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Background: Machine learning models have potential to identify non-intuitive and previously 
unrecognized relationships between standardized clinical variables and the clinical manifestation of 
pathophysiological conditions. We used machine learning to examine the association of Society of Thoracic 
Surgeons (STS) Database variables with the presence of clinically significant ischemic mitral regurgitation 
(IMR) in patients undergoing coronary artery bypass grafting (CABG).
Methods: STS Database variables (n=53) served as predictors of clinically significant IMR in machine 
learning modeling of 7,005 patients extracted from our institutional STS Database [1996–2018] who 
underwent CABG only (negative class, n=6,642) or CABG plus mitral valve intervention (positive class, 
n=363). Data were randomly partitioned into training (5,604 total patients, 281 positive, 5,323 negative) and 
test sets (1,401 total patients, 82 positive, 1,319 negative). The Synthetic Minority Oversampling Technique 
(SMOTE) was employed to produce a balanced training set.
Results: Machine learning models, including random forests (RF), support vector machines (SVM), logistic 
regression (LR), and deep neural networks (DNN), were tested. Following training, final models predicted 
class labels for the patients in the test set. The models predicted class labels with promising accuracy (area 
under the receiver operating characteristic curve (AUC) values: RF, 0.70; SVM, 0.80; LR, 0.79; DNN, 0.80).
Conclusions: STS Database variables have a predictive association with the presence of clinically 
significant IMR in patients undergoing surgical revascularization. These readily available variables may 
have potential as predictive variables in future translational machine learning modeling to assist in directing 
surgical care.
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Introduction

The surgical management of ischemic mitral regurgitation 
(IMR) continues to be a challenging clinical problem with 
several unresolved clinical controversies. Nonetheless, few 
would argue that the well-demonstrated adverse impact of 
persistent IMR on long-term survival supports the addition 
of concomitant mitral intervention in patients undergoing 
coronary revascularization who also have moderately 
severe or severe IMR (1-8). That being said, debate 
continues regarding both the degree of IMR that warrants 
concomitant mitral intervention and the choice of mitral 
repair or replacement as durable therapy (9-15). Further 
examination and resolution of these important controversial 
issues using rigorous and innovative investigative 
methodologies is critical to the evidence-based surgical 
management of these patients.

In this regard, machine learning offers considerable 
potential to enhance the current diagnostic and therapeutic 
clinical algorithms involved in the investigation and surgical 
care of IMR patients. The unique ability of machine 
learning algorithms to detect previously unrecognized 
and counter-intuitive associations between patient-
specific clinical variables and the presence of clinically 
significant disease process, such as IMR, makes their use a 
promising avenue of clinical investigation (16-18). Further, 
the ability of these algorithms to identify predictive data 
patterns in variables drawn from widely disparate sources 
further enhances their applicability to the modeling of 
the complex systems active in IMR, since the complexity 
of the pathophysiology associated with IMR suggests that 
an equally complex array of multi-source variables may 
be associated with its occurrence (19,20). The robust, all-
inclusive capabilities of current machine learning models 
allow the combination of variables from multiple clinical 
sources, thereby maximizing the strength of the models by 
including a diversity of variable content and source.

The foundation of this complex array of multi-source 
machine learning variables will likely be comprised of both 
valvular structural morphology and regional contractile 
variables (19-27). Nonetheless, patient demographic and 
other clinical variables (examples might include coronary 
anatomy, presence of diabetes, or a history of smoking) 
will almost certainly be contributory to the development 
of these complex machine learning models. In this regard, 
the Society of Thoracic Surgeons (STS) Database variables 
ideally characterize these latter clinical features. Further, 
their ready availability in almost every cardiac surgical 

program makes the use of these variables particularly 
attractive, optimizing the widespread direct clinical 
applicability of any resulting machine learning predictive 
models. This investigation is aimed at quantifying the 
potential for predictive contribution of foundational STS 
variables by testing the predictive power of their association 
with the presence of clinically significant IMR in machine 
learning modeling. The authors present the following 
article in accordance with the TRIPOD reporting checklist 
(available at http://dx.doi.org/10.21037/jmai-20-50). 

