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Introduction

One of the most promising and thriving areas of innovation 
in healthcare is the implementation of artificial intelligence 
(AI) and machine learning (ML) techniques for medical 
image analysis. Advancements in computing power coupled 

with the increased availability of large data stores or “Big 
Data” have also revolutionized AI and ML applications 
in medical imaging. Similarly, AI democratization, the 
idea that AI processes such as data and algorithms should 
be made available for a wider range of uses and users 
has garnered increased attention, with many institutions 
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following suit by making large datasets publicly available for 
algorithm development (1,2). Over the last decade, research 
publications on the use of AI in radiology have more than 
doubled demonstrating a rapidly growing trend. Pesapane 
et al., recently evaluated the number of AI-related articles 
indexed on EMBASE stratified by radiological subspecialty/
body part. As of 2017, neuroradiology outperformed all 
other radiological subspecialties at 34% of AI-related 
radiology publications, however, the bone, spine and 
joints category had the second greatest number of AI-
related articles at 9% of publications (3). This promising 
data, coupled with breadth of applications discussed in this 
article, showcase how MSK radiology is uniquely positioned 
to be a leading subspecialty in the application of these 
techniques (3-5).

In radiology, the imaging value chain refers to a series 
of discrete tasks which together serve to facilitate volume-
to-value healthcare, and which aim to create value for the 
organization, the referring provider and the patient (6-12). 
While AI and ML have been leveraged to optimize many 
links in the imaging value chain, this article focuses on the 
image interpretation aspects of the chain, and discusses the 
interpretative uses of AI in MSK radiology. This article also 
provides a general introduction of AI and ML topics, and 
highlights the major promises, challenges, and anticipated 
future directions of these techniques in musculoskeletal 
(MSK) radiology. The authors aim to complement and 
expand upon the current literature with an accessible 
foundational review of ML for the MSK radiologist, and an 
emphasis on interpretative use-cases. 

References were acquired using the PubMed database. 
Combinations of the following search terms were used: AI, 
radiology, ML, MSK, deep learning, sarcoma, radiomics, 
bone(s), and muscle(s). Further sub-selection of MSK-
related references was made to primarily include articles 
with a focus on interpretative uses of AI in MSK imaging. 
For topics applicable to all medical imaging subspecialties 
such as basic AI concepts, challenges, big data, and 
algorithm democratization, general references not specific 
to MSK imaging were also used.

Overview

The term artificial intelligence (AI) can be broadly 
appl ied when a device performs functions which 
mimic cognitive functions such as problem-solving. 
Researchers often describe AI as a branch of computer 

science dedicated to creating systems which perform 
tasks that generally require human intelligence (3). 
Although self-learning is not a pre-requisite for AI, 
the best-known recent advancements in radiology AI 
have been in ML. ML is often considered a subfield of 
AI, and refers to a system capable of self-learning (3).  
An overview of the relationship between AI and its 
subcategories, as well as representative examples of algorithm 
subtypes for each ML task is shown in Figure 1. Although 
ML algorithms differ in complexity and methodology, 
all of them generate a model representation based on the 
provided input data. The ultimate goal for these algorithms 
is to achieve accurate outputs when provided with 
previously unseen testing data. This fundamental ability 
of ML to “learn from” and “respond to” large real-world 
data using statistical approximation is at the core of its 
robustness. Many ML tasks can be further subdivided into 
three principal categories: supervised learning, unsupervised 
learning, and reinforcement learning. Individual algorithms 
may use a combination of supervised and unsupervised 
learning methods, with or without a reinforcement feedback 
loop (13,14).

Supervised Learning

The hallmark of supervised learning is the reliance on 
“ground truth”, or data which the algorithm believes to be 
accurate. In radiology, “ground truth” typically refers to 
radiologists’ image annotations, results of radiology reports, 
or histopathological diagnoses.

In supervised learning, the algorithms are provided with 
training data, which pairs the source data with its intended 
output. In imaging interpretation, the radiology images 
comprise the data, and individual findings or diagnoses may 
comprise the intended outputs. For instance, Forsberg et 
al. used a supervised algorithm for vertebral body detection 
and labeling using labeled spine data annotations stored a 
single institution’s imaging archive as the training data (15). 

