 
vs. the learning rate for each weight decay choice (WD =0, 
0.1, 0.001, 1e−5). The best initial values for learning rates are 
the ones giving the steeper gradient towards the minimum 
loss value (7). In the case of Figure 6 this value is 1.32e−2 for 
the left figure and 1.02e−2 for the right one.

The learning rate change can be described as follows:
n=number of iterations
max_lr=maximum learning rate
init_lr=lower learning rate (we start the range test from 

this value)
max_lr=init_lr * q

n

1

(max_ lr/init_lr)nq =  [4]

Note that the learning rate after the i-th mini-batch is 
given by:

init_lr (max_lr/init_lr)
i
n

ilr = ∗  [5]

We are using the transfer learning methodology to not just 
training our CNN faster, but also to increase the accuracy. To 

Figure 5 Fit one cycle method. Left figure: this shows the variation of the learning rate over the number of iterations, with the vertical axis 
showing the learning rate change between 1e−4 to 3e−3 and the horizontal axis showing all the iterations (i.e., epochs). Right figure: here 
we show the change in momentum rate over number of iterations. In these figures we can see the change in values of the learning rate and 
momentum, during the middle of the cycle. The high learning rates and small momentum will act as regularization method, and keep the 
network from overfitting, as they prevent the model from landing in a steep area of the loss function, preferring to find a minimum that is 
flatter.
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execute this task, we trained the CNN in two phases. During 
the first phase, the model is trained from end-to-end, i.e., all 
the layers are trained, for 30 epochs with an initial learning 
rate of 1.32e−2 to a maximum 1e−1. This initial value is chosen 
due to the loss value for this learning rate exhibit the steeper 
gradient value towards the direction of the minimum, as we 
can see in Figure 6. After the 30 epochs, the training is stopped 
and the weights are saved, leading to a second train phase 
which uses the weights saved from the previous training, 
freeze all the layers before the last classification layer to void 
retraining all the NN, and train only the last classification 
layers with a different range for the learning rate. This process 
described above is what we know as transfer learning, and we 
evaluate the impact of this methodology on the accuracy of our 
model between the two phases.

Results

In a simple binary classification problem (like in our 
benchmark pneumothorax vs. all), one can define some 
measures of how well our algorithm is performing: 
precision, accuracy and recall. All these are computed by 
evaluating how often in a sample the results lead to a true-
positive (TP), true-negative (TN), false-positive (FP) and 
false-negative (FP) diagnoses. Based on these numbers one 
can define three measures of goodness of diagnosis:

Accuracy = TP + TN/TP + FP+ FN + TN, the 

ratio of correct observations vs. all observations, e.g., 
accuracy would tell us how likely is to correctly identify 
pneumothorax pathologies in sick patients.

Precision = TP/TP+FP, the ratio of correct predicted 
positives vs. all the classified as positive, e.g., precision 
would tel l  us  how many pat ients  diagnosed with 
pneumothorax do actually have pneumothorax.

Recall (or sensitivity) = TP/TP+FN, the ratio of 
correctly predicted positive vs. all the elements with the 
actual disease, e.g., recall would tell us the probability for 
correctly diagnosing pneumothorax among all the patients 
suffering from pneumothorax.

Obviously, all these measures are important, and 
depending on the nature of the disease and focus of the 
practitioner the algorithm could be trained to improve 
any of these three, usually at the cost of the other two. A 
typical average measure of goodness which works well in 
imbalanced data sets is the F1 score, defined in its simplest 
form as an average between accuracy and recall

F1 score = 2 * (precision * recall)/(precision + recall)

Results for one vs. all (pneumothorax)

We can compute the F1 scores and precision-recall (PR) of 
our CNN using our validation data set. In scikit-learn, F1 
scores can be evaluated using different average methods5, 
namely:

 
5 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Figure 6 Effect of the different choices for the weight decay (WD) in the loss change (vertical axis) for a given learning rate (horizontal axis) 
for the DenseNet-121 CNN without class weights (left panel) and with class weights (right panel). Note that the loss is relatively insensitive 
to the choice of WD, which is a sign of stability of our model. With small values for the WD one can choose large values for the learning 
rate and reduce the training time (i.e., number of epochs). CNN, convolutional neural network.
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	Binary: only reports results for the class specified 
by positive label, i.e., Pneumothorax detected. This 
method is only applicable in the binary problem 
(pneumothorax vs. all) but not in the multi-class 
problem;

	Micro: this method counts the total true positives, 
false negatives and false positives, to compute a more 
global metric;

	Macro: in this case, the function calculates the metrics 
for each label and find their unweighted mean, i.e., it 
does not take label imbalance into account;

	Weighted: in this case, the function finds metrics 
for each label, and their average weighted by the 

number of true instances for each label. This is an 
improvement from “macro” to account for label 
imbalance.

