
Page 1 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Original Article

Developing an app to interpret chest X-rays to support the
diagnosis of respiratory pathology with artificial intelligence

Andrew Elkins1, Felipe F. Freitas2,3, Verónica Sanz4,5

1Brighton and Sussex University Hospitals, NHS Trust, Brighton BN2 5BE, UK; 2CAS Key Laboratory of Theoretical Physics, Institute of

Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; 3Physics Department Aveiro University and Center for Research &

Development in Mathematics and Applications (CIDMA), Campus de Santiago, Aveiro, Portugal; 4Alan Turing Institute, British Library, London

NW1 2DB & Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK; 5Instituto de Física Corpuscular (IFIC),

Universidad de Valencia-CSIC, Valencia, Spain

Contributions: (I) Conception and design: FF Freitas; (II) Administrative support: All authors; (III) Provision of study materials or patients: None;

(IV) Collection and assembly of data: FF Freitas; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final

approval of manuscript: All authors.

Correspondence to: Felipe F. Freitas. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences,

Beijing 100190, China; Physics Department Aveiro University and Center for Research & Development in Mathematics and Applications (CIDMA),

Campus de Santiago, 3810-183 Aveiro, Portugal. Email: fp4303@itp.ac.cn; felipefreitas@ua.pt.

Background: Medical images, including results from X-rays, are an integral part of medical diagnosis.
Their interpretation requires an experienced radiologist. One of the main problems in developing countries
is access to timely medical diagnosis. Lack of investment in health care infrastructure, geographical isolation
and shortage of trained specialists are common obstacles to providing adequate health care in many areas of
the world. In this work we show how to build and deploy a Deep Learning computer vision application for
the classification of 14 common thorax disease using X-rays images.
Methods: We make use of the FAST.AI and pytorch framework to create and train the DenseNet-121
model to classify the X-ray images from the ChestX-ray14 data set which contains 112,120 frontal-view X-ray
images of 30,805 unique patients. After training and validate our model we create a web-app using Heroku,
this web-app can be accessed by any mobile device with internet connection.
Results: We obtained 70% for detecting pneumothorax for the one-vs-all task. Meanwhile, for the
multilabel-multiclass task we are able to achieve state-of-the-art accuracy with fewer epochs, reducing
drastically the training time of the model. We also demonstrate the feature localization of our model by
using the Grad-CAM methodologies, feature which can be useful for early diagnostic of dangerous illnesses.
Conclusions: In this work we present our study of the use of machine learning techniques to identify
diseases using X-ray information. We have used the new framework of Fast.AI, and imported the resulting
model to an app which can be tested by any user. The app has an intuitive interface where the user can
upload an image and obtain a likelihood for the given image be classified as one of the 14 labeled diseases.
This classification could assist diagnosis by medical providers and broaden access to medical services to
remote areas.

Keywords: Chest X-ray; pulmonary disease; deep learning; computer vision; diagnosis app

Received: 27 August 2019; Accepted: 11 November 2019; Published: 30 June 2020.

doi: 10.21037/jmai.2019.12.01

View this article at: http://dx.doi.org/10.21037/jmai.2019.12.01

21

https://crossmark.crossref.org/dialog/?doi=10.21037/jmai.2019.12.01

Journal of Medical Artificial Intelligence, 2020Page 2 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Introduction

Medical images, including results from X-rays, are an
integral part of medical diagnosis. Their interpretation
requires an experienced radiologist, a human whose skills
are scarce and who can commit mistakes when tired. But at
face value, the X-ray diagnostic uses simple features from
the image, such as black and white intensity, contours and
shapes, all properties which an artificial intelligence (AI) can
handle well.

And indeed, in recent years, the idea of using AI as a
means of assisting diagnostic (classification) has taken hold,
thanks to the increase of computational speed (e.g., with
graphical processing units, a.k.a. GPUs), the availability of
large and well-documented data sets, and the development
of deep learning techniques, in particular convolutional
neural networks (CNNs). The results of a number of studies
training CNNs to diagnose diseases using 2D and 3D
images are rather impressive, reaching near 100% accuracy
in such diverse pathologies as lung nodules or Alzheimer’s,
see Ref. (1) for a recent overview. Moreover, in some cases
the performance of the AI exceeds that of radiologists, see,
e.g., the study of CheXNet (2).

One of the main problems faced by people in developing
countries is access to timely medical diagnosis. Lack of
investment in health care infrastructure, geographical
isolation and shortage of trained specialists are common
obstacles to providing adequate health care in many areas of
the world.

Yet the use of AI is still limited for various reasons,
technical and sociological. For example, images are only
one aspect of the patient history which can be supplemented
with clinical signs, e.g., whether the patient has fever.
Currently, the availability of databases with additional
clinical information is scarce, but databases with better
labelling could substantially improve the AI training in
the near future. A more important issue is related to the
natural variability of a large training data set, and the need
to remove modelling when interpreting the image. This has
led to the development of new techniques beyond CNNs
(supervised learning) to incorporate a more bottom-up
approach: unsupervised machine learning. Nevertheless,
all these studies rely on a large number of neuron layers,
typically dozens, and good quality images. The trained
neural network (NN) can then be used in a powerful
computer station to help diagnosis.

Given our interest in portability, we need to develop
a different strategy. We cannot deploy machine learning

algorithms which depend on too many layers, and we
cannot rely on the acquisition of precise images. Instead,
we have to strike a balance between the desired outcomes
(portability and reliability) and the real-life situations a
clinician may encounter on field.

This note presents our results to help the early
diagnosis of a number of life-threatening conditions in
remote areas with the use of new methodologies (based
on Machine Learning) and their capability to be deployed
into mobile devices. We use the latest developments in AI
environments which are portable and fast, in particular
Fast.AI (3), to develop an artificial NN to be deployed as
a smartphone app, or in one of Google’s AI development
kits, or in Raspberry PI, as a tool to assist physicians in their
diagnostic. A beta version of the app can be tested in the
Heroku environment (4) and all the code developed during
this project can be obtained in GitHub (5).

Methods

The data set and analysis framework

We use the ChestX-ray14 data set (6) which contains
112,120 frontal-view X-ray images of 30,805 unique
patients. The images are frontal view of chest X-rays
PNG images in 1,024×1,024 resolution. Meta-data for all
images contains: image index, finding labels, patient ID,
patient age, patient gender, view position, original image
size and original image pixel spacing. Each image contains
the annotations up to 14 different thoracic pathology
labels. The labels were assigned using automatic extraction
methods on radiology reports. The database from NIH is
available on-line through the link: https://nihcc.app.box.
com/v/ChestXray-NIHCC/folder/36938765345.