Methods

Source of data

All procedures performed in this study were in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
approved by the Washington University School of Medicine 
Institutional Review Board (IRB Registration # 201905091). 
A waiver of informed consent was granted. The STS Adult 
Cardiac Surgery Database (ACSD) versions 2.30 through 
2.9 were queried from January 1996 to December 2018. 
Baseline demographics, chronic comorbid conditions, 
imaging (coronary angiographic and echocardiographic) 
data, and revascularization targets were included.

Participants

Between 1996 and 2018, a total of 7,079 patients underwent 
surgical myocardial revascularization with or without 
mitral valve intervention at a single institution, Barnes-
Jewish Hospital at Washington University Medical 
Center in Saint Louis, Missouri. Patients undergoing 
other concomitant interventions (such as an aortic valve 
replacement or Cox-Maze procedure) were excluded. Of 
the remaining patients, 416 underwent combined surgical 
myocardial revascularization and mitral valve intervention. 
The operative reports of these 416 patients were reviewed 
and the study cohort was limited to only those patients 
in whom an ischemic etiology to the mitral regurgitation 
was documented. Patients who underwent mitral valve 
intervention due to any etiology other than IMR (such as 
endocarditis, rheumatic valvular disease, or myxomatous 
degeneration) were excluded, as were emergent patients 
with ruptured papillary muscles. The final study group 
included a total of 7,005 patients undergoing surgical 
myocardial revascularization with (n=363) or without 
(n=6,642) mitral valve intervention for IMR.
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Predictors

A total of 53 STS Database variables, all of which could be 
tracked through the many format changes implemented during 
the timeframe of the study, were chosen to serve as predictors 
of need for concomitant mitral valve intervention in patients 
undergoing surgical myocardial revascularization. These 
variables included all preoperative STS variables relating 
to demographics, comorbidities, coronary artery disease 
architecture, and coronary artery bypass targeted vessels.

Since patients with all other associated valvular and aortic 
disease interventions (except IMR) were excluded from the 
study cohort, the STS Database variables related to other 
valvular and aortic disease were also excluded. Similarly, 
all postoperative STS Database variables were excluded 
in this predictive model, as this investigation is targeted at 
defining the association between preoperative variables and 
the presence of clinically significant IMR. Further, the STS 
Database variables specifically involving the presence or 
absence of mitral valvular disease were excluded. The final 
set of STS Database variables included in the development 
of the machine learning models are listed in Table 1.

Outcome

This investigation sought to test the predictive value of 
foundational STS variables in machine learning algorithm 
to predict the presence of clinically significant IMR in 
patients undergoing surgical myocardial revascularization.

Statistical analysis

STS variables were compared between patients who 
underwent coronary artery bypass grafting (CABG) only 
(n=6,642) and those that underwent CABG plus concomitant 
mitral valve intervention (n=363). Continuous variables were 
expressed as mean ± standard deviation, as shown in Table 2.  
Student’s t-test was used to compare means of normally 
distributed continuous variables, while Mann-Whitney U 
test was used for skewed distributions. Categorical variables 
were compared using either χ2 analysis or Fisher’s Exact 
test. A P value <0.05 was considered statistically significant.

Machine learning analysis

Utilizing a standard ML approach that acknowledges the 
unknowable potential advantages of the various available 
ML algorithms in any given unique dataset, we employed 

multiple, widely varying ML and deep learning models. 
These included random forests (RF), support vector 
machines (SVM), logistic regression (LR), and deep neural 
networks (DNN) (28-31). Missing data values were replaced 
by mean (continuous case) or mode (categorical case) values. 
The RF, linear SVM, and LR models were configured by 
the default options in Scikit-learn in Python 3. Specifically, 
the RF model was configured as follows: the number of 
trees in the RF n_estimators = 100; the number of features 
considered when looking for the best split max_features 
= ‘auto’; the minimum number of samples at a leaf node 
min_samples_leaf = 1. The SVM model was configured as 
follows: the regularization parameter C = 1.0; kernel type 
kernel = ‘rbf’; the kernel coefficient gamma = ‘scale’. The 
LR model was configured as follows: the norma used in the 
penalization penalty = ‘l2’; tolerance for stopping criteria tol 
= 1.0*10 − 4; the unverse of regularization strength C = 1.0; 
algorithm used in the optimization problem solver = ‘lbfgs’.