	Samples: In this case, the function calculates metrics 
for each instance, and find their average. This is only 
meaningful for multi-label cases.

Since we are dealing with high imbalanced classes, we will be 
using the weights for our samples from the validation data set:

Wvalidation = [All others: 0.5566, Pneumothorax: 4.902] [6]

With these weights we can build an array with the same 
size as the ground labels and evaluate all the metrics taking 
into account the class imbalance. The results are as follows:
	F1 score (macro): 0.5822911828419564;
	F1 score (micro): 0.6762802817903739;
	F1 score (weighted): 0.7132615220206845;
	F1 score (binary): 0.384149629028795;
	F1 score (All others, Pneumothorax): [0.7804330.38415].
And show the range of different F1 scores one can 

obtain, even in the binary classification problem.
There are two common representations of the goodness 

of the algorithm. One is the PR curve, shown in Figure 7. 
A high area under the curve represents both high recall and 
high precision and is an indication of good performance.

Another representation is the so-called receiving 
operating characteristic (ROC) curve which shows the shape 
of TP as a function of FP. One often says that the algorithm 
learns when the curve is steeper than a straight line, 
namely the algorithm is doing better than a 50% chance of 
identifying the right disease (better than a random pick). 
In Figure 7, the orange line corresponds to the ROC curve 
of our algorithm, which is clearly performing better than 
chance. A related and more global measure of goodness 
based on the ROC plot is the area under the curve (AUC), 
and in this figure AUC is 70% for detecting pneumothorax.

Layers heatmaps
To visually understand what regions in the image our CNN 
is picking up on, we look at the area of the image which is 
more active when we show an image from a given class. To 
do this, we built a Grad-CAM following Ref. (12).

In Figure 8, the regions displayed in yellow to red colour 
highlight the spatial location of the features which activate 
more intensely the last convolutional layer before the 
classification. As one can see, in the pneumothorax image 
the CNN is identifying important features located in the left 
lung, top of diaphragm and a region below the right lung. 

Figure 7 Precision-recall (top) and ROC (bottom) curves for our 
model in the pneumothorax vs. all case. ROC, receiving operating 
characteristic.
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Meanwhile, for the non-pneumothorax image the CNN 
identify as hot regions on the top of diaphragm, apex of the 
heart and a hot spot on the left side outside of the body. These 

images provide valuable information about what are the 
most important features for our CNN and how to tune the 
parameters of the model to improve the training phase. One 
conclusion we can extract from these images is that, although 
overall, we are getting good classification scores, the CNN 
is struggling to localize good features to better classify the 
images. We plan to use this method to improve on the training, 
by including more random transformation like flip horizontal 
and vertical, random crop and a different pad method.

Results for multi-label

We move onto a much more complex case, where instead 
of a binary classification problem pneumothorax vs. no-
pneumothorax, we tackle the classification of 14 diseases, 
including the additional difficulty of co-occurrence of 
various diseases in the same patient.

The first thing we need to do is to define new measures 
of goodness for our method. PR or ROC curves like Figure 
7 are designed to understand a binary classification problem.

We need to generalize these two notions to a multi-
classification case. For example, one ROC curve can be 
drawn per label, but one can also draw a ROC curve by 
considering each element of the label indicator matrix as 
a binary prediction (micro-averaging). Another evaluation 
measure for multi-label classification is macro-averaging, 
which gives equal weight to the classification of each label.

The “micro-average”, purple dashed curve Figure 9,  

Figure 8 Grad-CAM for a pneumothorax item (left) and no Pneumothorax item (right) class. The regions in red show the areas which 
activate more units (neurons) in the last convolutional layer before the classification.

Figure 9 Micro and macro ROC average for multi-label class. For 
the micro-average we got AUC =82%, while for macro-average we 
obtain AUC =72%. ROC, receiving operating characteristic; AUC, 
area under the curve.
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is calculated as each element of the label indicator 
matrix, in our case a matrix with the dimensions (number 
of validations samples, number of classes), as a binary 
prediction. For the “macro-average” we first need to 
aggregate all elements from the false positive rate (fpr) of 
each class and casting them into a list which we call all_
fpr. From this list we can interpolate each aggregated fpr 
and the ROC curves of each class we have calculated. By 
averaging the interpolated points computed previously over 
the number of classes (14 for our data), we obtain the mean 
of the true positive rate for all classes (blue dashed curve, 
Figure 9).

