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Background: SIGN Fracture Care International partners with surgeons in low-resource hospitals 
worldwide to provide access to effective orthopedic care by donating educational materials and innovatively 
designed surgical implants. Over two decades, SIGN’s Online Surgical Database (SOSD) has grown to 
contain over 500,000 medical images, with radiographs holding the majority share. 
Methods: One challenge in working with hospitals worldwide is that both the radiographs uploaded to 
the SOSD and the data entry accompanying the uploads vary in quality. To improve the accuracy of data 
in the SOSD, we trained a model to detect surgical implants in radiographs. We first developed a tool to 
automatically detect radiographs, then trained an object detection model to determine the number and 
placement of surgical implants visible in the radiograph. Active learning was used to generate a training set 
containing 2,510 radiographs with screws, nails, and plates labeled by bounding boxes. 
Results: Training a model to simultaneously recognize all three classes of implants gave a low average 
precision (AP) for the plate class, likely due to the low number of plate instances in our training set and the 
large variety of surgical plates used by SIGN-partnered surgeons. Applying standard image augmentation 
techniques to increase the plate count in our training set did not appreciably increase the AP of plate 
detection. To improve plate detection, we redrew the bounding boxes to account for correlations between 
the screw and plate classes. Training one model to detect nails and screws and a separate model to detect 
plates increased the AP of plate detection by 78.8 percentage points. The AP of each class was 80.7% for 
screws, 93.6% for nails, and 92.6% for plates; meanwhile, the sensitivity was 92% for screws, 86% for nails, 
and 81% for plates. 
Conclusions: We show that object detection methods can be used to detect surgical implants in 
radiographs of varying quality; however, the detection ability is dependent on the type of implant, and some 
implants, in our case plates, must be treated differently than others. Such tools can improve the throughput 
of radiograph analysis, assisting physicians and surgeons with the treatment of bone fractures. 
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Introduction

Untreated bone fractures can lead to lifelong pain and 
disability, and treating fractures with traction or plaster 
casts forces the patient to be immobilized for three months. 
In contrast, orthopedic surgery enables people with severely 
broken bones to walk within one week of surgery. For 
people in low-income countries, this improved time to 
mobility can prevent families from falling into poverty. For 
example, in Ghana, 42% of rural households and 40% of 
urban households experienced a decline in income after the 
injury of a family member, with 28% of rural households 
and 19% of urban households reporting an associated 
decline in food consumption (1). Unfortunately, injury rates 
are predicted to continue to rise with the increasing use of 
motorized vehicles, the dominate cause of injury in low- 
and middle-income countries (LMICs) (2-4).

In comparison to infectious disease, injury treatment 
is often overlooked by the global health community (5). 
Surgery is now recognized as a cost-effective intervention 
for the treatment of injuries (6-8). However, a 2015 Global 
Health Survey by the Lancet Commission on Global 
Surgery found that 9 out of 10 people in LMICs do not 
have access to basic surgical care when needed (7). Thus, 
there is an urgent need to strengthen the delivery of surgical 
interventions to treat injuries.

SIGN Fracture Care International is a non-profit 
organization based in Richland, WA, USA, that helps 
bridge this gap by working with surgeons in LMICs to 
administer orthopedic surgery. SIGN provides educational 
materials and specially designed surgical implants to 
improve patient outcomes. SIGN donates these implants 
to partnering hospitals, which then provide treatment at 
no cost to the patient (9). SIGN’s intramedullary nailing 
system, designed to treat femoral fractures, has been shown 
to provide improved healing at reduced cost in limited-
resource settings, such as those that lack real-time imaging 
or power reaming and/or involve delayed presentation to 
the operating room (10,11).

SIGN-partnered surgeons upload medical data, with 
imaging typically in the form of radiographs, to allow US-
based physicians to provide support to specific cases and 
evaluate healing. The medical data and corresponding 
images are organized in SIGN’s Online Surgical Database 
(SOSD), one of the largest databases on trauma surgery 
in LMICs (12,13). The SOSD contains over 125,000 
cases with 500,000 associated images. This overwhelming 
amount of medical data presents a challenge to the SIGN 

team, but also provides an opportunity to make data-
driven discoveries that could improve patient care. Pacific 
Northwest National Laboratory has partnered with SIGN 
to create computational tools to improve the analytical 
throughput of radiographs and improve the accuracy of data 
entered in the SOSD by SIGN-partnered surgeons using 
computer vision techniques.