Our DNN model was comprised of an input layer (with 
53 dimensions), 5 hidden layers (with 256, 256, 128, 64 and 
32 dimensions respectively) and a scalar output layer. We 
used the Sigmoid function at the output layer and ReLu 
function at each hidden layer (32,33). Binary cross-entropy 
was used as loss function and the Adam optimizer was 
employed with a mini-batch size of 64 samples (34). This 
final model was obtained by the iterative testing of multiple 
variations using different numbers of nodal dimensions, as 
well as multiple different nodal activation functions, loss 
functions, and optimizers. The final model resulted in the 
best DNN predictive accuracy.

All machine learning analyses were carried out using 
Python 3 (www.python.org) programming language. Data 
was prepared and managed using Scikit-learn (https://scikit-
learn.org), NumPy (https://numpy.org), pandas (https://
pandas.pydata.org), TensorFlow (https://www.tensorflow.
org), and Keras (https://keras.io). All analyses were carried 
out on laptop computers using only standard CPU’s.

The supervised machine learning using binary 
classification that was employed in this investigation was 
based solely upon the presence or absence of clinically 
significant IMR. The sole determinant of the “clinical 
significance” of each patient’s IMR was the operative 
surgeon’s decision regarding the clinical necessity of adding 
a concomitant mitral valve intervention to the coronary 
revascularization. It is recognized that many different 
patient-specific factors may influence this decision and that 
the impact of these influences may vary between surgeons. 
Nonetheless, it is our belief that for each individual patient, 

https://keras.io
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Table 1 Fifty-three STS variables included in machine learning models

Age

Gender

Race

Height

Weight

Family history of coronary artery disease

Diabetes mellitus

Hyperlipidemia

Dialysis

Hypertension

Smoking

Chronic lung disease

Peripheral vascular disease

Cerebrovascular disease

Stroke

Pre-operative creatinine

Prior cardiovascular intervention

Prior coronary artery bypass grafting

Prior valve intervention

Prior percutaneous coronary intervention

New York Heart Association (NYHA) classification

Pre-operative cardiogenic shock

Pre-operative resuscitation

Arrhythmia

Prior myocardial infarction

Timing of prior myocardial infarction

Beta-blocker usage

Elective status

Left ventricular ejection fraction

Number of re-operative procedures

Number of diseased coronaries

Degree of circumflex artery stenosis

Degree of first diagonal artery stenosis

Degree of second diagonal artery stenosis

Degree of ramus artery stenosis

Degree of left anterior descending artery stenosis

Table 1 (continued)

the operative surgeon was the most informed judge of 
the clinical significance of the degree of IMR. They are, 
therefore, the optimal resource—as reflected by their choice 
for or against the addition of mitral intervention—for 
our determination of the presence or absence of clinically 
significant IMR.

The feature importance analysis indicates feature value in 
the construction of Pearson’s correlation coefficients within 
the model. The coefficient value of the feature determines 
its importance in the accurate prediction of the presence or 
absence of clinically significant IMR.

In our final model, the positive class included 363 
patients who underwent CABG and concomitant mitral 
valve intervention. The negative class included 6,642 
patients who underwent isolated coronary revascularization. 
The data were randomly partitioned into training (80%) 
and testing (20%) sets. The training set had 5,604 total 
patients, with 281 from the positive class and 5,323 from 
the negative. The test set had 1,401 total patients with 
82 from the positive class and 1,319 from the negative. 
Due to the imbalance in the classes in the data set, the 
Synthetic Minority Oversampling Technique (SMOTE) 
was employed to produce a balanced training set.

