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Introduction

Lung nodules are radiographic opacities that are <30 mm in 
diameter, well-circumscribed, and surrounded completely 
by normal lung parenchyma. An opacity >30 mm is 
considered a lung mass (1). Lung nodules are typically 
detected on computed tomography (CT) scans of the chest 
performed for symptom evaluation (incidentally) or for lung 
cancer screening. Their clinical evaluation begins with an 
assessment of the probability that they are malignant (1). 
The earlier a lung cancer is detected, the higher the survival 
rates, however most nodules are not malignant. Thus, the 
goal of nodule management is to expedite the treatment 
of malignant nodules while minimizing testing for benign 
nodules (1,2).

The probability of malignancy can be estimated using 

clinical experience and intuition. It can also be assessed 
by using validated prediction models that incorporate 
known clinical and radiographic features associated 
with lung cancer (2). The accuracy of these methods 
is limited, resulting in difficult clinical decisions about 
how aggressively a lung nodule should be evaluated (2). 
Diagnostic molecular biomarkers are being studied as 
adjuncts to prediction methods, to assist with decision 
making (3). More recently there has been a growing interest 
in the use of artificial intelligence (AI) to aid clinicians in 
detecting and classifying lung nodules.

In this article we will review how lung nodules are 
currently evaluated, how AI has been studied in lung nodule 
detection and diagnosis, discuss its limitations, future 
directions and the necessary steps for its application in 
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clinical practice.

Lung nodule evaluation

It is a challenge for a clinician to accurately diagnose a 
lung nodule. The first step is to assess the probability of 
malignancy (1). The clinical context within which the 
nodule is found is relevant. For example, a nodule found 
during the evaluation of a patient with a known cancer 
raises the suspicion for metastasis, and a nodule found 
incidentally in a young patient who never smoked cigarettes 
is likely benign. Clinicians estimate the probability that a 
nodule is malignant by taking into consideration clinical 
variables and imaging features that have been shown to 
be associated with lung cancer (1). The radiographic 
characteristics that have been independently associated 
with the likelihood of malignancy include nodule size, 
density, margin, evidence of growth, the presence of 
calcification, the presence of fat tissue, and cavitation (1). 
A clinician will incorporate these imaging features with 
clinical factors (age, smoking history, history of prior 
malignancies), and/or use validated clinical prediction 
models that include these features, to estimate the 

probability that the nodule is malignant (2,4). Table 1 
summarizes the clinical and radiographic features included 
in validated prediction models. 

The estimated probability that a nodule is malignant 
is used to guide management decisions. A probability 
of malignancy of 5% or less is considered very low risk, 
between 5% and 65% low to moderate risk and 65% 
or higher high risk (1). These risk groups are tied to 
management recommendations (1). Nodules that are 
classified at very low-risk for malignancy may require no 
further evaluation or just be followed with serial imaging 
to assess for growth. Nodules considered to have a high 
probability of malignancy should be considered for surgical 
resection, or for diagnostic testing to obtain a pathologic 
diagnosis. Nodules of low to moderate probability of 
malignancy are evaluated with additional testing, such as 
imaging with a fluoro-2-deoxy-D-glucose positron emission 
tomography (FDG-PET) scan, or by performing a non-
surgical biopsy. 

There are several limitations to the use of nodule risk 
prediction models in practice. First, it can be difficult to 
choose which model to apply as the populations from which 
the models were derived may not be representative of the 

Table 1 Clinical and radiographic features included in validated prediction models

Model Predictors of malignancy AUC

Mayo Clinic (5) Age, smoking history, history of extrathoracic cancer ≥5 years, nodule diameter, nodule 
spiculation, upper lobe location

0.80

Veteran’s Affair (4) Age, smoking history, time since quitting smoking, nodule diameter 0.79

Herder (6) Mayo Clinic model and FDG-PET avidity intensity (none/faint/moderate/intense) 0.92

McWilliams/Tammemagi (Brock) (7) Age, sex, family history of lung cancer, emphysema, nodule size, nodule type, nodule 
location, nodule count

0.94

Gurney et al. (8,9) Nodule spiculation, diameter and cavity wall thickness. Predictors of a benign etiology 
were volume doubling time >465 days and calcification.