The 14 common thorax disease categories are:
atelectasis, cardiomegaly, effusion, infiltration, mass,
nodule, pneumonia, pneumothorax, consolidation, oedema,
emphysema, fibrosis, pleural thickening, and hernia.

Regarding the analysis of the dataset, in this project we
use AI techniques in the framework of Fast.AI (3), a library
which simplifies accurate and fast training of NNs using
modern best practices. It includes out-of-the-box support
for vision, text, tabular, and collaborative filtering models.
Another main advantage of Fast.AI is the simplification
of the data processing made by the data block application
programming interface (API), and the implementation of
the fit one cycle method (7) and mixed precision training
(8). The fit one cycle method allows us to drastically reduce

https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345
https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345

Journal of Medical Artificial Intelligence, 2020 Page 3 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

the training time by allowing changes during the training
in the learning rates and momentum (hyper-parameters).
This method can reduce the time to train big NN models,
but also stabilize it by helping the optimization algorithm
to prevent falling into saddle points. The mixed precision
training uses half-precision floating point numbers,
without losing model accuracy or having to modify hyper-
parameters. This nearly halves memory requirements and,
on recent GPUs, speeds up arithmetic calculations.

Selecting and processing the data

Since we are interested in distinguishing different types of
diseases, we will focus on the dataset with labels of at least
one disease. In the data set there are 51,759 images with
at least one disease (non-healthy). On this data set, we will
perform two types of analyses: (I) one vs. all and (II) multi-
label classification.

In the first type of analysis, we will train an algorithm to
identify patients with a specific disease, which we choose to
be Pneumothorax for illustrative purposes, versus any other
type of disease in the sample. In the second type of analysis,
we will tackle a more difficult but realistic situation: often
diseases do not occur in isolation, e.g., atelectasis tends to
appear in conjunction with cardiomegaly or consolidation,
or both. This more complex situation is called co-
occurrence, which in terms of the data analysis corresponds
to a problem of multi-label classification.

Below we describe how we select and process the data in
these two situations:

One vs. all problem (i.e., pneumothorax vs. all)
We separate the data set in two categories, one with the
label pneumothorax the other with all the images with
no pneumothorax label (atelectasis, pneumonia, ...).
Specifically, we first read from the metadata information
available in the file Data_Entry_2017.csv the images names
and findings, selecting the entries with the pneumothorax
label to one folder and all the others to a different folder.
After this selection one ends up with the following set of
samples:

	P n e u m o t h o r a x : 5 , 3 0 2 i m a g e s , r e s o l u t i o n
1,024×1,024 8-bit gray scale;

	No-pneumothorax: 46,457 images, resolution
1,024×1,024 8-bit gray scale.

Next, we prepare the data for testing and validation
using the Fast.AI data block API, which automatically loads
the data from their respective folders, assign their labels
according to the name of the folders and split the full data
into training (80%) and validation (20%) data sets. The data
block API ensure the use of correct labels, the correct train/
validation (or test) split, the correct normalization of the
images and all the augmentations transformation we later
apply1. After this selection and transformations, we end up
with:
	Train size (80%): 41,408 items, items dimension:

224×224 three channels, transformation applied;
	Validation size (20%): 10,351 items, items dimension:

224×224 three channels, no transformations;
	Batches which are set to 64 items per batch, so they

can fit on a regular GPU memory.
We select the following transformations to be applied to

the train data set:
	Random rotation (clockwise or counter-clockwise) in

an angle range between 0 and 30 degrees;
	Fifty percent chance of an image to be zoomed by a

1.3 scale;
	One hundred percent chance of an image be selected

to randomly modify brightness and contrast within a
range between 0 and 0.4;

	Normalize the items according to the stats of each
batch, i.e., take the mean and the standard deviation
of each channel and normalize the image using them2.

Note that the images fed into the CNN are set to be
224×224 with three channels due to hardware limitations
and the size of the batch (64 images) to fit into the GPU
memory, as well as coding implementation—the CNN
architecture we are using (DenseNet) was originally
designed to work with three channels (RGB), so the input
layer is designed to take inputs (tensors) with the dimension
(batch size, C =3, x size, y size) where C is the number of
channels from the image.

In Figure 1 we show the effects of the transformations

1 Note that the pixel values can vary from 0 to 255 for each of the three channels in an RGB image, or one single channel for Gray-Scale,
and we re-scale this range to −1 to 1 to input the values in a CNN.
2 Note that in pytorch when we normalize images we have to provide the mean and the std. for each channel, in TensorFlow we can use
sklearn.preprocessing.StandardScaler to do the same.

Journal of Medical Artificial Intelligence, 2020Page 4 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Figure 1 Random transformations applied in one selected image. The random rotation and change in brightness are applied to consider the
variations of image quality and arrangement one can encounter in medical facilities in remote areas.

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Pneumothorax

Journal of Medical Artificial Intelligence, 2020 Page 5 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

we apply in the train data set items. They are designed to
emulate some of the issues which different situations could
lead to. For example, brightness variance can occur when
the technician exposes the patient to a more energetic
X-ray beam (higher keV X-rays) or long exposure time,
which greatly increases the contrast of the image, but also
increases the radiation dose received by the patient; or
in the case of film X-ray, the exposure time to chemicals
can drastically reduce contrast of the image, leading to
erroneous feature differentiation.

Multi-label classification
For the multi-label case we prepare a new csv file which
contains the name of the image (in our input data set the
names are formatted as 00025252_045.png) and the label
of the diseases found in the respective images. This file will
be used by the data block API to correctly label the images.
The file Data_Entry_2017.csv contains all the metadata
with the name of each image together with the findings and
other information that can be used for future applications.

To create the multi-class label file we use a python script
with two main functions: one to extract the information
from the Data_Entry_2017.csv metadata and another
function to write the new csv file with the columns contain
the path to the images, their respective findings and a new
column with a one-hot encode3 to represent the presence or
not of each disease (class) in a given image, in Figure 2 we
show the structure of the Data_Entry_2017.csv.