Table 1 (continued)

Degree of left coronary artery stenosis

Degree of posterior left ventricular branch stenosis

Degree of first obtuse marginal artery stenosis

Degree of second obtuse marginal artery stenosis

Degree of third obtuse marginal artery stenosis

Degree of posterior descending artery stenosis

Degree of right coronary artery stenosis

Bypassed first diagonal artery

Bypassed second diagonal artery

Bypassed ramus artery

Bypassed left anterior descending

Bypassed posterior left ventricular branch

Bypassed first obtuse marginal artery

Bypassed second obtuse marginal artery

Bypassed third obtuse marginal artery

Bypassed posterior descending artery

Bypassed right coronary artery
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Table 2 Demographic and patient characteristics

Variable CABG (n=6,642) CABG + mitral valve intervention (n=363) P value Missing variable data

Age (years), mean ± std 64.4±11.0 66.0±10.8 0.006 0

Male gender, n [%] 4,692 [71] 214 [59] <0.001 0

Caucasian, n [%] 5,618 [85] 304 [85] 0.760 56

Height (cm), mean ± std 172.0±10.8 170.1±10.0 0.001 0

Weight (kg), mean ± std 87.5±19.8 81.2±18.6 <0.001 0

Family history of CAD, n [%] 2,479 [38] 97 [27] <0.001 35

Diabetes, n [%] 2,874 [43] 144 [40] 0.210 9

Hyperlipidemia, n [%] 5,449 [82] 281 [77] 0.030 5

Dialysis, n [%] 233 [4] 24 [7] 0.006 0

Hypertension, n [%] 5,357 [81] 293 [81] 1.000 6

Smoking, n [%] 4,262 [64] 247 [68] 0.144 7

Chronic lung disease, n [%] 1,125 [17] 104 [29] <0.001 8

Peripheral vascular disease, n [%] 1,439 [22] 81 [22] 0.744 6

Cerebrovascular disease, n [%] 1,255 [19] 85 [24] 0.034 6

Stroke, n [%] 658 [10] 45 [12] 0.127 6

Pre-operative creatinine, mean ± std 1.40±1.5 1.63±1.7 0.008 1533

History of myocardial infarction, n [%] 3,931 [59] 250 [69] <0.001 7

≤6 hours 11 [0.3] 0 [0] 0.622

>6 and <24 hours 114 [3] 10 [4] 0.144

1 to 7 days 1,264 [32] 64 [26] 0.508

8 to 21 days 657 [17] 55 [22] 0.001

≥21 days 1,732 [44] 118 [47] 0.007

New York Heart Association Classification, n [%] 35

Class I 1,824 [28] 32 [9] <0.001

Class II 1,035 [16] 46 [13] 0.135

Class III 1,351 [20] 115 [32] <0.001

Class IV 2,400 [36] 166 [46] <0.001

History of arrhythmia, n [%] 975 [15] 97 [27] <0.001 2

Beta-blocker usage, n [%] 5,040 [76] 253 [70] 0.008 7

Presentation in cardiogenic shock, n [%] 398 [6] 49 [14] <0.001 0

Pre-operative resuscitation, n [%] 32 [0.5] 4 [1] 0.114 0

Prior cardiovascular intervention, n [%] 2,594 [39] 157 [43] 0.122 0

Prior CABG, n [%] 358 [5] 35 [10] 0.001 0

Prior valve intervention, n [%] 30 [0.5] 0 [0] 0.404 0

Prior PCI, n [%] 1,831 [28] 101 [28] 0.904 0

Re-operative Status, n [%] 6

First cardiovascular surgery 6,250 [94] 328 [90] 0.004

First re-operation 350 [5] 31 [9] 0.007

≥ second re-operation 35 [0.5] 4 [1] 0.152

Elective status, n [%] 0

Elective 4,975 [75] 272 [75] 0.990

Urgent 1,310 [20] 62 [17] 0.217

Emergent 355 [5] 29 [8] 0.031

CABG, coronary artery bypass graft; CAD, coronary artery disease; PCI, percutaneous coronary intervention.
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Results