0.87

Bayesian Inference Malignancy  
Calculator (BIMC) (10)

Age, smoking, history of previous malignancy, nodule diameter, edges, nodule location, 
volume doubling time, minimum focal density, enhancement at contrast enhanced CT, 
FDG-PET avidity

0.89

Thoracic Research Evaluation And 
Treatment (TREAT) (11)

Age, sex, BMI, FEV1, smoking history, hemoptysis, nodule size, nodule growth,  
spiculation, nodule location, FDG-PET avidity

0.87

Peking University People’s Hospital 
(PKUPH) (12)

Age, nodule diameter, nodule border, nodule calcification, spiculation, family history of 
cancer

0.87

Cleveland Clinic Model (13) Age, smoking history, upper lobe location, solid and irregular/speculated edges,  
emphysema, FDG-PET avidity, history of cancer other than lung

c-index 0.81

AUC, area under the curve; BMI, body mass index; CT, computed tomography; CXR, chest radiograph; FDG-PET,  
fluorodeoxyglucose-positron emission tomography; FEV1, forced expiratory volume in the first second; LDCT, low-dose CT; NR, not  
reported; PN, pulmonary nodule.
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individual to whom they are applied. The accuracy of a 
prediction model is higher when it is applied in a population 
that is similar to that used to derive the model. It is not clear 
how these models perform in demographic minority groups 
as they are not well represented in the derivation studies. 
More important than the accuracy of the model outputs is 
the impact the estimate has on clinical decisions. Expert 
physician assessment of the probability of malignancy 
has variably been shown to be more accurate than nodule 
prediction models. However, physician management 
decisions may differ from guideline recommendations for 
the risk group that their patient falls in. One study showed 
the rate of lung resection in those with low risk nodules was 
the same as in those with high risk nodules (14).

Artificial intelligence in lung nodule evaluation

In health care, the largest impact of machine learning on 
big data has been in the field of diagnostic decision support. 
AI has been studied and implemented for many years in 
tasks such as computerized electrocardiogram analysis (15). 
Technological advances have led to growth in research on 
the use of AI-based systems in medical imaging. AI systems 
evolved to assist with workflow management, decision 
support, reader accuracy, or to supplement expertise in 
underserviced areas. Many imaging decision support tasks 
related to the management of lung nodules could be helped 
by AI systems.

Radiologists have found AI tools can help improve the 
efficiency of reading scans. Several studies have shown 
that nodule detection systems effectively help radiologists 
identify more nodules (16-18). Brown et al. studied the 
impact of implementing a commercial CT chest based 
computer-aided detection (CAD) system into the radiology 
workflow (18). The system provided automated detection 
and measurement of lung nodules, and it was integrated 
with a report dictation application. The authors reported 
reduced reading times by 7–44% compared to conventional 
manual methods (18).

The sophisticated and rapid analysis of large amounts 
of data has enabled greater knowledge of populations. The 
ultimate goal is to reduce cost and improve efficiency and 
quality of care by customizing population management 
interventions (19). Lung cancer screening is an area where 
AI can aid in population management due to challenges 
such as variability of lung cancer probability estimation 
between clinicians or radiologists, and high false-positive 
results (20-22). 

Deep learning techniques applied in nodule evaluation

Deep learning techniques have already reached the field of 
lung nodule evaluation. The typical deep learning network 
involves feature extraction from the raw images and an 
objective function that learns the correlation between the 
features and the diagnosis. Instead of choosing features a 
priori, a set of training images and their target labels are 
provided to a deep learning network. The feature extraction 
portion usually consists of several layers of nonlinear 
processing units and transformation functions in addition 
to using conventional image processing operators such as 
filters. Convolutional Neural Network (CNN) techniques 
have become the most common pattern detection, 
segmentation and classification applications in the medical 
field. Unlike traditional clinical probability models, deep 
learning techniques build features from scratch rather 
than from a pre-selected set of features that rely on the 
contextual knowledge of the algorithm developer. 