Computer vision has dramatically improved over the past 
several years due to advances in deep learning architectures. 
In particular, convolutional neural networks (CNNs) can 
learn hierarchical representations directly from images 
without relying on handcrafted features, where the deeper 
the CNN, the greater the level of abstraction of the 
resulting learned features. Deep CNNs came into vogue 
after Krizhevsky’s AlexNet, a deep CNN model, greatly 
outperformed then state-of-the-art computer vision models 
in the 2010 ImageNet Large-Scale Visual Recognition 
Challenge (LSVRC) (14). The algorithmic insight inherent 
in AlexNet was enhanced by the ability to use GPUs to 
train on a large dataset consisting of 1.2 million images 
spanning 1,000 categories. This work spawned a variety of 
deep-CNN-based computer vision models, each competing 
in various contests to achieve the lowest error rate (15-18).

Girshick et al. showed that a deep CNN architecture 
can be reformulated for object detection tasks in the 2013 
PASCAL Visual Object Classes (VOC) Challenge (19). 
Originally, the sliding window algorithm was applied for 
object detection; however, this method was found to be 
computationally expensive, as the process had to be applied 
to an image multiple times to detect multiple classes. In 
current implementations, object detection is achieved by the 
localization of features in the image using the “recognition 
using regions” paradigm, which groups pixels into regions 
via a segmentation algorithm. This method allows encoding 
of shape and scale information and is not greatly affected by 
other objects in the background (20). Further improvements 
in speed and accuracy have been made in recent years 
(21-23). The TensorFlow team at Google Research has 
developed an open-source object detection framework built 
on top of TensorFlow to easily build, train, and deploy such 
object detection models (24). Identification consists of a 
bounding box, a label, and a detection score. Figure 1 shows 
an example of this output for our implant detection model 
described below.

The application of computer vision to medical imaging 
has generated much interest over the past five years (25,26). 
Ronneberger et al. developed a deep CNN architecture 
specifically for biomedical image segmentation called 



Journal of Medical Artificial Intelligence, 2020 Page 3 of 10

© AME Publishing Company. J Med Artif Intell 2020;3:9 | http://dx.doi.org/10.21037/jmai-20-2

U-Net, which was shown to be applicable to both electron 
microscopy stacks and transmitted light microscopy images 
and won the ISBI Cell Tracking Challenge in 2015 (27). 
Several works have used deep CNNs to segment magnetic 
resonance images (MRIs) of brains into different tissue 
classes (28,29). Milletari et al. expanded the use of deep 
CNNs to the segmentation of MRI volumes of prostates 
using their V-Net architecture (30). Yu et al. made further 
advancements in image segmentation for non-medical 
infrared images through application of a growth immune 
field, which is described as a combination of immunology 
and image processing (31).

Though MRI, microscopy, and computed tomography 
(CT) represent the dominant imaging modalities applied to 
deep learning thus far, much work has been done concerning 
radiographs (25). Deep CNNs have been applied to chest 
radiographs to detect pulmonary tuberculosis and other 
abnormalities (32-36), knee radiographs to quantify the 
severity of knee osteoarthritis (37,38), hand radiographs to 
assess skeletal maturity in children and rheumatoid arthritis 
in adults (39-41), and wrist and hip radiographs to detect 
fractures (42-44), among other applications (45-48). The 
automatic detection of surgical implants in radiographs has 
not been as thoroughly researched.

Our goal is to automatically detect the number and 

location of surgical implants in radiographs present in 
the SOSD. Along with radiographs, images uploaded to 
the SOSD include surgery photographs and follow-up 
patient photographs showing clinical function. In order to 
work only with radiographs, we first developed a machine 
learning algorithm to sort radiographs—both digital 
radiographs and photographs of film radiographs—from 
other types of images.