The Fast.AI API contains a very convenient method
to prepare and load the images into our CNN model
called ImageDataBunch, which contains a series of
useful functions which one can use for AI purposes. For
example, for the multi-label classification one can use the
ImageDataBunch.from_csv(), which automatically identifies
the images and multi-class labels we are loading into the
CNN, e.g., np.random.seed (42).

data = ImageDataBunch.from_csv(path, label_delim=’|’,
csv_labels=’label list.csv’, label_col=1,\ delimiter=’,’, valid_
pct=0.2,ds_tfms=tfms,bs=64, size=224,num_workers=3).
normalize()

This set of commands will automatically load the images
in batches of 64, re-size the images form 1,024×1,024 to
224×224, load the labels from labellist.csv and normalise
according to the pytorch standard, and split the dataset into
80% test images and 20% for validation.

A very important aspect in our analysis is how often one
disease appears together with others, i.e., the rate of co-
occurrences. We can check the co-occurrences of a disease
using scikit-learning feature extraction library, and in
Figure 3 we show the matrix of number of co-occurrences in
the data set. This information is key to introduce the proper
weights used in the loss function and lead to the positive
identification of a given class. These values can help us to
better calibrate the weights for each class in order to avoid
situations like a model who can only predict the class where
one has the higher number of targets.

3 In digital circuits and machine learning, one-hot is a group of bits among which the legal combinations of values are only those with a
single high [1] bit and all the others low [0].

Figure 2 Extract of the label data frame for the multi-label classification task. Fast.AI can handle multi-label classification targets and image
names are given in a proper structured way, which we provide a new csv file. The one-hot encode represents the presence [1] or absence [0]
of a particular disease in the list: atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation,
edema, emphysema, fibrosis, pleural thickening and hernia.

Journal of Medical Artificial Intelligence, 2020Page 6 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

The model architecture and training

Our architecture will be based on the DenseNet-121 model
with the last layers (header) modified for our purposes.
Specifically, our CNN model consists on the following
parts:

	The body of the model i s the same as the

DenseNet-121, described in Figure 4 (third column)

(DenseNet-121);

	For the classification layer, we remove the last

layer from DenseNet-121 and replace it with the

Figure 3 Number of co-occurrences for each disease in the data set. Note, for example, that Infiltration is always co-occurrent with some
other disease label, and that some diseases often come together, e.g., effusion and atelectasis.

Co-occurrences for each disease (#)

A
te

le
ct

as
is

C
ar

di
om

eg
al

y

C
on

so
lid

at
io

n

E
de

m
a

E
ffu

si
on

E
m

ph
ys

em
a

Fi
br

os
is

H
er

ni
a

In
fil

tr
at

io
n

M
as

s

N
od

ul
e

P
le

ur
al

_t
hi

ck
en

in
g

P
ne

um
on

ia

P
ne

um
ot

ho
ra

x

Atelectasis

Cardiomegaly

Consolidation

Edema

Effusion

Emphysema

Fibrosis

Hemia

Infiltration

Mass

Nodule

Pleural_thickening

Pneumonia

Pneumothorax

Journal of Medical Artificial Intelligence, 2020 Page 7 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

following layers:
	 AdaptiveConcatPool2d layer;
	 Flatten layer;
	 A block with [nn.BatchNorm1d, nn.Dropout,

nn.Linear, nn.ReLU] layers.
In our loss function we use the weights from each class

calculated according to the scikit-learn class weight method,
defined as:

1 2([, ,])
samples

classes

n
n n n∗

 [1]

Where nsamples is the total number of images in the
training sample, nclasses is the number of classes (2 in the case
of one vs. all), and n1, n2, … are the number of images for
each class. This function from sklearn returns the weight
for each class in our training sample, information we pass
onto the weights in the loss function, which mitigates the
problem of having more images from one class than another
class, i.e., imbalanced classes data sets.

The network is trained end-to-end using Adam as an
optimizer (9) with standard parameters (β1 =0.9 and β1
=0.999). We trained the model using the fit one cycle
method (7), which consist in the following steps: initializes
the training with a given learning rate and momentum;
in the middle of the training phase the learning rate is
increased up to a given maximum value while the momentum

is reduced; and close to the end of the training the learning
rate is reduced again and the momentum increased, as
shown in Figure 5. This method gives more stable results by
avoiding the optimization process to fall into saddle points
and requires less epochs to fully train our model.

Another useful parameter for training our CNN is the
weight decays4. After each epoch, the weights of the NN are
multiplied by a smaller factor between 0 and 1. This is one
of the various forms of regularization of the NN training,
together with batch size and dropout (10). One can choose
a weight decay which allows us to use a bigger initial value
for the learning rate and thus reduce the time of training
during the fit one cycle.

For the one-vs-all case we choose the Cross Entropy
Loss with weights defined for each class to take into account
the high imbalance between the pneumothorax case vs. all
the others. Specifically, to apply the weights into our loss
function we do as follows:

class_weights = torch.FloatTensor(weights).cuda() loss_
func = nn.CrossEntropyLoss(weight=class_weights)

where the weights are calculated by the Equation [1], the
function cuda() just moves the numbers calculated for the
weights to the GPU memory where our CNN is loaded.
The weights are passed to the loss function by the argument
weight from the cross entropy loss class.

The Cross Entropy Loss function, in the case of the class

Figure 4 DenseNet architectures for ImageNet. Note that each “conv” layer shown in the table corresponds the sequence: batch
normalization, rectifier linear function and a convolutional layer (BN-ReLU-Conv).

4 Do not confuse this term with class weights. The class weights are used to balance the number of images of each class.

Journal of Medical Artificial Intelligence, 2020Page 8 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

weight argument being specified, can be described as:

(,) [] [] log exp([])
j

j
loss x class weight class x class x j

= − +

∑ [2]

with x as the image input for the respective class.
Another important aspect for the Cross Entropy Loss

is the reduction method, which specifies the reduction
to apply to the output. The pytorch framework gives
three options: none, mean and sum, we choose mean in our
analysis. For the multi-label classification task we choose
BCEWithLogitsLoss. This loss combines a Sigmoid layer
and the BCELoss in one single layer. By combining the
operations into one layer, one takes advantage of the log-
sum-exp trick (11) for numerical stability.