Unsupervised learning

In unsupervised learning, the algorithm does not rely on 
labeled data. Instead, the algorithm identifies patterns 
in large datasets and separates items into groups based 
on similarities and differences (14,16). In MSK imaging, 
Mandava et al. produced a dynamic unsupervised clustering 
algorithm to automatically segment osteosarcoma versus 
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non-tumor regions on MRI images. Their algorithm also 
differentiated between viable and non-viable/necrotic 
tissue within the tumor, an important marker of treatment 
response for assessment of drug-induced tumor necrosis. In 
the study, they used multi-spectral information from STIR 
and T2-weighted MRI sequences and a dynamic clustering 
algorithm to automatically segment osteosarcomas. After 
the ML algorithm performed segmentation, additional 
algorithm components analyzed texture features, and 
pixel intensity values to delineate the tumor volume. For 
validation purposes, the automatic algorithm results were 
compared against manual delineations from a radiologist. 
The authors found high similarity between their 
methodology and ROIs drawn manually (Dice coefficient of 
0.72) (17).

Reinforcement learning

Reinforcement learning refers to ML algorithms which 
learn from the consequences of interactions with the 
environment without being explicitly trained. Each action 
will affect the next, and the algorithm receives feedback in 
the form of positive or negative reinforcement (18). For the 
MSK system, reinforcement learning represents a way to 

simulate physiologic function rather than morphology-based 
approaches seen in traditional image analysis. For instance, 
in an effort to expand reinforcement learning algorithms 
within the field of medicine, in 2017 the Learning to Run 
challenge at the Neural Information Processing Systems 
conference tasked competitors with developing AI to 
control a physiologically-based MSK model, and to make it 
run as far as possible through an obstacle course. “Obstacles” 
were both external and internal modifiers including steps, 
slippery floors, and muscle weakness. Of all participants, 
eight teams’ top performing reinforcement learning models 
traveled at least 15 meters within 10 seconds (19).

Artificial neural networks (ANNs) and deep learning

ANNs are a subset of ML that has seen recent success in 
computer vision, a type of AI application that translates 
fittingly to medical image interpretation. They are 
computational platforms inspired by, although not 
technically analogous to, the brain’s neuronal functions. 
They process information through stacks of highly 
interconnected processing elements referred to as artificial 
neurons, perceptrons, or simply as nodes (20). A modern 
ANN is structured as one input layer, one or more “hidden 

Figure 1 Overview of the relationship between artificial intelligence (AI), types of machine learning (ML) tasks, and ML subcategories.
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layers,” and one output layer. Each connection strength 
is weighted, and weights are determined by an iterative 
training process using a large amount of input data with 
known outputs (14,21,22). The term deep learning refers to 
a subset of ANN algorithms which typically contain many 
more “hidden” layers, and are thus regarded as “deep”. 
Convolutional neural networks (CNNs) represent a type of 
deep learning ANN algorithm (Figure 2), and have garnered 
significant interest for medical image analysis (14,22). A 
convolutional layer performs a transformation at each pixel, 
determining its value by those of the neighboring pixels. 
Additional layer types known as pooling layers can be used 
to combine pixel values depending on the maximum or the 
average of its neighbors (Figure 3) (23).

Opportunities

Although there have been many promises linked to AI in 
medicine, we will focus on the major promises associated 
with value creation for interpretative uses of MSK imaging 
AI in radiology: increased diagnostic accuracy with 
decreased turnaround times, enhanced image processing 
and quantitative analysis, and the potential for improved 
patient outcomes (5,24).

Increased diagnostic accuracy with decreased turnaround 
time

Bone age assessment was one of the first radiologic 
procedures to be considered for automation when ML 
models became of use. To date, several studies have 
successfully used deep learning CNNs to estimate skeletal 
maturity with accuracy similar to that of expert radiologists, 

and some much more efficiently (25,26). Similarly, deep 
learning algorithms have been effectively used to classify 
acute and non-acute pediatric elbow fractures in the setting 
of trauma, successfully distinguishing true fractures from 
open growth plates with an AUC of 0.95 and accuracy of 
88% (27). These deep learning models have the potential to 
improve accuracy of fracture diagnosis, and also to decrease 
overall turnaround times in high-volume emergency 
departments and urgent care centers. They also stand to 
facilitate patient care and treatment at facilities without 
access to on-site trained radiologists, and where there is a 
substantial need for the accurate disposition of patients at 
the point-of-care.

More recently, Roblot et al., built and evaluated a deep 
learning algorithm using a CNN which could in concert 
detect the position of the meniscal horns, the presence of 
a tear, and determine the orientation of the tear. Their 
algorithm yielded AUC values of 0.92, 0.94, and 0.83, 
respectively, and a final weighted AUC of 0.90 for the 
combined tasks. The group’s work highlights the emergence 
of more end-to-end AI powered diagnostic tools (28).