We then employed the TensorFlow Object Detection API 
to detect the number and location of surgical implants in the 
radiographs. Transfer learning using ResNet-50 as the base 
model was employed to train an implant detection model on 
a dataset of 2,510 post-op radiographs labeled by bounding 
boxes. The model trained on the three types of implants 
under examination (screws, nails, and plates) did a poor job of 
detecting plates, most likely due to the low proportion of plates 
in the training set and their varying morphology. Standard 
image augmentation methods to increase the instance of 
plates in the training set did not increase the ability of the 
model to detect plates. Part of this difficulty resulted from the 
correlation between the plate and screw classes, i.e., plates are 
held in place by multiple screws, leaning an increase in images 
with plates to disproportionately increase the instances of 
screws, disallowing balancing of the classes. We accounted for 
correlations between plate and screw classes by redrawing the 
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Figure 1 Example radiograph before (left) and after (right) the trained implant detection model is applied. Bounding boxes with detection 
scores and labels are given for all objects the model detects, which in this example match the ground truth with high certainty.
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bounding box to include the screws attached to the plate and 
training two separate models: one to detect nails and screws 
and one to detect plates. This strategy greatly increased both 
the precision and recall of plate detection and improved the 
average precision (AP) by 78.8 percentage points to 92.6%, 
while the AP for screws and nails remained high at 80.7% and 
93.6%, respectively; meanwhile, the sensitivity (true positive 
rate) was 92% for screws, 86% for nails, and 81% for plates. 

Methods

Our work consists of two tasks: classifying images as 
radiographs and detecting the number and location of 
surgical implants (screws, nails, and plates) in radiographs. 
We apply deep learning techniques to accomplish both of 
these tasks. A major challenge in working with hospitals 
worldwide is that the radiographs uploaded to the SOSD 
greatly vary in quality. Digital radiographs are in the 
minority, and the majority of images are photographs of 
film radiographs. There are numerous instances of flashes 
obscuring portions of the radiograph, blurry photos, and 
visible background, both to the side and through the 
lighter portions of the radiograph. Because the models 
developed here are meant to be used in the context of this 
data, we trained and tested on images of varying quality, 
removing images from the training and test sets only when 
a human couldn’t provide a label due to the poor quality of 
the image. 

To sort radiographs from other images, we developed 
a binary classification model. The image features found 
by the pre-trained VGG-16 model (16) were extracted, 
and simple logistic regression was used to perform the 
binary classification. Logistic regression was implemented 
using Scikit-learn (49) with L2 regularization and the 
LIBLINEAR solver (50). Because radiographs tend to have 
high contrast and are mostly black and white, while non-
radiographic images in the SOSD tend to be full color and 
have less stark contrast, we applied image manipulation 
strategies to better balance the color space. We duplicated 
the non-radiographic images in our training set and 
inverted the colors, then duplicated that collection and 
made the images monochrome to ensure our model was 
not simply learning color gradients. This produced 5,151 
radiographs and 3,994 non-radiographic images for use as 
the training set. From this, 10% of the images were set aside 
as a validation set to check the accuracy of our model. A test 
set containing 683 radiographs and 111 non-radiographic 
images was created to examine the classification ability of 

our model on unaltered images in the SOSD.
For the detection of surgical implants, we applied the 

TensorFlow Object Detection API. In the TensorFlow 
Object Detection API, pre-trained models from the 
TensorFlow Model Zoo are applied to the detection of 
objects in widely used image datasets, such as the COCO 
dataset (51). This image dataset, like other prevalent 
image datasets, consists of commonly identifiable objects 
in images found on the Internet. Naturally, this excludes 
radiographs and surgical implants. Therefore, we applied 
transfer learning to leverage pre-optimized computer vision 
models for the development of a model that detects surgical 
implants in radiographs. Such domain-specific fine-tuning 
has been proven to be an effective strategy for training high-
capacity CNNs when data is scarce (19), with Tajbakhsh  
et al. showing that fine-tuning is also acceptable for a variety 
of medical imaging data (52). Though the SOSD contains 
a wealth of radiographs, labeling each image with bounding 
boxes surrounding implants in the three classes under study 
(nails, screws, and plates) is time-consuming; therefore, our 
implant detection model can benefit from the utilization of 
fine-tuning techniques.