The BCEWithLogitsLoss for the multi-label case with
class weights is described by:

1 , ,

, , , , , ,

(,) { , , }

[log () (1) log(1 ())]
c c c N c

n c n c c n c n c n c n c

l x y L l l

l w p y x y xσ σ

Τ= =

= − ⋅ + − ⋅ −

 [3]

where c is the class number (c >1 for multi-label binary
classification, c =1 for single label binary classification), n is
the number of the sample in the batch and pc is the weight of
the positive answer for the class c. Note that pc >1 increases
the recall, whereas the choices with pc <1 increase the
precision. Also note that we used the default option mean as
reduction method to BCEWithLogitsLoss.

Before training, one has to define the range of the

learning rate to be used in the fit one cycle method. To
compute the best range for the learning rate we used the
function learner.lr_find(), which will perform a test run,
starting with a very small learning rate and increasing
it after each mini-batch until the loss function starts
exploding. Once the loss starts diverging, the lr_find()will
stop the range test run. In Figure 6 we show the loss values
vs. the learning rate for each weight decay choice (WD =0,
0.1, 0.001, 1e−5). The best initial values for learning rates are
the ones giving the steeper gradient towards the minimum
loss value (7). In the case of Figure 6 this value is 1.32e−2 for
the left figure and 1.02e−2 for the right one.

The learning rate change can be described as follows:
n=number of iterations
max_lr=maximum learning rate
init_lr=lower learning rate (we start the range test from

this value)
max_lr=init_lr * q

n

1

(max_ lr/init_lr)nq = [4]

Note that the learning rate after the i-th mini-batch is
given by:

init_lr (max_lr/init_lr)
i
n

ilr = ∗ [5]

We are using the transfer learning methodology to not just
training our CNN faster, but also to increase the accuracy. To

Figure 5 Fit one cycle method. Left figure: this shows the variation of the learning rate over the number of iterations, with the vertical axis
showing the learning rate change between 1e−4 to 3e−3 and the horizontal axis showing all the iterations (i.e., epochs). Right figure: here
we show the change in momentum rate over number of iterations. In these figures we can see the change in values of the learning rate and
momentum, during the middle of the cycle. The high learning rates and small momentum will act as regularization method, and keep the
network from overfitting, as they prevent the model from landing in a steep area of the loss function, preferring to find a minimum that is
flatter.

Le
ar

ni
ng

 r
at

e

M
om

en
tu

m

Iterations Iterations

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.94

0.92

0.90

0.88

0.86

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

Journal of Medical Artificial Intelligence, 2020 Page 9 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

execute this task, we trained the CNN in two phases. During
the first phase, the model is trained from end-to-end, i.e., all
the layers are trained, for 30 epochs with an initial learning
rate of 1.32e−2 to a maximum 1e−1. This initial value is chosen
due to the loss value for this learning rate exhibit the steeper
gradient value towards the direction of the minimum, as we
can see in Figure 6. After the 30 epochs, the training is stopped
and the weights are saved, leading to a second train phase
which uses the weights saved from the previous training,
freeze all the layers before the last classification layer to void
retraining all the NN, and train only the last classification
layers with a different range for the learning rate. This process
described above is what we know as transfer learning, and we
evaluate the impact of this methodology on the accuracy of our
model between the two phases.

Results

In a simple binary classification problem (like in our
benchmark pneumothorax vs. all), one can define some
measures of how well our algorithm is performing:
precision, accuracy and recall. All these are computed by
evaluating how often in a sample the results lead to a true-
positive (TP), true-negative (TN), false-positive (FP) and
false-negative (FP) diagnoses. Based on these numbers one
can define three measures of goodness of diagnosis:

Accuracy = TP + TN/TP + FP+ FN + TN, the

ratio of correct observations vs. all observations, e.g.,
accuracy would tell us how likely is to correctly identify
pneumothorax pathologies in sick patients.

Precision = TP/TP+FP, the ratio of correct predicted
positives vs. all the classified as positive, e.g., precision
would tel l us how many pat ients diagnosed with
pneumothorax do actually have pneumothorax.

Recall (or sensitivity) = TP/TP+FN, the ratio of
correctly predicted positive vs. all the elements with the
actual disease, e.g., recall would tell us the probability for
correctly diagnosing pneumothorax among all the patients
suffering from pneumothorax.

Obviously, all these measures are important, and
depending on the nature of the disease and focus of the
practitioner the algorithm could be trained to improve
any of these three, usually at the cost of the other two. A
typical average measure of goodness which works well in
imbalanced data sets is the F1 score, defined in its simplest
form as an average between accuracy and recall

F1 score = 2 * (precision * recall)/(precision + recall)

Results for one vs. all (pneumothorax)

We can compute the F1 scores and precision-recall (PR) of
our CNN using our validation data set. In scikit-learn, F1
scores can be evaluated using different average methods5,
namely:

5 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

Figure 6 Effect of the different choices for the weight decay (WD) in the loss change (vertical axis) for a given learning rate (horizontal axis)
for the DenseNet-121 CNN without class weights (left panel) and with class weights (right panel). Note that the loss is relatively insensitive
to the choice of WD, which is a sign of stability of our model. With small values for the WD one can choose large values for the learning
rate and reduce the training time (i.e., number of epochs). CNN, convolutional neural network.

Learning rate Learning rate

DenseNet-121 DenseNet-121 WG

WD =0
WD =0.1
WD =0.001
WD =1e−05

WD =0
WD =0.1
WD =0.001
WD =1e−05

0.85

0.80

0.75

0.70

1.00

0.95

0.90

0.85

0.80

0.75

Lo
ss

Lo
ss

10−6 10−5 10−4 10−3 10−2 10−1 100
10−6 10−5 10−4 10−3 10−2 10−1 100

Journal of Medical Artificial Intelligence, 2020Page 10 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

	Binary: only reports results for the class specified
by positive label, i.e., Pneumothorax detected. This
method is only applicable in the binary problem
(pneumothorax vs. all) but not in the multi-class
problem;

	Micro: this method counts the total true positives,
false negatives and false positives, to compute a more
global metric;

	Macro: in this case, the function calculates the metrics
for each label and find their unweighted mean, i.e., it
does not take label imbalance into account;

	Weighted: in this case, the function finds metrics
for each label, and their average weighted by the

number of true instances for each label. This is an
improvement from “macro” to account for label
imbalance.

	Samples: In this case, the function calculates metrics
for each instance, and find their average. This is only
meaningful for multi-label cases.