Baseline characteristics

The patients undergoing myocardial revascularization 
without concomitant mitral valve intervention were 
slightly younger (64.4±11.0 vs. 66.0±10.8 years; P=0.006) 
and more predominantly male (71% vs. 59%; P<0.001; 
Table 2). Although this group had a higher incidence of both 
hyperlipidemia (82% vs. 77%; P=0.030) and a family history 
of coronary artery disease (38% vs. 27%; P<0.001), there 
were no significant differences in incidence of diabetes, 
hypertension, peripheral vascular disease, or stroke.

The patients undergoing revascularization with 
concomitant mitral valve intervention also had a higher 
rate of dialysis dependence (7% vs. 4%; P=0.006), chronic 
lung disease (29% vs. 17%; P<0.001), and prior myocardial 

infarction (69% vs. 59%; P<0.001). Similarly, this group 
had a higher rate of New York Heart Association (NYHA) 
class III (32% vs. 20%; P<0.001) and Class IV heart 
failure symptoms (46% vs. 36%; P<0.001), as well as prior 
arrhythmias (27% vs. 15%; P<0.001). Further, the group 
undergoing revascularization and concomitant mitral valve 
surgery were also significantly more likely to present in 
cardiogenic shock (14% vs. 6%; P<0.001) and require an 
urgent operation (8% vs. 5%; P=0.031).

Patient characteristics according to coronary angiography 
and echocardiography

The patients undergoing myocardial revascularization 
alone were more likely to have three-vessel coronary 
artery disease (69% vs. 61%; P=0.003), while the patients 
who underwent myocardial revascularization with 
concomitant mitral valve intervention had a lower pre-
operative left ventricular ejection fraction (39.6%±14.6% 
vs. 48.7%±14.6%; P<0.001). They also experienced a higher 
rate of complete occlusion of the right coronary artery (39% 
vs. 28%; P<0.001) and circumflex coronary artery (18% vs. 
9%; P<0.001), compared to those undergoing only CABG.

Receiver operating characteristic curve analysis

Following training, final models were used to predict 
class labels for the patients in the test set. The results of 
these analyses were used to produce receiver operating 
characteristic curves (Figure 1) for each of the four 
algorithms under consideration. Three of the models 
predicted class labels with similar accuracy as demonstrated 
by their ROC curves, with area under the curve of 0.80, 
0.79, and 0.80 for SVM, LR, and DNN, respectively. The 
RF model produced the ROC curve with the smallest area 
under the curve of 0.70, and will not be discussed further.

As shown in Table 3, the SVM, LR, and DNN models 
were able to predict class labels with an accuracy of 0.75, 
0.75, and 0.76, respectively. The SVM model had the 
highest sensitivity of 0.71, followed by LR and DNN with 
sensitivities of 0.67. Finally, each model displayed similar 
specificities of 0.75, 0.75, and 0.76 for SVM, LR, and 
DNN, respectively.

Feature importance analysis

The feature importance analysis suggested most of the 
STS variables contributed to the identification of clinically 

Figure 1 Receiver operating characteristic curve. Receiver 
operating characteristic curves showing the performance of 
machine learning models using 53 STS Database variables to 
predict presence of ischemic mitral regurgitation in patients 
requiring myocardial revascularization. RF; random forests; SVM; 
support vector machines; LR; logistic regression; DNN; deep 
neural networks.