In our implant detection model, the training dataset 
was generated by overlaying boxes on each implant in the 
radiographs. These boxes act as anchor points on which 
the model is trained. We used the open-source graphical 
image annotation tool LabelImg to create XML files that 
contained information about the box location and label of 
implants in the sample radiographs. These files were then 
converted into a single TensorFlow record file to be read 
into the Object Detection API.

One can imagine that hand-labeling thousands of 
radiographs would be quite tedious. To speed the labeling 
process, we applied an active learning technique. An initial 
model was fine-tuned on 370 hand-labeled radiographs 
leveraging the weights from Faster R-CNN ResNet-50 
trained on the COCO dataset. This model was then used to 
detect implants in a new set of radiographs from the SOSD, 
with a detection threshold of 88%. All detected objects 
were checked for fidelity, and any anchoring errors or 
missing identifications were corrected. These new images 
were incorporated in the training set, and the model was 
retrained. Repeating this cycle three times allowed us to 
more quickly generate a training dataset containing 2,510 
labeled images.

The object detection model was validated by computing 
the average precision (AP) and true and false positive rates 
of each class (53). Determining the AP of a class in an object 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tzutalin/labelImg
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detection model relies on the intersection over union (IoU) 
to label the detections as true or false positives. Typically, 
a detection is labeled a true positive if the IoU is greater 
than or equal to 0.5. Using this value, we discovered that 
our model suffered from decreased localization. This led 
to true positive detections being reported as false positives 
when an extended portion of the implant was left out of 
the bounding box. To overcome this issue, we decreased 
the IoU threshold for true positive detections to 0.35. For 
the final version of the model (discussed below), the mean 
average precision (mAP) was 82.4% with an IoU of 0.5, 
while decreasing the IoU to 0.35 improved the mAP to 
92.5%, and the false positive rate decreased from 15.9% to 
14.0%. Therefore, when computing the AP and true and 
false positive rates, we used an IoU of 0.35.

Results and discussion

To work with radiographs in the SOSD, we first developed 
a classification model to sort radiographs from non-
radiographic images. We applied transfer learning using the 
VGG-16 model, training on 8,230 images and validating 
with 915 images. After feature extraction and logistic 
regression, 100% of the validation images were correctly 
classified. From a test set of 683 radiographs and 111 non-
radiographic images, only 1 image was misclassified: a 
photograph of a leg was classified as a radiograph. The 
receiver operating characteristic (ROC) curve on the 
test set is shown in Figure 2. The dotted line represents 
classification by pure chance, while the solid blue line 
represents classification by our model. Our model shows 

near-perfect classification, with an area under the curve 
(AUC) of 0.995. 

After removing non-radiographic images from our image 
set, we developed an object detection model to detect 
surgical implants in radiographs. The radiographs in the 
SOSD contain three types of implants: nails, screws, and 
plates. Our initial object detection model was trained to 
detect all three implants simultaneously. Typically, when 
training object detection models, all classes should have 
approximately the same number of instances in the training 
set. However, because we do not have isolated instances 
of each class, it becomes more difficult to curate a training 
set with comparable instances of each class. Each nail is 
secured with a variable number of screws (typically 1–4), 
and each plate is secured with a large number of screws 
(5+). Thus, every time we add radiographs with nails or 
plates to the training set, we inevitably disproportionately 
increase the instances of screws. In addition, because SIGN 
designs and distributes nails to SIGN-partnered surgeons, 
the SOSD contains many more radiographs containing 
nails than plates. Our initial training set of 2,510 images 
contained 10,558 screws, 3,734 nails, and 797 plates. Such 
a skewed dataset is typically undesirable in deep learning 
methods, and often the training set is balanced by applying 
image manipulations to classes with low representation. 
However, as stated, the three classes in this dataset are not 
independent of one another. Of the 2,446 images containing 
nails, 99% also contain screws. Meanwhile, 100% of the 
564 images that contain plates also contain screws, while 
92% of the images with plates also contain nails. Therefore, 
we cannot simply apply image augmentation techniques to 
increase the count of objects in one class without increasing 
the count of objects in the other classes.