Since we are dealing with high imbalanced classes, we will be
using the weights for our samples from the validation data set:

Wvalidation = [All others: 0.5566, Pneumothorax: 4.902] [6]

With these weights we can build an array with the same
size as the ground labels and evaluate all the metrics taking
into account the class imbalance. The results are as follows:
	F1 score (macro): 0.5822911828419564;
	F1 score (micro): 0.6762802817903739;
	F1 score (weighted): 0.7132615220206845;
	F1 score (binary): 0.384149629028795;
	F1 score (All others, Pneumothorax): [0.7804330.38415].
And show the range of different F1 scores one can

obtain, even in the binary classification problem.
There are two common representations of the goodness

of the algorithm. One is the PR curve, shown in Figure 7.
A high area under the curve represents both high recall and
high precision and is an indication of good performance.

Another representation is the so-called receiving
operating characteristic (ROC) curve which shows the shape
of TP as a function of FP. One often says that the algorithm
learns when the curve is steeper than a straight line,
namely the algorithm is doing better than a 50% chance of
identifying the right disease (better than a random pick).
In Figure 7, the orange line corresponds to the ROC curve
of our algorithm, which is clearly performing better than
chance. A related and more global measure of goodness
based on the ROC plot is the area under the curve (AUC),
and in this figure AUC is 70% for detecting pneumothorax.

Layers heatmaps
To visually understand what regions in the image our CNN
is picking up on, we look at the area of the image which is
more active when we show an image from a given class. To
do this, we built a Grad-CAM following Ref. (12).

In Figure 8, the regions displayed in yellow to red colour
highlight the spatial location of the features which activate
more intensely the last convolutional layer before the
classification. As one can see, in the pneumothorax image
the CNN is identifying important features located in the left
lung, top of diaphragm and a region below the right lung.

Figure 7 Precision-recall (top) and ROC (bottom) curves for our
model in the pneumothorax vs. all case. ROC, receiving operating
characteristic.

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on
Tr

ue
 p

os
iti

ve
 r

at
e

Recall

False positive rate

2-class precision-recall curve: F1=0.73

Receiver operating characteristic for class: pneumothorax

ROC curve (area =0.70)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Journal of Medical Artificial Intelligence, 2020 Page 11 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Meanwhile, for the non-pneumothorax image the CNN
identify as hot regions on the top of diaphragm, apex of the
heart and a hot spot on the left side outside of the body. These

images provide valuable information about what are the
most important features for our CNN and how to tune the
parameters of the model to improve the training phase. One
conclusion we can extract from these images is that, although
overall, we are getting good classification scores, the CNN
is struggling to localize good features to better classify the
images. We plan to use this method to improve on the training,
by including more random transformation like flip horizontal
and vertical, random crop and a different pad method.

Results for multi-label

We move onto a much more complex case, where instead
of a binary classification problem pneumothorax vs. no-
pneumothorax, we tackle the classification of 14 diseases,
including the additional difficulty of co-occurrence of
various diseases in the same patient.

The first thing we need to do is to define new measures
of goodness for our method. PR or ROC curves like Figure
7 are designed to understand a binary classification problem.

We need to generalize these two notions to a multi-
classification case. For example, one ROC curve can be
drawn per label, but one can also draw a ROC curve by
considering each element of the label indicator matrix as
a binary prediction (micro-averaging). Another evaluation
measure for multi-label classification is macro-averaging,
which gives equal weight to the classification of each label.

The “micro-average”, purple dashed curve Figure 9,

Figure 8 Grad-CAM for a pneumothorax item (left) and no Pneumothorax item (right) class. The regions in red show the areas which
activate more units (neurons) in the last convolutional layer before the classification.

Figure 9 Micro and macro ROC average for multi-label class. For
the micro-average we got AUC =82%, while for macro-average we
obtain AUC =72%. ROC, receiving operating characteristic; AUC,
area under the curve.

Pneumothorax All others

Average receiver operating characteristic

Micro-average ROC curve (area =0.85)
Macro-average ROC curve (AUC =0.78)

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

Journal of Medical Artificial Intelligence, 2020Page 12 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

is calculated as each element of the label indicator
matrix, in our case a matrix with the dimensions (number
of validations samples, number of classes), as a binary
prediction. For the “macro-average” we first need to
aggregate all elements from the false positive rate (fpr) of
each class and casting them into a list which we call all_
fpr. From this list we can interpolate each aggregated fpr
and the ROC curves of each class we have calculated. By
averaging the interpolated points computed previously over
the number of classes (14 for our data), we obtain the mean
of the true positive rate for all classes (blue dashed curve,
Figure 9).

We can also compute the ROC and AUC for each class
using the predictions and the truth information for each
class. The results are shown in Figure 10, where we display
all ROC and AUC for the 14 classes including the micro-
average and macro-average.

As discussed in the previous section (pneumothorax vs.
all), the PR plot is a useful measure of prediction success
when the classes are very imbalanced. In Figures 11,12,

we show the PR curves for the average and for each class,
respectively.

The average precision (AP) summarizes the PR plots as
the weighted mean of precision achieved at each threshold,
with the increase in recall from the previous threshold used
as the weight:

1()n n n
n

AP R R P−= −∑ [7]

Where Rn and Pn are the precision and recall at the n-th
threshold.

Finally, in Tables 1,2 we quote the values of the AUC
score and the AP for each class.

Layers activation maps and Guided-Grad-CAM
Here we perform a similar study as in the pneumothorax
vs. all case by identifying the regions in the image which
activates neurons in the CNN. All the images used in to
generate the activation and Grad-CAM maps are from the
validation data set, namely these are images the CNN never
saw before. In the next Figures 13-20, we show examples
for different pathologies: the input figure, the Grad-CAM
heatmap, and the PR curve related to the specific class.

Weighted vs. unweighted (ROC vs. PR) for multi-label
classification

We noticed that for multi-label classification CheXnet use

Figure 10 ROC curve for each of 14 classes and their respective
AUC. The higher AUC we get is for cardiomegaly AUC =85%,
while the lowest we get is for mass (AUC =56%), pneumothorax
we got AUC =74%. ROC, receiving operating characteristic;
AUC, area under the curve.

Figure 11 Precision-recall curve considering micro-average, i.e.,
an aggregate of the contributions from each class and average
over all classes. In a multi-class classification, micro-average is
preferable to macro-average for class imbalance. AP, average
precision.