Fully automated systems using CNN have shown 
promising results in lung nodule detection. Huang et 
al demonstrated a fast and fully automated end-to-end 
system that can efficiently segment precise lung nodule 
contours from raw thoracic CT scans (23). The system had 
four components, including candidate nodule detection 
with “Faster regional”-CNN, candidate merging, false 
positive reduction, and nodule segmentation with CNN. 
The entire system had no human interaction or database 
specific design, and the average runtime was approximately 
16 seconds per scan. The nodule detection accuracy was 
91.4% with an average of 1 false positive per scan and 
94.6% with an average of 4 false positives per scan. Pehrson 
et al. reviewed machine learning algorithms applied to 
the Lung Image Database Consortium Image Collection 
(LIDC-IDRI) database as a tool for the optimization of 
detecting lung nodules in thoracic CT scans. Their review 
showed that featured-based machine learning and deep 
learning algorithms can detect lung nodules with a high 
level of accuracy. Most feature-based algorithms achieved 
an accuracy >90%. The deep learning algorithms achieved 
an AUC in the range of 0.82–0.99 (24). 

Recently, a deep learning algorithm with an end-to-
end approach with both detection and lung cancer risk 
categorization tasks was used on cases from the National 
Lung Cancer Screening Trial (25). The proposed algorithm 
achieved an overall area under the curve of 94.4%, reduced 
false-positives by 11% and false-negatives by 5% compared 
to six radiologists.
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Detection systems

Detection systems concentrate on the identification of 
suspicious lesions in chest images and alert radiologists to 
them. These systems are designed to improve sensitivity 
and accuracy in detection, while improving the efficiency 
of the radiologist by reducing the exam evaluation time. A 
good example of the potential application of a lung nodule 
detection system is in the setting of lung cancer screening, 
which can be a repetitive and difficult task for radiologists 
as they are often trying to detect small nodules.

Although they may have different structures, detections 
systems in general consist of 5 steps: image acquisition, 
preprocessing, lung segmentation, nodule detection and 
false positive reduction. Image acquisition is a process of 
acquiring medical images from imaging modalities. CT 
scans have been the most studied imaging modality. From 
a technical point of view, thin-section CT scans should 
be used when applying nodule detection systems. Lung 
segmentation improves the efficiency of nodule detection 
by extracting the lung volume from input CT images and 
removing the background and other irrelevant components. 
Many different methods have been used including 
optimal thresholding, rule-based region growing, global 

thresholding, 3-D-adaptive fuzzy thresholding, hybrid 
segmentation, and connected component labeling. After 
segmentation, the detection of areas suspicious of being a 
nodule can be done by multiple gray-level thresholding; 
shape- or template-matching-based morphological 
techniques or filtering-based methods. Detection of 
abnormalities that are not true nodules is common enough 
that a false-positive reduction step is necessary. This step 
involves feature extraction and nodule classification of “true 
nodules” and “non-nodules”.

Table 2 summarizes selected studies of lung nodule 
detection systems that reported sensitivity, specificity and 
false-positive rates. The overall sensitivity and specificity 
are high. They ranged from 85.9–100%, and 84–98.7%, 
respectively. The many different morphologies of nodules 
impact the false-positive rates. The detection systems need 
to identify nodules of different sizes and textures (solid, 
part solid, ground glass) in different locations (isolated, 
juxtapleural, perifissural or juxtavascular). 