We can also compute the ROC and AUC for each class 
using the predictions and the truth information for each 
class. The results are shown in Figure 10, where we display 
all ROC and AUC for the 14 classes including the micro-
average and macro-average.

As discussed in the previous section (pneumothorax vs. 
all), the PR plot is a useful measure of prediction success 
when the classes are very imbalanced. In Figures 11,12, 

we show the PR curves for the average and for each class, 
respectively.

The average precision (AP) summarizes the PR plots as 
the weighted mean of precision achieved at each threshold, 
with the increase in recall from the previous threshold used 
as the weight:

1( )n n n
n

AP R R P−= −∑  [7]

Where Rn and Pn are the precision and recall at the n-th 
threshold.

Finally, in Tables 1,2 we quote the values of the AUC 
score and the AP for each class.

Layers activation maps and Guided-Grad-CAM
Here we perform a similar study as in the pneumothorax 
vs. all case by identifying the regions in the image which 
activates neurons in the CNN. All the images used in to 
generate the activation and Grad-CAM maps are from the 
validation data set, namely these are images the CNN never 
saw before. In the next Figures 13-20, we show examples 
for different pathologies: the input figure, the Grad-CAM 
heatmap, and the PR curve related to the specific class.

Weighted vs. unweighted (ROC vs. PR) for multi-label 
classification

We noticed that for multi-label classification CheXnet use 

Figure 10 ROC curve for each of 14 classes and their respective 
AUC. The higher AUC we get is for cardiomegaly AUC =85%, 
while the lowest we get is for mass (AUC =56%), pneumothorax 
we got AUC =74%. ROC, receiving operating characteristic; 
AUC, area under the curve.

Figure 11 Precision-recall curve considering micro-average, i.e., 
an aggregate of the contributions from each class and average 
over all classes. In a multi-class classification, micro-average is 
preferable to macro-average for class imbalance. AP, average 
precision.
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unweighted binary cross entropy losses. This might not 
be problematic since in their paper the authors compare 
the AUC from the ROC metrics with the state of the art 
models for the ChestX-ray14 data set. ROC curves have 
an attractive property: they are insensitive to changes in 
class distribution. If the proportion of positive and negative 
classes changes in a test set, the ROC curves will not 
change. To compare with our results we first implemented 
our loss function without considering the weights for each 
class. The results are displayed in the Figures 10-12 as well 
in Table 1. However, due to the class imbalance the PR 
curves tell us a very different history from the ROC curves.

Indeed, by comparing Figure 21, we see that while the 
ROC curve for unweighted loss seems to indicate a very good 
classification, one should consider that reality is different: we 

are dealing with a very skewed class distribution, e.g., some 
labels have samples with order 104 inputs (atelectasis) while 
others only a few hundred samples (Hernia). In this situation, 

Figure 12 Precision-recall curves for each of the 14 classes and 
their respective areas. The areas are calculated using the average 
precision score considering the weights of each class. The iso-
curves show the F1 scores in the precision-recall plane. 
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Table 1 Fast.AI AUC score for each class in the ChestX-ray14 data set

Pathology DenseNete-121-Fast.AI (30-epochs)

Atelectasis 0.76

Cardiomegaly 0.91

Effusion 0.83

Infiltration 0.69

Mass 0.79

Nodule 0.71

Pneumonia 0.67

Pneumothorax 0.83

Consolidation 0.71

Edema 0.86

Emphysema 0.83

Fibrosis 0.78

Pleural thickening 0.73

Hernia 0.89

Table 2 Average precision for each class

Pathology DenseNete-121-Fast.AI (30-epochs)

Atelectasis 0.31

Cardiomegaly 0.21

Effusion 0.42

Infiltration 0.46

Mass 0.13

Nodule 0.13

Pneumonia 0.03

Pneumothorax 0.17

Consolidation 0.09

Edema 0.04

Emphysema 0.07

Fibrosis 0.03

Pleural thickening 0.07

Hernia 0.01
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Figure 13 Original image (left), Guided Grad-CAM (center) and precision-recall (PR) plot (right) for Atelectasis class. The Grad-CAM 
shows that the CNN is getting very hot spots (regions in red) in the left lung and at the bottom of the right lung. The PR curve for this class 
gives AP =0.31. CNN, convolutional neural network; AP, average precision.