Table 3 Machine learning model class label prediction

Models Accuracy Sensitivity Specificity AUC

SVM 0.75 0.71 0.75 0.80

LR 0.75 0.67 0.75 0.79

DNN 0.76 0.67 0.76 0.80

SVM, support vector machines; LR, logistic regression; DNN, 
deep neural networks
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Figure 2 Feature importance analysis. Feature importance of 53 STS Database variables in predicting presence of ischemic mitral 
regurgitation in patients requiring myocardial revascularization. LAD, left anterior descending; HDEF, left ventricular ejection fraction; 
ClassNYH, New York Heart Association Functional classification; D1, first diagonal coronary artery branch; ChrLungD, chronic lung 
disease; CarShock, cardiogenic shock; OM1, first obtuse marginal coronary artery branch; LMSten, left main coronary artery stenosis; 
RCASten, right coronary artery stenosis; NumDisV, number of distal vessels; FHCAD, family history of coronary artery disease; PLB, 
posterolateral coronary artery branch; OM2, second obtuse marginal coronary artery branch; CircSten, circumflex coronary artery 
stenosis; PrevMI, previous history of myocardial infarction; PDA, posterior descending coronary artery; PrCAB, prior coronary artery 
bypass grafting; Incidenc, re-operative cardiac surgery status; OM3, third obtuse marginal coronary artery branch; Dyslip, dyslipidemia; 
CreatLst, last creatinine; MedBeta, beta blocker medication; CVD, cerebrovascular disease; SmokHx, smoking history; PrCVInt, previous 
cardiovascular intervention; PrValve, prior valve surgery; MIWhen, time since myocardial infarction; Resusc, pre-operative resuscitation; 
D2, second diagonal coronary artery branch; CVA, stroke; Status, emergent status of operation; PVD, peripheral vascular disease; 
HYPERTN, hypertension; PTCA-PCI, percutaneous intervention; PAT_RACE, race.
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significant IMR. The necessity of a bypass graft to the 
left anterior descending artery, global left ventricular 
ejection fraction, and NYHA functional class all appeared 
to be particularly useful in this determination (Figure 2). 
Interestingly, patient weight and gender, performance of 
a first diagonal or obtuse marginal bypass graft and the 
total number of diseased vessels, and the presence of pre-
operative arrhythmias, chronic lung disease, cardiogenic 
shock, left main stenosis, right coronary artery stenosis, 
and a family history of coronary artery disease all seemed to 
separate themselves out as being important determinants of 

classification.

Discussion and conclusion

Machine learning is optimal for the investigation of a wide 
variety of clinical problems involving predictive modeling 
(16-18). In comparison to previous approaches, it has the 
unique ability to actually inform the investigative process 
by the identification of non-intuitive and otherwise 
undiscoverable data patterns that predict outcomes for a 
variety of complex clinical problems (16-18). The machine 
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learning models developed from our single-institution 
IMR data confirmed a predictive association between 
isolated STS Database variable patterns and the presence 
of clinically significant IMR. Using only STS variables as 
predictors, the AUC achieved by the SVM, LR, and DNN 
machine learning analyses all demonstrated considerable 
accuracy in identifying the presence of clinically significant 
IMR in this coronary revascularization subpopulation. 
This association was demonstrated despite exclusion of all 
valvular disease STS Database variables.

To the best of our knowledge, this study is the first to use 
machine learning to confirm a potentially useful association 
between isolated STS Database variables and the presence 
of IMR. This known association may lend considerable 
predictive utility to these standardized clinical variables 
in future machine learning modeling to address ongoing 
controversies in the surgical care of IMR. Even as minimally 
invasive catheter-based mitral valvular repair strategies 
are clinically adopted, post-repair recurrence secondary 
to progressive regional LV remodeling will continue 
to make these STS Database machine learning models 
clinically relevant in the management of these patients. 
The near-universal availability of the STS Database 
variables from almost every cardiac surgical program in 
the country makes them particularly attractive in machine 
learning models. Diagnostic and therapeutic clinical 
algorithms based upon their use should have immediate and 
widespread applicability. In light of this ready availability 
and their proven association with the myocardial, coronary 
angiographic, demographic, and comorbidity substrate 
responsible for the inception of IMR, it is safe and 
reasonable to expect these variables to play a significant role 
in future modeling of IMR patients.