Nodule classification and cancer 
characterization

There are many examples of the successful use of machine 

Table 2 Selected studies of lung nodule detection systems 

Authors Technique Database
No of 

nodules
Sensitivity 

(%)
Specificity 

(%)
Average number 

false-positive/scan

Naqi et al. (26) Morphological operations, edge detection,  
bounding box, shape information

LIDC-IDRI 567 98.6 98.2 3.4

Saien et al. (27) Sparse field level sets LIDC-IDRI 198 83.9 90.7 3.9

Shaukat et al. (28) Noise removal, segmentation by optimal  
thresholding, multiscale dot enhancement  
filtering, support vector machine

LIDC-IDRI 2,242 98.1 96 2.1

Liu et al. (29) Fast segmentation method, random forest LIDC 978 92.4 94.8 4.5

Javaid et al. (30) K-means clustering, morphological filter LIDC 133 91.6 96.7 3.1

Manikandan et al. (31) Fuzzy auto-seed cluster means morphological 
algorithm

Private 801 100 93 0.38

Krishnamurthy et al. (32)Morphological region-grow segmentation, edge 
bridge and fill technique

SPIE, 
AAPM, IDC

257 88 84 2

de Carvalho Filho et al. 
(33)

 Extraction and reconstruction of the pulmonary 
parenchyma, nodule segmentation, support  
vector machine

LIDC-IDRI 182 85.9 97.7 1.8

Magalhaes et al. (34) Growing neutral gas, 3D distance transform LIDC 48 85.9 90.7 0.1

AAPM, American Association of Physicists in Medicine; LIDC-IDRI, Lung Image Database Consortium; NR, not reported; SPIE,  
International Society for Optics and Photonics. 
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learning techniques to classify and characterize lung 
nodules. Table 3 summarizes a selection of studies that used 
machine learning techniques for lung nodule classification. 
These studies applied defined feature-based algorithms 
as well as deep learning techniques; and different types of 
classifiers including CNN, fuzzy system, and support vector 
machine learning. They all show high accuracy with AUCs 
ranging from 87–99%. There is currently no agreement 
about the most efficient and effective methods (Table 1). 
Recent studies have compared AI systems with existing 
clinical prediction models and demonstrated that 2 different 
CNN models were able to classify lung nodule more 
accurately (41,42). Massion et al. trained a CNN model 
using scans from the National Lung Screening Trial, and its 
accuracy was compared with the Mayo and Brock clinical 
prediction models (5,7). The study showed that the deep 
learning system was more accurate in classifying low and 
high risk categories compared to the clinical models (41).

Hawkins et al. evaluated a cohort of patients with screen-
detected lung cancer matched with a cohort of screening 
subjects with benign nodules. The authors identified 23 
stable radiomic features that could predict nodules that 
would be found to be malignant 1 and 2 years later with 
accuracies of 80% and 79%, respectively (43). A few studies 
have demonstrated an association between radiomic features 
and the invasiveness of adenocarcinomas. Chae et al. 
differentiated part-solid nodules in pre-invasive and invasive 
adenocarcinoma using texture analysis with high accuracy (44).  
Maldonado et al. developed a computer-aided nodule 
assessment and risk yield (CANARY) system that builds 
a unique nodule radiomic signature that correlated well 
with the degree of tissue invasion and postsurgical patient 
outcomes (45). There is also evidence that radiomic features 

can be helpful in predicting gene expression profiling of 
non-small cell lung cancer (NSCLC). Liu et al. identified 
11 radiomic features in peripheral lung adenocarcinomas 
that distinguished epidermal growth factor receptor (EGFR) 
mutant from wild types groups (46).

Advances in targeted therapies and immunotherapies have 
changed the paradigm for the diagnosis of lung cancer (47).  
The histologic confirmation of malignancy, or the simple 
differentiation of non-small cell carcinomas and small cell 
carcinomas, is no longer sufficient. Histologic subtyping, 
and molecular and genetic characterization are now 
standard of care as they help determine the most effective 
treatment (48). The identification of molecular and 
genetic markers requires invasive procedures to obtain an 
appropriate amount of tissue for testing. This process can 
be challenging, influenced by the general health of a patient 
and tumor location (48). It may prolong the time from 
diagnosis to treatment. Non-invasive methods to predict 
the presence of specific molecular and genetic markers 
may impact patient care. Since CT is routinely performed 
during lung cancer evaluation, there is an opportunity to 
assess imaging derived deep learning models as a non-
invasive method for molecular characterization of a tumor. 
Wang et al. proposed a deep learning model to predict 
EGFR mutation status in lung adenocarcinoma using CT 
scans (49). An end-to-end deep learning model was used 
to predict the EGFR mutation status by CT scanning 
in 844 patients with lung adenocarcinoma. This model 
demonstrated an ability to differentiate EGFR-mutant and 
EGFR-wild type tumors (AUC 0.85 in the training cohort). 
Furthermore, this deep learning model showed higher 
accuracy than machine learning models based on hand-
crafted CT features or clinical characteristics. 