Figure 14 Original image (left), Guided Grad-CAM (center) and precision-recall (PR) plot (right) for cardiomegaly class. The Grad-CAM 
shows that the CNN is getting a very hot spot in the bottom left region. The PR curve for this class gives AP =0.21. CNN, convolutional 
neural network; AP, average precision.

the ROC does not tell the full history of our classification 
model. We have to also consider cases where we have few 
samples more carefully. To use AI techniques in the real 
world, one should consider how to design and evaluate the 
performance of such algorithms. If we are dealing with a 
disease with a small number of examples but still focus on an 
algorithm which can lead to a precise diagnostic (i.e., high 
precision) most of the time (i.e., high recall), then we should 
(I) gather more data, which has an intrinsic cost, and/or (II) 

consider the use of weight class in the loss function, which 
provides a more realistic measure of accuracy.

Discussion

In this note we present our study of the use of machine 
learning techniques to identify diseases using X-ray 
information. We have used the new framework of Fast.AI, 
and imported the resulting model to an app which can be 
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Figure 15 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for effusion class. The Grad-CAM shows 
that the CNN is getting a very hot at the right lung. The PR curve for this class AP =0.42. CNN, convolutional neural network; AP, average 
precision.

Figure 16 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for emphysema class. The Grad-CAM 
shows that the CNN is getting hot spots at the both lungs. The PR curve for this class gives AP =0.07. CNN, convolutional neural network; 
AP, average precision.

tested by any user. In the app, the user can upload an image 
and obtain as an output a certain likelihood for pertaining 
to 1 of the 14 labeled diseases. This classification could 
assist diagnosis by medical providers and broaden access to 
medical services to remote areas.

We have studied two diagnosis situations: first we 
studied the simpler problem of identifying one disease 
(pneumothorax) vs. any other disease, and then tackled the 

much more complex case of multiple classification, where 
we aim to identify individual diseases and the co-occurrence 
of diseases in the same patient. To emulate realistic 
situations, we have transformed the high-quality images 
into lower resolution and applied transformations to them: 
rotated, cropped and changed the contrast of the images. 
On those images, we have trained a CNN and applied a 
number of numerical techniques to speedup computation 
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Figure 18 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for mass class. The Grad-CAM shows that 
the CNN is getting very hot region on the left lungs. The PR curve for this class gives AP =0.13. CNN, convolutional neural network; AP, 
average precision.

time, achieving a good accuracy of diagnosis.

We have explored the use of grad-CAM to improve 

training. We have also studied the different types of 

measures of how well the algorithm perform. We found 

that it is particularly important to account for imbalances in 

both the ROC and PR by weighting the samples.

Conclusions

We consider this project as setting the first steps towards 
a reliable app to help in diagnosing diseases using images 
and other sources of information, such as electrocardiogram 
data. We have provided open source code (5) for others to 
use and improve our procedure as well as a beta version 

Figure 17 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for Infiltration class. The Grad-CAM 
shows that the CNN is getting a very hot region on both lungs, same as the Hernia case. The PR curve for this class gives AP =0.46. CNN, 
convolutional neural network; AP, average precision.
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Figure 19 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for nodule class. The Grad-CAM shows 
that the CNN is getting a hot region on left and right lungs. The PR curve for this class gives AP =0.13. CNN, convolutional neural 
network; AP, average precision.

Figure 20 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for pneumothorax class. The Grad-CAM 
shows that the CNN is getting a hot region on both lungs. The PR curve for this class gives AP =0.17. CNN, convolutional neural network; 
AP, average precision.
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of the app for testing (4) and step-by-step instructions on 
how to set up the app is presented at the Supplementary 
section. We hope this tool can assist clinicians or other 
health providers in areas where good quality equipment or 
relevant skills are missing. We welcome any questions and 
suggestions which can be posted in the GitHub page.

There are a number of improvements in this analysis 

which one could tackle, including refining the CNN 
training to improve the diagnosis in the less performing 
diseases where there is co-occurrence of several diseases, 
including the no-disease vs. disease case, or enlarging 
the training set with more images from other databases 
or provided by users, and finally to incorporate more 
information besides X-ray information.
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Figure 21 Effects of weighted and unweighted Loss function in the metrics PR and ROC. (A) PR and ROC for unweighted loss function. 
The ROC curve is insensitive to changes in the class distribution, while the PR curve can show the effects of imbalance class. (B) The ROC 
curve remains constant, whereas the PR shows a more stable behavior when the recall, horizontal axis, is increased. The effects of class 
weights are more noticeable in the PR metric. ROC, receiving operating characteristic; AP, average precision; PR, precision-recall.
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Comparison with CheXnet

The state-of-the-art in terms of use of the X-ray database (6)  
is CheXNet (2). In this work, the authors use the same 
denseNet-121 basic architecture we employed, but in 
their model the classification layer had one neuron with 
softmax activation (in our case we have two neurons, one 
for each class, with logSoftMax activation) and weighted 
binary cross-entropy loss (in our case we can use a weighted 
cross-entropy loss). Moreover, we have performed further 
transformations to the images in the data set, such as 
changing the contrast between the dark and bright areas, to 
emulate more closely difficult conditions a physician could 
find in a remote location and low-quality equipment.