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

Receiver operating characteristic across all classes

False positive rate
0.0 0.2 0.4 0.6 0.8 1.0

Micro-average ROC curve (area =0.85)
Macro-average ROC curve (AUC =0.78)
ROC curve of class atelectasis (AUC =0.76)
ROC curve of class cardiomegaly (AUC =0.91)
ROC curve of class consolidation (AUC =0.71)
ROC curve of class edema (AUC =0.86)
ROC curve of class effusion (AUC =0.83)
ROC curve of class emphysema (AUC =0.83)
ROC curve of class fibrosis (AUC =0.78)
ROC curve of class hernia (AUC =0.89)
ROC curve of class infiltration (AUC =0.69)
ROC curve of class mass (AUC =0.79)
ROC curve of class nodule (AUC =0.71)
ROC curve of class pleural_thickening (AUC =0.73)
ROC curve of class pneumonia (AUC =0.67)
ROC curve of class pneumothorax (AUC =0.83)

Average precision score, micro-averaged over all classes: AP=0.47

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Journal of Medical Artificial Intelligence, 2020 Page 13 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

unweighted binary cross entropy losses. This might not
be problematic since in their paper the authors compare
the AUC from the ROC metrics with the state of the art
models for the ChestX-ray14 data set. ROC curves have
an attractive property: they are insensitive to changes in
class distribution. If the proportion of positive and negative
classes changes in a test set, the ROC curves will not
change. To compare with our results we first implemented
our loss function without considering the weights for each
class. The results are displayed in the Figures 10-12 as well
in Table 1. However, due to the class imbalance the PR
curves tell us a very different history from the ROC curves.

Indeed, by comparing Figure 21, we see that while the
ROC curve for unweighted loss seems to indicate a very good
classification, one should consider that reality is different: we

are dealing with a very skewed class distribution, e.g., some
labels have samples with order 104 inputs (atelectasis) while
others only a few hundred samples (Hernia). In this situation,

Figure 12 Precision-recall curves for each of the 14 classes and
their respective areas. The areas are calculated using the average
precision score considering the weights of each class. The iso-
curves show the F1 scores in the precision-recall plane.

Receiver operating characteristic across all classes

Recall

fl=0.8

fl=0.6

fl=0.4

fl=0.2

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

Iso-fl curves
Micro-average precision-recall (area =0.47)
Precision-recall for class atelectasis (area =0.32)
Precision-recall for class cardiomegaly (area =0.24)
Precision-recall for class consolidation (area =0.09)
Precision-recall for class edema (area =0.04)
Precision-recall for class effusion (area =0.46)
Precision-recall for class emphysema (area =0.07)
Precision-recall for class fibrosis (area =0.03)
Precision-recall for class hernia (area =0.01)
Precision-recall for class infiltration (area =0.47)
Precision-recall for class mass (area =0.19)
Precision-recall for class nodule (area =0.13)
Precision-recall for class pleural_thickening (area =0.07)
Precision-recall for class pneumonia (area =0.03)
Precision-recall for class pneumothorax (area =0.20)

Table 1 Fast.AI AUC score for each class in the ChestX-ray14 data set

Pathology DenseNete-121-Fast.AI (30-epochs)

Atelectasis 0.76

Cardiomegaly 0.91

Effusion 0.83

Infiltration 0.69

Mass 0.79

Nodule 0.71

Pneumonia 0.67

Pneumothorax 0.83

Consolidation 0.71

Edema 0.86

Emphysema 0.83

Fibrosis 0.78

Pleural thickening 0.73

Hernia 0.89

Table 2 Average precision for each class

Pathology DenseNete-121-Fast.AI (30-epochs)

Atelectasis 0.31

Cardiomegaly 0.21

Effusion 0.42

Infiltration 0.46

Mass 0.13

Nodule 0.13

Pneumonia 0.03

Pneumothorax 0.17

Consolidation 0.09

Edema 0.04

Emphysema 0.07

Fibrosis 0.03

Pleural thickening 0.07

Hernia 0.01

Journal of Medical Artificial Intelligence, 2020Page 14 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Figure 13 Original image (left), Guided Grad-CAM (center) and precision-recall (PR) plot (right) for Atelectasis class. The Grad-CAM
shows that the CNN is getting very hot spots (regions in red) in the left lung and at the bottom of the right lung. The PR curve for this class
gives AP =0.31. CNN, convolutional neural network; AP, average precision.

Figure 14 Original image (left), Guided Grad-CAM (center) and precision-recall (PR) plot (right) for cardiomegaly class. The Grad-CAM
shows that the CNN is getting a very hot spot in the bottom left region. The PR curve for this class gives AP =0.21. CNN, convolutional
neural network; AP, average precision.

the ROC does not tell the full history of our classification
model. We have to also consider cases where we have few
samples more carefully. To use AI techniques in the real
world, one should consider how to design and evaluate the
performance of such algorithms. If we are dealing with a
disease with a small number of examples but still focus on an
algorithm which can lead to a precise diagnostic (i.e., high
precision) most of the time (i.e., high recall), then we should
(I) gather more data, which has an intrinsic cost, and/or (II)

consider the use of weight class in the loss function, which
provides a more realistic measure of accuracy.

Discussion

In this note we present our study of the use of machine
learning techniques to identify diseases using X-ray
information. We have used the new framework of Fast.AI,
and imported the resulting model to an app which can be

Atelectasis Atelectasis Average precision score, atelectasis: AP=0.31

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Cardiomegaly Cardiomegaly Average precision score, cardiomegaly: AP=0.21

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Journal of Medical Artificial Intelligence, 2020 Page 15 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Figure 15 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for effusion class. The Grad-CAM shows
that the CNN is getting a very hot at the right lung. The PR curve for this class AP =0.42. CNN, convolutional neural network; AP, average
precision.

Figure 16 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for emphysema class. The Grad-CAM
shows that the CNN is getting hot spots at the both lungs. The PR curve for this class gives AP =0.07. CNN, convolutional neural network;
AP, average precision.

tested by any user. In the app, the user can upload an image
and obtain as an output a certain likelihood for pertaining
to 1 of the 14 labeled diseases. This classification could
assist diagnosis by medical providers and broaden access to
medical services to remote areas.