Table 3 Selection of studies that used machine learning techniques for lung nodule classification

Authors Database Features Classifier AUC

Xie et al. (35) LIDC-IDRI Pre-selected, deep features ANN 0.96

Xie et al. (36) LIDC-IDRI Pre-selected, deep features, 3D CNN 0.95

Zhao et al. (37) LIDC-IDRI Deep features CNN 0.87

Causey et al. (38) LIDC-IDRI Pre-selected, deep features, 3D RF 0.99

Tajbakhsh et al. (39) Private Deep features MTANN, CNN 0.88

Shen et al. (40) LIDC-IDRI Deep features, 3D CNN 0.93

ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network; LIDC-IDRI, Lung Image Database  
Consortium and Image Database Resource Initiative; MTANN, massive-training artificial neural networks; RF, random forest; SVM, support 
vector machines.
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Challenges with the use of AI

Although AI has shown potential in lung nodule detection 
and classification, there are challenges that are worth 
discussing: 
 False-positives in nodule detection: a major concern 

with the use of AI in lung nodule detection is the 
high prevalence of false-positive nodules due to 
their large variations in size, shape and location on 
CT scans. False-positive reduction techniques are 
critical to distinguish true lung nodules from other 
structures that may look like nodules such as blood 
vessels, pleura and atelectasis. False-positives may 
be a burden to the radiologist, lead to inaccurate 
judgments, and be a barrier to widespread use of 
detection systems. They may also cause emotional 
stress to patients, lead to unnecessary tests or 
procedures that carry their own risks, and increase 
the cost of care. Improvements in false-positive 
reduction techniques and the use of large public 
databases have helped mitigate this limitation (50).

 Lack of reasoning: the loss of “explainability” is 
one of the possible consequences of the use of AI 
for lung nodule classification. The malignancy 
prediction models that are currently used are 
mostly based on risk factors that are known to be 
associated with lung cancer and are connected to a 
biologic process so the reasoning is understandable. 
When AI is used, the patterns recognized are not 
necessarily associated with a biological process 
and no reasoning is provided for the output. It 
can also be challenging to change or remove an 
association that has already been made. This 
has several implications. For example, it may be 
difficult to explain to a patient who inquires why a 
nodule was classified as high risk by AI if a clinical 
prediction model calculator would classify it as low 
risk. A challenging question is whether clinicians 
and patients would follow the recommendation of a 
computer system when they cannot understand its 
reasoning.

 Comprehensive evaluation of scans beyond 
nodules: AI systems are typically focused on 
detecting and classifying nodules in the lung 
parenchyma. They do not include extra-pulmonary 
features that may be present in other locations such 
as the mediastinum and abdominal organs. For 
example, a lung nodule can be correctly classified 

as high probability for malignancy and the 
output recommendation could be a transthoracic 
needle biopsy or lung resection. However the 
presence of mediastinal adenopathy would 
indicate consideration for a bronchoscopy with 
endobronchial ultrasound, or a concomitant liver 
lesion would indicate liver biopsy as the next step 
instead of a lung nodule biopsy.

 Liability issues: there are legal and ethical questions 
surrounding AI. Some of the questions related to 
the use of AI for lung nodule evaluation include 
who is ultimately responsible for its results and 
potential clinical recommendations, and whether 
the use of AI would require informed consent. AI in 
health care has not faced any major legal challenge 
but further research and understanding of the legal 
and ethical implications certainly need to be part of 
the process of bringing this technology to clinical 
practice.