To confirm that image augmentation techniques 
are not applicable in the case of associated classes, we 
manipulated the radiographs containing plates to double the 
representation of plates in the training set. Though it is not 
possible to completely balance the dataset so that each class 
is represented equally, we were able to increase the instance 
of plates relative to nails. To 292 radiographs containing 
plates, we applied either a horizontal flip, vertical flip, 90° 
rotation, 180° rotation, or 270° rotation; the aspect ratio 
of some of the rotated radiographs were also manipulated 
to add further distortions. In addition, we applied color 
inversions and/or 90° rotations to 508 images from the 
full training set. After these manipulations, our augmented 
dataset was composed of 5,443 images, containing 30,622 
screws (approx. 5.6 per image), 8,475 nails (approx. 1.5 per 
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Figure 2 Receiver operating characteristic (ROC) curve of the 
radiograph classification model. Our radiograph classification 
model shows near-perfect classification of radiograph vs. non-
radiographic images with an area under the curve (AUC) of 0.995.
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image), and 4,226 plates (approx. 0.8 per image).
Precision–recall curves for each implant class are shown 

in Figure 3, with the average precision (AP) given in the 
legend. Precision is defined as the ratio of true positives to 
all predicted positives, and recall is defined as the ratio of 
true positives to the total number of ground truth objects in 
that class. Ideally, a model would have both high precision 
and high recall; however, in practice, there is typically a 
tradeoff between precision and recall. This trade-off is 
present in our case for all three classes, as shown by the 
decrease in precision as recall increases.

When training the model without image augmentation 
(dotted lines in Figure 3), the AP was 91.4% for nails, 76.4% 
for screws, and 13.8% for plates. While this model did well 
at detecting nails and screws, plate scores were inadequate, 
likely due to the low instance of plates in the training set, 
as discussed above. The model with image augmentation 
applied (dashed lines in Figure 3) showed insignificant 
improvement, with an AP of 91.5% for nails, 78.1% for 

screws, and 14.1% for plates.
Plate detection is likely a more difficult task than screw 

or nail detection simply because of the variety of orthopedic 
plates used in practice. The type of fixation device is 
highly dependent on the bone under repair and the type 
of fracture. To accommodate the specific need, orthopedic 
plates come in a variety of shapes and with variable numbers 
of holes. Many tend to be symmetrical with variable 
width, while other others, such as buttress plates, are 
often asymmetrical. Depending on the bone, plates can be 
curved or straight, and sometimes multiple plates are used 
in conjunction. For surgical screws, though the length, 
diameter, threading, and bolt-head dimensions may vary, the 
overall appearance is consistent. In this dataset, the majority 
of nails were provided to the surgeons by SIGN and tend 
to differ mainly in length and shape of the ends, but again 
the overall appearance is consistent. Therefore, we trained 
a separate model to detect only plates. The bounding boxes 
for plates were redrawn to include the screws used to hold 
the plates in place on 547 radiographs from the SOSD 
(see Figure 4 for comparison of the bounding boxes). Five 
hundred of these images were used to train the plate-only 
detection model, while the remaining 47 images were used 
to test the model. A separate model was trained on the 
images with bounding boxes described previously to detect 
only screws and nails (2,510 images total). To test this 
model, a set of 1,000 images was obtained from the SOSD. 
This set was labeled using the active learning method 
described above to generate ground truth bounding boxes. 
The test set contained 930 nails and 2,165 screws.