We have studied two diagnosis situations: first we
studied the simpler problem of identifying one disease
(pneumothorax) vs. any other disease, and then tackled the

much more complex case of multiple classification, where
we aim to identify individual diseases and the co-occurrence
of diseases in the same patient. To emulate realistic
situations, we have transformed the high-quality images
into lower resolution and applied transformations to them:
rotated, cropped and changed the contrast of the images.
On those images, we have trained a CNN and applied a
number of numerical techniques to speedup computation

Effusion Effusion Average precision score, effusion: AP=0.42

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Emphysema; infiltration Emphysema; infiltration Average precision score, emphysema: AP=0.07

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Journal of Medical Artificial Intelligence, 2020Page 16 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Figure 18 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for mass class. The Grad-CAM shows that
the CNN is getting very hot region on the left lungs. The PR curve for this class gives AP =0.13. CNN, convolutional neural network; AP,
average precision.

time, achieving a good accuracy of diagnosis.

We have explored the use of grad-CAM to improve

training. We have also studied the different types of

measures of how well the algorithm perform. We found

that it is particularly important to account for imbalances in

both the ROC and PR by weighting the samples.

Conclusions

We consider this project as setting the first steps towards
a reliable app to help in diagnosing diseases using images
and other sources of information, such as electrocardiogram
data. We have provided open source code (5) for others to
use and improve our procedure as well as a beta version

Figure 17 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for Infiltration class. The Grad-CAM
shows that the CNN is getting a very hot region on both lungs, same as the Hernia case. The PR curve for this class gives AP =0.46. CNN,
convolutional neural network; AP, average precision.

Infiltration Infiltration Average precision score, infiltration: AP=0.46

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Mass Mass Average precision score, mass: AP=0.13

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Journal of Medical Artificial Intelligence, 2020 Page 17 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Figure 19 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for nodule class. The Grad-CAM shows
that the CNN is getting a hot region on left and right lungs. The PR curve for this class gives AP =0.13. CNN, convolutional neural
network; AP, average precision.

Figure 20 Original image (left), guided Grad-CAM (center) and precision-recall (PR) plot (right) for pneumothorax class. The Grad-CAM
shows that the CNN is getting a hot region on both lungs. The PR curve for this class gives AP =0.17. CNN, convolutional neural network;
AP, average precision.

Nodule Nodule Average precision score, nodule: AP=0.13

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

Pneumothorax Pneumothorax Average precision score, pneumothorax: AP=0.17

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on

Recall
0.0 0.2 0.4 0.6 0.8 1.0

of the app for testing (4) and step-by-step instructions on
how to set up the app is presented at the Supplementary
section. We hope this tool can assist clinicians or other
health providers in areas where good quality equipment or
relevant skills are missing. We welcome any questions and
suggestions which can be posted in the GitHub page.

There are a number of improvements in this analysis

which one could tackle, including refining the CNN
training to improve the diagnosis in the less performing
diseases where there is co-occurrence of several diseases,
including the no-disease vs. disease case, or enlarging
the training set with more images from other databases
or provided by users, and finally to incorporate more
information besides X-ray information.

Journal of Medical Artificial Intelligence, 2020Page 18 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

Figure 21 Effects of weighted and unweighted Loss function in the metrics PR and ROC. (A) PR and ROC for unweighted loss function.
The ROC curve is insensitive to changes in the class distribution, while the PR curve can show the effects of imbalance class. (B) The ROC
curve remains constant, whereas the PR shows a more stable behavior when the recall, horizontal axis, is increased. The effects of class
weights are more noticeable in the PR metric. ROC, receiving operating characteristic; AP, average precision; PR, precision-recall.

Acknowledgments

FF Freitas thanks Prof. C. Herdeiro and Prof. A. P. Morais
for the hospitality during his stay at Aveiro University.
Funding: FF Freitas is supported by the project From
Higgs Phenomenology to the Unification of Fundamental
Interactions PTDC/FIS-PAR/31000/2017 grant BPD-32
(19661/2019).

Footnote

Conflicts of Interest: All authors have completed the IC-
MJE uniform disclosure form (available at http://dx.doi.
org/10.21037/jmai.2019.12.01). The authors have no con-
flicts of interest to declare.

Ethical Statement: The authors are accountable for all

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

P
re

ci
si

on
P

re
ci

si
on

Tr
ue

 p
os

iti
ve

 r
at

e
Tr

ue
 p

os
iti

ve
 r

at
e

Recall

Recall

False positive rate

False positive rate

Average precision score, pneumothorax: AP=0.17

Average precision score, pneumothorax: AP=0.10

Receiver operating characteristic for class: pneumothorax

Receiver operating characteristic for class: pneumothorax

ROC curve (area =0.68)

ROC curve (area =0.68)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

A

B

http://dx.doi.org/10.21037/jmai.2019.12.01
http://dx.doi.org/10.21037/jmai.2019.12.01

Journal of Medical Artificial Intelligence, 2020 Page 19 of 19

© AME Publishing Company. J Med Artif Intell 2020;3:8 | http://dx.doi.org/10.21037/jmai.2019.12.01

aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved. This study was
conducted in accordance with the Declaration of Helsinki
(as revised in 2013). The institutional ethical approval and
individual informed consent were waived.

Open Access Statement: This is an Open Access article
distributed in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with
the strict proviso that no changes or edits are made and the
original work is properly cited (including links to both the
formal publication through the relevant DOI and the license).
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Ker J, Wang L, Rao J, et al. Deep Learning Applications
in Medical Image Analysis. IEEE Access 2017;6:9375-89.

2. Lungren MP, Ng AY. CheXNet: Radiologist-Level
Pneumonia Detection on Chest X-Rays with Deep
Learning. arXiv:1711.05225v3 [cs.CV], 2017. Available
online: http://arxiv.org/abs/1711.05225

3. FastAI. GitHub 2018. Available online: https://docs.fast.ai
4. ML-Xray web-App. Available online: https://ml-xray.

herokuapp.com
5. Elkins A, Freitas FF, Sanz V. X-ray-and-ML. GitHub

2019. Available online: https://github.com/FFFreitas/
X-ray-and-ML

6. Wang X, Peng Y, Lu L, et al. ChestX-Ray8: Hospital-

Scale Chest X-Ray Database and Benchmarks on Weakly-
Supervised Classification and Localization of Common
Thorax Diseases. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); 21-26 July
2017; Honolulu, HI, USA. IEEE, 2017. doi: 10.1109/
CVPR.2017.369

7. Smith LN. Cyclical Learning Rates for Training
Neural Networks. 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV); 24-31 March
2017; Santa Rosa, CA, USA. IEEE, 2017. doi: 10.1109/
WACV.2017.58.