Enhanced image processing and quantitative analysis

Broadly, enhancements in image processing and quantitative 
analysis techniques are those that improve image quality 
and can facilitate interpretation. ML applications have been 
successfully applied to reconstruct MR images from accelerated 
image acquisitions which subsample k-space (29). ML models 
have also been successfully applied to image segmentation. 
Clinically, segmentation is key to chemoradiation 
treatment planning and response, it can provide prognostic 
information, and also assess therapeutic response. For 

Figure 2 Illustration of a convolutional neural network (CNN) for prediction (classification or regression) at the image level.
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example, studies have successfully employed automated 
and semi-automated algorithms to assess osteosarcoma and 
soft tissue sarcoma response to treatment by comparing the 
extent of tumor necrosis as determined by the algorithm 

with histopathologist assessment at the time of tumor 
resection (30,31).

Image segmentation is also a crucial and initial step in 
quantitative analysis and image post-processing used for 

Figure 3 Illustration of a neural network for pixel/voxel-wise prediction (i.e. segmentation) in a patient with high-grade myxofibrosarcoma 
of the thigh.

Figure 4 Pipeline of radiomic analysis, including segmentation, feature extraction, and predictive modeling in a patient with high-grade 
myxofibrosarcoma of the thigh.
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extracting clinically relevant data for use in other parts of the 
ML pipeline. Studies have demonstrated good performance 
of CNNs in segmenting knee joint anatomy (32).  
A recent study by Liu et  a l . ,  went a  step beyond 
segmentation and combined segmentation and classification 
CNNs to detect cartilage lesions within the knee joint 
on MR images. The researchers retrospectively analyzed 
fat-suppressed T2-weighted fast spin-echo MRI datasets 
of the knee from 175 patients with knee pain utilizing a 
CNN for segmenting cartilage and bone, followed by a 
second CNN classification network to detect structural 
abnormalities within the segmented cartilage tissue. The 
reference standard used for the CNN classification was 
the interpretation provided by a fellowship-trained MSK 
radiologist of the presence or absence of a cartilage lesion 
within 17,395 small image patches placed on the articular 
surfaces of the femur and tibia. The study’s deep learning 
approached achieved high diagnostic performance with 
AUCs above 0.91 for detecting cartilage lesions, and good 
intraobserver agreement with κ of 0.76 (33).

Potential for improved patient outcomes

Compell ing results  have also been obtained with 
interpretative analysis of cross-sectional examinations. A 
recent study used a classification supervised deep learning 
model to evaluate knee MRI pathology. Using a CNN, this 
model showed a mean increase in ACL detection specificity 
of 4.8%. In the study, this finding would clinically translate 
to potentially three fewer patients who unnecessarily 
underwent surgery for suspected ACL tears, a finding which 
can obviate unwarranted operative morbidity for patients. 
The trained algorithm also provided the results for 120 
knee MRI exams in under 2 minutes, whereas the human 
experts required more than 3 hours to perform the same 
task (34).

The distribution of fat and muscle in the body has been 
linked to patient outcomes in several conditions (35). 
Sarcopenia has also been associated with poor patient 
outcomes after major surgery (36). To this end, a recent 
study employed a CNN to segment and quantify body 
composition. Their model showed that the performance of 
a fully automated algorithm for this task met or exceeded 
expert manual segmentation (35). These fully automated 
models can catapult additional applications and research 
of these biomarkers in large populations, and may serve 
to improve patient outcomes. For example, such a model 

could allow for improved detection of sarcopenic patients 
at greatest risk for perioperative morbidity who may benefit 
from preoperative rehabilitation.

Future directions and challenges

Creating better datasets

While both hardware and ML algorithm improvements 
have broadly benefited AI advancements in radiology, and 
while these improvements have led to an increase in open-
sourcing of datasets, database requirements and access 
are generally subspecialty-specific. These databases also 
vary widely in scope and content. Publicly available MSK 
imaging data sets include the MRNet labeled dataset 
consisting of 1,370 knee MRI exams with cases including 
ACL and meniscal tears (34), the Osteoarthritis Initiative 
multi-center dataset consisting of more than 26 million 
radiographs and MRI images with patient reported 
outcomes and biospecimen analyses (37), and the fast MRI 
dataset with images drawn from 10,000 scans, and which 
also includes evaluation metrics and baseline algorithms 
for use (38). However, datasets of similar scale do not 
currently exist for rarer diseases such as bone tumors and 
rheumatologic diseases. Efforts are underway which stand 
to benefit the aggregation and accessibility of rare disease 
datasets. For example, the Cancer Imaging Archive (TCIA) 
offers a platform to openly publish data. A search for 
sarcoma on TCIA at the time of this writing returns 150 
cases of bone and soft tissue sarcomas, with more than half 
of the cases published in 2019 alone (39).