 The scarcity of labelled data: deep neural network 
architectures need to be trained on the entire image 
or larger sections of images. Creating ground truth 
for medical images consumes time and requires 
training. One large publicly accessible database of 
lung nodules was completed is the LIDC-IDRI 
which was a collaboration of seven academic centers 
and eight medical imaging companies (51). Each 
case required two-phase image annotation from 
four experienced thoracic radiologists. Even when 
the imaging data is adequate, finding an early stage 
malignant nodule in the CT scan is like finding a 
needle in the haystack. To develop a deep neural 
network that can find the needle requires many 
good signals in the training data set. This requires 
very large data sets, of which few are available.

 Confidentiality of data: an ideal deep learning 
model for lung nodule characterization would 
incorporate patient demographic,  cl inical , 
biomarker and radiographic features, as well as 
learn when it receives new data. To reach this point 
a large amount of patient data will be needed, 
bringing with it data storage security and patient 
privacy concerns. 

Steps to implementation of AI systems in clinical 
practice

In April 2019, the Food and Drug Administration (FDA) 
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released a proposed regulatory framework for medical 
devices that use AI algorithms (52). The framework was 
issued for discussion purposes and it was not intended to 
be a guideline. The FDA is seeking industry feedback on 
the proposal with the goal of issuing a draft guideline in 
the future. The approach would allow the FDA’s regulatory 
oversight to take into consideration the nature of AI 
products while ensuring that its standards for safety and 
effectiveness are maintained. Last year, the FDA approved 
the first AI-based medical devices. One device is used for 
detecting retinopathy and the other for alerting providers 
of a potential stroke. However, the AI based products 
that the FDA cleared use “locked” algorithms that do not 
“learn” in real-time. The locked algorithms are modified by 
manufacturers on a periodic basis, which involves training 
the algorithm using new data and manual verification and 
validation of the updated algorithm. In contrast, “adaptive” 
algorithms do not need manual modification to learn and 
adapt. These algorithms learn from new user data through 
continuous use.

As any software is a medical device, products that 
use AI-based algorithms are expected to be assessed for 
their analytical and clinical validity. Analytical validation 
demonstrates that a specific device is suitable for its 
intended use by showing similar output when provided 
with similar input at separate times. Clinical validation 
demonstrates diagnostic accuracy, a measure of how well 
a test detects or predicts a clinical outcome. Despite 
analytical and clinical validation, clinical utility requires that 
clinicians and patients accept the AI-based algorithms for 
diagnosis and decision making, and that decisions based on 
the algorithms lead to more benefit than harm. The FDA 
clearance process is focused on the demonstration of safety 
and effectiveness. Although demonstration of clinical utility 
is not required in the proposed regulatory framework, 
it will be necessary for this technology to achieve wide 
acceptance in clinical practice. Successful demonstration 
of clinical utility involves developing sufficient evidence 
to demonstrate that a diagnostic test results in an 
improvement in patient outcomes. For example, a clinically 
useful AI system for lung nodule evaluation should help 
improve the balance of benefit to harm of diagnostic tests 
by leading to fewer lung cancer deaths, help expedite the 
treatment for early lung cancer, and help avoid unnecessary 
invasive procedures for benign nodules without delaying 
the diagnosis of malignant nodules. Other potential 
outcomes that would be considered clinically useful include 
improvement in the efficiency of care, compliance with care 

recommendations and cost-effectiveness. 

Conclusions

AI systems may complement or augment traditional lung 
nodule evaluation. Deep learning algorithms are promising 
and expected to impact how lung nodules will be managed 
in the future. The application of these algorithms may 
assist with population management of nodules detected 
incidentally or by screening. Improvements in nodule 
characterization will aid in decision making about the need 
for additional diagnostic testing. Clinical utility remains 
to be proven—will patients and clinicians accept the AI 
conclusions without understanding how the conclusions 
were achieved, and will decisions be changed to the 
benefit of patients. Future advances need to be focused on 
perfecting the techniques, mitigating false-positive results, 
assessment of clinical utility, and how to best translate the 
results to patients. 
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