8. Nandakumar SR, Le Gallo M, Boybat I, et al. Mixed-
precision architecture based on computational memory for
training deep neural networks. 2018 IEEE International
Symposium on Circuits and Systems (ISCAS); 27-30
May 2018; Florence, Italy. IEEE, 2018. doi: 10.1109/
ISCAS.2018.8351656.

9. Kingma DP, Ba J. Adam: A Method for Stochastic
Optimization. arXiv:1412.6980v9 [cs.LG], 2017. Available
online: http://arxiv.org/abs/1412.6980

10. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting.
J Mach Learn Res 2014;15:1929-58.

11. Nielsen F, Sun K. Guaranteed bounds on the Kullback-
Leibler divergence of univariate mixtures using piecewise
log-sum-exp inequalities. arXiv:1606.05850v2 [cs.LG],
2016. doi: 10.3390/e18120442.

12. Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM:
Visual Explanations from Deep Networks via Gradient-
Based Localization. 2017 IEEE International Conference
on Computer Vision (ICCV); 22-29 Oct. 2017; Venice,
Italy. IEEE, 2017. doi: 10.1109/ICCV.2017.74.

doi: 10.21037/jmai.2019.12.01
Cite this article as: Elkins A, Freitas FF, Sanz V. Developing
an app to interpret chest X-rays to support the diagnosis of
respiratory pathology with artificial intelligence. J Med Artif
Intell 2020;3:8.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Comparison with CheXnet

The state-of-the-art in terms of use of the X-ray database (6)
is CheXNet (2). In this work, the authors use the same
denseNet-121 basic architecture we employed, but in
their model the classification layer had one neuron with
softmax activation (in our case we have two neurons, one
for each class, with logSoftMax activation) and weighted
binary cross-entropy loss (in our case we can use a weighted
cross-entropy loss). Moreover, we have performed further
transformations to the images in the data set, such as
changing the contrast between the dark and bright areas, to
emulate more closely difficult conditions a physician could
find in a remote location and low-quality equipment.

In the CheXNet they compared with the diagnoses of
four radiologists, who studied a test set with 420 images and
labeled them according to the 14 diseases. This was used to
evaluate a radiologist F1 score for the pneumonia detection
task and compare to the F1 score obtained by the CheXNet.
We had no such benchmarking, and our F1 scores are based
on the validation data set.

Finally, in CheXNet scores were based on unweighted
goodness measures which, as we discussed in section
“Weighted vs. unweighted (ROC vs. PR) for multi-label
classification”, may not give a realistic view of diseases with
small data sets.

Herokusetup

In this appendix we describe the setup of our online tester
for the app. In order to setup the online server we used
docker and heroku. After we have trained our model, we
export it using the Fast.AI function export, which exports
both the model and weights. The model is saved in a pkl
(pickle) format and the weights are saved in pth (pytorch)
format, which we store in a folder to upload to the heroku
webserver.

Docker

We recommend to install docker, which facilitates the
sharing of codes between any machines, without the
need to install many dependencies. The installation of
docker is quite straight forward https://docs.docker.com/
install/#support, except when running on linux where you
might need to take some extra steps https://docs.docker.
com/install/linux/linux-postinstall/

After the installation, one can create a docker image for

our model to work and docker allows us to create a virtual
machine able to run in any kind of computer as long it
has the docker tool. To create the image one first needs
to create an empty file called Dockerfile, the Dockerfile
will contain the instructions needed to load the model and
run it in our environment. In the following we give some
examples of how to do this:

From python:3.6-slim-stretch

Run apt update && \

apt install -y python3-dev gcc WORKDIR app

Add requirements.txt.

Run pip install -r requirements.txt

#pip install --no-cache-dir -r ADD models models

Add src src EXPOSE 80

Run it once to trigger DenseNetdownload RUN python src/

app.py prepare

Start the server

CMD [“python”, “src/app.py”, “serve”]

To call the pre-installed docker image with python3 and gcc

compiler from the docker website we do the following:

From python:3.6-slim-stretch

Run apt update && \

apt install -y python3-dev gcc

Add requirements.txt.

Run pip install -r requirements.txt

Here we add the file requirements to docker so it download

and install the libraries we are using, this file contains the follow-

ing instructions:

torch==1.0.0torchvision==0.2.1Flask==1.0.2

\fastai==1.0.50.post1

These are the packages and libraries with their respective ver-

sions. The following line will instruct pip to download and install

the packages in the Docker image we want to create.

Add models models Add src src

Which tells docker the paths of our source files, where we will

put the app program and other files we will need to run the app,

and the path to our model and weights.

The line:

EXPOSE80

tells docker which proxy port our app will run, important to

our app.

And the following lines tell docker to run our app stored in the

folder src:

Run it once to trigger DenseNetdownload RUN python src/

app.py prepare

Start the server

CMD [“python”, “src/app.py”, “serve”]

Supplementary

The app

We wrote the app in a python script file called app.py.
The app is written using the flask library which can create
web interfaces based in java and php. The main important
features of the web app are the config.yaml file and the static
folder. The config.yaml file defines the url configurations of
the web app for the example images and other links, while
the folder static contains the css scripts for colors, button
sizes, etc.

After we prepare the app and setup the docker file,
we now can create the docker image by executing the
command:

docker build --tag=ml-xray-v-0-1.

where the tag flag is to indicate the name of the image we
create. Now we can start to set up the Heroku webserver.

Heroku

First, one has to create a Heroku account and then install

the heroku git6 app in your machine.
Next, open a terminal and run the command to login

into your heroku account:
heroku login

Which will ask for your login name, usually your email, and

password. After login, one has to pull the folder which contains

our dockerfile, model and source code of our app:

heroku git:remote-a ml-xray

Now we can give the instruction to heroku to push our docker

container, by running the command:

heroku container:login

heroku container:push web --app ${ml-xray}

and release the container in the webserver:

heroku container:release web --app ${ml-xray}

Finally, one can now open the app and get some logs by run-

ning the command:

heroku open --app $ml-xray

heroku logs --tail --app ${ml-xray}

Note that after 15 minutes of inactivity the server goes to
sleep mode and it might take a little while to wake up again.

6 You might need to install git, please follow these instructions: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