Radiomics and precision medicine

With better datasets, AI and ML models hold promise 
in answering numerous oncologic questions that will 
influence clinical decision making, particularly as it relates 
to treatment response and prognostic determinations. The 
field of radiomics extracts information from clinical images 
for use as measurable imaging biomarkers (40). Radiomics 
studies consist of three main parts; tumor segmentation 
(discussed previously), extracting image features, and 
statistical analysis/modeling of these findings (41).

Through the extraction of basic quantitative features 
(i.e., size, shape, intensity), as well as more complex features 
derived from an assortment of statistical approaches, 
determinations about tumor classification, treatment 
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response and prognosis can be made (Figure 4).
In MSK imaging, radiomics has shown success in soft 

tissue sarcomas for use cases such as analysis of pulmonary 
metastases, differentiating benign from malignant 
myxomatous tumors, and histologic grade prediction using 
imaging features on MRI and FDG-PET (42-44). While 
radiomics does not require the use of AI techniques, several 
studies have shown success in combining these techniques. 
For example, a recent study by Yin et al., assessed the 
optimal ML methods for the preoperative evaluation 
of sacral chordoma and sacral giant cell tumor based on 
enhanced and unenhanced CT features (45). Additional 
studies have also successfully combined radiomics and ML 
classifiers for differentiating metastatic and completely 
responded sclerotic lesions in prostate cancer, and 
discerning benign from malignant vertebral compressions 
fractures (46,47).

Reinventing imaging paradigms

A type of neural network generating more recent 
enthusiasm is the generative adversarial network (GAN). 
These algorithms represent a type of deep learning model 
which trains two competing networks concurrently: a 
generator network to synthesize data, and a discriminator 
network to differentiate between the synthesized data and 
the real data (48).

Applications of GANs to medical imaging are currently 
limited. However, a study by Nie et al. successfully 
employed a supervised GAN model to estimate brain, 
and more relevant to MSK, pelvis CT images from 
their corresponding MR images. Their method also 
outperformed three other methods by comparison (49).

These technologies have not yet been validated in a 
head-to-head comparison against conventionally acquired 
CT concerning the diagnostic accuracy of underlying 
disease. However, potential advantages of using GANs for 
synthetic CT generation from MR images include MR-
only workflows, reduced costs to the patient and healthcare 
systems from performing multiple imaging exams, and 
reduced radiation dose to the patient. These applications 
can be useful in the adult and pediatric populations, but 
particularly beneficial to the pediatric population, as 
children are more susceptible to radiation effects than adults 
(50). For instance, a child undergoing an MR for clinical 
concern of osteomyelitis can be spared from a radiograph or 
CT if an osseous lesion requires further characterization, as 

the images can be generated directly from the MR data.

Conclusions

AI and ML models are on course to revolutionize the 
medical imaging industry. Improvements in computing 
power, increased access to large datasets, and algorithm 
democratization have revolutionized AI and ML. As 
such, research applications leveraging these technological 
advancements is predictably expanding, and their use is 
expected to continue to increase rapidly. However, many 
of the current applications remain in their early stages, and 
there exist more questions and uncertainty than answers. 
Today’s algorithms largely represent “narrow AI”, meaning 
that they only focus on narrow and explicit tasks. It will 
require many more years before these algorithms can attain 
a more generalized capacity to undertake a wide range of 
clinical questions, similar to medical subspecialists (51). 
As a result, for the foreseeable future, modern AI will not 
be capable of replacing all of a MSK radiologist’s work. In 
particular, the anatomic complexity, the multi-modality 
of MSK disease imaging, and the low incidence of many 
bone and soft tissue diseases all present unique challenges 
for ML. In the short-term, however, AI and ML advances 
for image interpretation are likely to continue to increase 
diagnostic accuracy with decreased turnaround times, 
enhance image processing and quantitative analysis, and 
potentially improve patient outcomes. We anticipate a 
synergistic future in which the interplay of radiologists and 
machines leads to better care and patient outcomes than 
can be achieved by either one independently. Radiology 
practices and practitioners that embrace and implement 
these technologies now will be poised to lead this 
transformative change in the coming years.
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