In the CheXNet they compared with the diagnoses of 
four radiologists, who studied a test set with 420 images and 
labeled them according to the 14 diseases. This was used to 
evaluate a radiologist F1 score for the pneumonia detection 
task and compare to the F1 score obtained by the CheXNet. 
We had no such benchmarking, and our F1 scores are based 
on the validation data set.

Finally, in CheXNet scores were based on unweighted 
goodness measures which, as we discussed in section 
“Weighted vs. unweighted (ROC vs. PR) for multi-label 
classification”, may not give a realistic view of diseases with 
small data sets.

Herokusetup

In this appendix we describe the setup of our online tester 
for the app. In order to setup the online server we used 
docker and heroku. After we have trained our model, we 
export it using the Fast.AI function export, which exports 
both the model and weights. The model is saved in a pkl 
(pickle) format and the weights are saved in pth (pytorch) 
format, which we store in a folder to upload to the heroku 
webserver.

Docker 

We recommend to install docker, which facilitates the 
sharing of codes between any machines, without the 
need to install many dependencies. The installation of 
docker is quite straight forward https://docs.docker.com/
install/#support, except when running on linux where you 
might need to take some extra steps https://docs.docker.
com/install/linux/linux-postinstall/ 

After the installation, one can create a docker image for 

our model to work and docker allows us to create a virtual 
machine able to run in any kind of computer as long it 
has the docker tool. To create the image one first needs 
to create an empty file called Dockerfile, the Dockerfile 
will contain the instructions needed to load the model and 
run it in our environment. In the following we give some 
examples of how to do this:

From python:3.6-slim-stretch

Run apt update && \

apt install -y python3-dev gcc WORKDIR app

Add requirements.txt.

Run pip install -r requirements.txt

#pip install --no-cache-dir -r ADD models models

Add src src EXPOSE 80

# Run it once to trigger DenseNetdownload RUN python src/

app.py prepare

# Start the server

CMD [“python”, “src/app.py”, “serve”]

To call the pre-installed docker image with python3 and gcc 

compiler from the docker website we do the following:

From python:3.6-slim-stretch

Run apt update && \

apt install -y python3-dev gcc

Add requirements.txt.

Run pip install -r requirements.txt

Here we add the file requirements to docker so it download 

and install the libraries we are using, this file contains the follow-

ing instructions:

torch==1.0.0torchvision==0.2.1Flask==1.0.2

\fastai==1.0.50.post1

These are the packages and libraries with their respective ver-

sions. The following line will instruct pip to download and install 

the packages in the Docker image we want to create.

Add models models Add src src

Which tells docker the paths of our source files, where we will 

put the app program and other files we will need to run the app, 

and the path to our model and weights.

The line:

EXPOSE80

tells docker which proxy port our app will run, important to 

our app.

And the following lines tell docker to run our app stored in the 

folder src:

# Run it once to trigger DenseNetdownload RUN python src/

app.py prepare

# Start the server

CMD [“python”, “src/app.py”, “serve”]

Supplementary



The app

We wrote the app in a python script file called app.py. 
The app is written using the flask library which can create 
web interfaces based in java and php. The main important 
features of the web app are the config.yaml file and the static 
folder. The config.yaml file defines the url configurations of 
the web app for the example images and other links, while 
the folder static contains the css scripts for colors, button 
sizes, etc.

After we prepare the app and setup the docker file, 
we now can create the docker image by executing the 
command:

docker build --tag=ml-xray-v-0-1.

where the tag flag is to indicate the name of the image we 
create. Now we can start to set up the Heroku webserver.

Heroku

First, one has to create a Heroku account and then install 

the heroku git6 app in your machine.
Next, open a terminal and run the command to login 

into your heroku account:
heroku login

Which will ask for your login name, usually your email, and 

password. After login, one has to pull the folder which contains 

our dockerfile, model and source code of our app:

heroku git:remote-a ml-xray

Now we can give the instruction to heroku to push our docker 

container, by running the command:

heroku container:login

heroku container:push web --app ${ml-xray}

and release the container in the webserver:

heroku container:release web --app ${ml-xray}

Finally, one can now open the app and get some logs by run-

ning the command:

heroku open --app $ml-xray

heroku logs --tail --app ${ml-xray}

Note that after 15 minutes of inactivity the server goes to 
sleep mode and it might take a little while to wake up again.

 
6 You might need to install git, please follow these instructions: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.