Future machine learning models incorporating these 
variables may identify predictive variable combinations that 
assist clinicians in addressing such controversial issues as 
the timing of surgical intervention for the various degrees 
of IMR severity, particularly in that gray-zone of 2–3+ IMR 
(3-6,35). Further still, machine learning may be used to 
address the type of cardiac surgical intervention chosen to 
maximize durability in the amelioration of IMR, which still 
remains a challenge for cardiac surgeons (36,37). Although 
the many advantages of repair have made it the most 
common choice, almost 60% of patients undergoing mitral 
valve repair for IMR experience recurrence or death by  
2 years of follow-up (37,38). Reliable metrics for predicting 
failure of valve repair in this patient population continue to 
be of clinical importance. The ability of these STS Database 

variables to assist in the identification of that clinical 
substrate that produces IMR, a capability supported by 
our results, may be particularly applicable. Their inclusion 
may augment accuracy in future machine learning models 
directed toward the identification of patients in whom 
mitral repair, instead of replacement, may deteriorate over 
time into a simple restoration of this same IMR-inciting 
substrate. Their addition, for instance, to machine learning 
models based primarily upon mitral structural morphology 
and regional contractile injury distribution patterns has 
considerable potential to assist clinicians in these difficult 
decisions.

The actual machine learning model parameters developed 
in this investigation also may be directly applicable in future 
machine learning investigations. For example, the learned 
predictive capability of the DNN model developed from 
our large single-institution investigation can be reused in 
future modeling to enhance learning performance. With 
advanced transfer learning techniques, the knowledge 
gained from our DNN model, which is contained in the 
nodal weights learned from the institutional STS Database 
raw variable values of our 7,005 patients, can be transferred 
to future modeling of other data arrays from new patient 
cohorts with a reasonable expectation of improved accuracy.

Limitations 

This was a retrospective and non-randomized study, thus 
subjected to inherent selection bias. Even though this is a 
retrospective analysis, the very nature of the prospective 
acquisition of mandatory, rigidly structured STS Database 
variables mitigates many potential biases, including recall, 
misclassification, self-selection, and differential referral 
biases. All of the surgical procedures were performed at 
a single institution, which may impair the extrapolation 
of our machine learning results to other centers. Further, 
the supervised machine learning used binary classification 
based upon the presence of a “clinically significant” degree 
of IMR. The definition of clinical significance was based 
solely upon the operative surgeon’s decision regarding the 
clinical necessity of mitral valve intervention concomitant 
with revascularization. This decision is influenced by many 
clinical factors that may have had a variable impact upon 
the individual surgeons at this institution. Nonetheless, 
the availability, variable preoperative interval, inconsistent 
interpretation, dynamic nature of IMR, and resulting wide 
variability in echocardiographic estimation of degree of 
IMR made the use of an echocardiographic-based metric of 
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clinically significant IMR even more prohibitive. It is our 
contention that the operative surgeon had the best overall 
perspective in judging the clinical significance of their 
individual patient’s IMR, as reflected in their decision to 
intervene.

Finally, these STS Database variables characterize only a 
fraction of the clinical factors associated with the presence 
of IMR. It was never the goal of this focused investigation 
to attempt the machine learning predictive modeling of 
the future aimed at solving current clinical dilemmas. 
These complex models of the future will include all of the 
available clinical features that have previously demonstrated 
potential for inclusion in such predictive modeling. Instead, 
the simple goal of this investigation was to begin the 
construction of the foundation of these future all-inclusive 
models by assessing the association of these STS Database 
variables with the presence of the clinical substrates 
that define the IMR patient. The capability of STS 
Database variables to characterize the clinical, mechanical, 
phenotypic, and myocardial substrates associated with 
the occurrence of ischemic MR places it in a prominent 
position to contribute to the immediate development and 
clinical implementation of models to predict the patient-
specific risk of persistence or post-repair recurrence of 
ischemic MR.
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