Training two separate models (one to detect nails and 
screws, and one to detect plates) greatly improved both the 
precision and recall of plate detection, as evidenced by the 
solid green lines in Figure 3. The AP of the plate dramatically 
increased to 92.6% when a separate model was used. 
Separating the models also had a modest positive effect on 
nail and screw detection. The class AP increased from 91.4% 
to 93.6% for nails and from 76.4% to 80.7% for screws. In 
addition, Figure 5 shows true and false detection rates for 
each class from the model trained on screws and nails and the 
model trained on plates. The true positive rate, also called 
the sensitivity, is highest for screws at 92%, followed by nails 
at 86%, and plates at 81%. This indicates that although the 
precision was lower for screws, detections in this class are 
more likely to be labeled correctly. 

Therefore,  producing a separate model for the 
detection of low-representation objects is a good strategy 
for improving object detection when objects are highly 

Figure 3 Precision-recall curves for each implant class. The dotted 
lines represent the model trained without manipulated images, the 
dashed lines represent the model trained with manipulated images, 
and the solid lines represent the separately models trained (one on 
nails and screws and one on plates). Blue represents nails, orange 
represents screws, and green represents plates. F1 scores are shown 
as gray lines. The legend shows the average precision (AP) for 
each class for the model trained without image manipulations, the 
model trained with image manipulations, and the separately trained 
models (in that order).
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Figure 5 True and false positive detections in each class. Objects detected were labeled true or false positives based on an intersection over 
union (IoU) of 0.35. Detections for nails and screws were made with the model trained on only nails and screws, and detections for plates 
were made with the model trained only on plates.

Figure 4 Example bounding box for the plate class. (left) The bounding box for plates in the initial models trained on nails, screws, and 
plates did not contain the nails used to hold the plate in place. (right) The bounding box for plates in the plate-only model did contain 
these screws.

correlated in the images and standard image augmentation 
techniques do not improve detection. Furthermore, 
considering these correlations when labeling objects (i.e., a 
plate will always be accompanied by screws) also improves 
the model by changing the representation to include 
correlated objects.

Conclusions

SIGN works with 52 hospitals around the world to serve 

thousands of patients. This work has allowed SIGN to 
build a database consisting of over 500,000 images, which, 
if analyzed, could generate data-driven conclusions on how 
to improve patient outcomes. However, because SIGN-
partnered surgeons are located in different regions and have 
different available resources, the medical images uploaded 
to the SOSD are of varying quality. Most radiographs 
provided to the SOSD are photographs of film radiographs, 
and there is no standard method or equipment used to 
take the photographs. This large variety makes the use of 
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standard analysis techniques difficult. To overcome this 
challenge, we apply deep learning techniques to the analysis 
of radiographs.

There is a wealth of tools available for automatic image 
analysis, a number of which are based in deep learning. 
Many of these tools are available on public repositories 
and, with some effort, can be tuned for highly specific 
applications, in this case, the identification of surgical 
implants in radiographs. Generalized models trained on 
millions of images to detect hundreds of classes of objects 
can be fine-tuned for a specific use with a relatively low 
number of images. In this work, we fine-tuned the Faster 
R-CNN ResNet-50 model pretrained on the ImageNet 
dataset to detect surgical nails, screws, and plates in 
radiographs from the SOSD. Because surgical implants are 
often used in conjunction, it was not possible to create a 
balanced dataset, and attempting to improve the balance 
of plates through standard image augmentation techniques 
did not improve the precision or recall of the plate class. 
We improved plate detection by considering correlations 
between the plate and screw classes. We redrew the 
bounding boxes around the plates to include the screws used 
to hold the plate in place and used these images to train a 
model that detects plates. This strategy increased the AP of 
plate detection by 78.8 percentage points. In sum, the AP of 
each class was 80.7% for screws, 93.6% for nails, and 92.6% 
for plates, while the sensitivity was 92% for screws, 86% for 
nails, and 81% for plates.

Finally, we ran our object detection model over all 
radiographs in the SOSD to correct erroneous entries. 
The results from the object detection tool will be used in 
future work aiming to suggest optimal surgical parameters 
based on the type and location of femoral fracture using 
information on patient outcomes from the SOSD. We are 
currently working with SIGN to implement these tools on 
their servers to allow radiographs uploaded in the future 
to be quickly assessed for type, location, and number of 
hardware present.
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