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Introduction

Breast density is the terminology used in mammography 
to describe the proportion between fibroglandular tissue 
and adipose tissue. It is estimated that 50% of women who 
undergo mammography examinations have dense breast 
patterns (1).

There is evidence that mammographic density is as strong 
a predictor of risk for breast cancer in African-American 
and Asian-American women as for white women (2).  
High breast density is an independent risk factor for 

breast cancer (3-6). Furthermore, it may link to higher 
percentages of interval cancers (7). Dense breast tissue can 
mask lesions and has a negative impact on the sensitivity of 
the mammography with rates ranging from 85.7% for the 
adipose patterns to 61% for the extremely dense patterns. It 
can also generate an increase in false positives from 11.2% 
for the non-dense patterns to 23% for dense breasts (8).

Breast density can be measured through qualitative or 
quantitative methods. The American College of Radiology 
(ACR) has established a structured system for the visual 
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classification of breast tissue. The system applies a four letter 
ordinal scale to classify breast parenchyma into: (I) breast 
tissue almost entirely fatty, (II) scattered fibroglandular tissue, 
(III) heterogeneously dense parenchyma, (IV) extremely 
dense breast (9) (Figure 1). 

The use of ACR-BIRADS (Breast Imaging Reporting and 
Data System) provides a valid and reproducible application 
in the evaluation of breast density. However, the visual 
analysis is subjective, has great intra-operator and inter-
operator variability and requires substantial training (10-12). 

Commercial software applications such as Cumulus 
(13,14), LIBRA (15), Quantra (16) and Volpara (17) are 
based on quantitative methods for automatic breast density 
evaluation. 

In a previous study, we had determined intra and 
interobserver agreement in mammographic density 
assessment among a group of professionals and had 
analyzed the agreement between experts assessment and 
a commercial software of a digital mammography for 
automatic assessment. As result, the agreement between the 
majority report and the commercial software was moderated 
(Kappa coefficient =0.43) (12).

As we mentioned before, many commercial software 
applications for automatic breast density evaluation 
are based on quantitative criteria, by this means the 
percentage of the breast image that is radiologically dense. 
Furthermore, some of the available softwares do not have 
disposable data regarding their validation process.

More recent machine learning methods, for example 
Convolutional Neural Networks (CNN), work better than 
traditional methods in assessing complex data like medical 
images (18). The application of deep learning methods 
for the evaluation of breast density is an area of ongoing 
research. Some reports about the topic have been published 
(19-21), but to the best of our knowledge, only Lehman’s 
group has applied it in daily practice (22). 

Deep learning methods to assess medical images have 
multiple benefits; such as their reproducibility and the 
fact that they don’t suffer from fatigue or intraobserver 
variability as humans. These kinds of methods also have the 
ability to model the visual criteria used by professionals to 
categorize breast density due to their training process based 
on examples validated by professionals. The accuracy of 
diagnosis depends on the machine’s training data set, which 

Figure 1 Representative images of (A) breast tissue almost entirely fatty, (B) scattered fibroglandular tissue, (C) heterogeneously dense 
parenchyma, (D) extremely dense breast by mammography.
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represents the population that the machine is asked to 
solve. Some people may have a higher incidence of certain 
diseases or show different conditions. The machine must be 
properly trained for the target population, so it proves to be 
reliable in use (23).

In this article we present a CNN that had been trained 
based on qualitative assessment of breast density, which 
performance was compared to six breast images experts.  

The aim of this study is to validate an algorithm of deep 
learning, an in-house development,  for the classification of 
breast density according to ACR’s breast density patterns. 
We hypothesized that our deep learning model would 
achieve professional level performance.

We present the following article in accordance with the 
TRIPOD reporting checklist (24) (available at http://dx.doi.
org/10.21037/jmai-20-43).

Methods

The study design was retrospective

We carried out this study in the Breast Diagnostic and 
Interventional Section of the Imaging Service in a third-
level hospital. The service has been working with digital 
images and an integrated RIS/PACS system since 2010. The 
section consists of 10 specialists, 2 fellows, and reports an 
average of 30,000 mammograms per year. Mammographic 
studies are randomly assigned to medical radiologists daily 
for reporting. Each of them receives between 200 and 400 
cases monthly. Ten percent of studies reported by specialists 
(approximately 300 studies monthly) and all of the studies 
reported by fellows are subjected to peer review. In 
addition, quality report audits are carried out by the doctor 
who requested the study.

During the validation process, we included screening 
mammograms performed throughout February 2019 
using AMULET Innovality FUJIFilm mammogram. 
Each of the mammograms had an assigned breast density 
category by commercial software application AMULET 
Innovality—3000AWS7.0 Option—FUJIFilm®. From 2,640 
mammograms performed throughout February, we took 451 
images randomly, all from different studies and patients. We 
selected only mediolateral oblique or craniocaudal incidence 
from each study. Focused, magnified incidences and 
mammographic studies of patients with gigantomastia and a 
personal history of breast surgery (including breast implants) 
were excluded. Patients were between 45 and 90 years old.

Six radiologist physicians with a range of 2 to 19 years of 

experience participated in this study. They had to evaluate 
the category of mammographic density of each image. The 
professionals had no knowledge of the clinical history of the 
patients or demographic data. Besides, they were unaware 
of the category of breast density assigned by the other 
observers, including the interpretation of original medical 
reports as well as the evaluation of the commercial software 
application. For cases in which there was a tie (distribution 
of non-modal categorizations), a seventh imaging specialist 
categorized mammography to reach agreement.

Test methods

For the automatic categorization of the mammograms, 
we performed a convolutional neural network (CNN). In 
the CNN development process, we used 10,229 screening 
mammography images made in our hospital during the 
years 2017 and 2018. From those, 7,323 images were 
allocated to training with a homogeneous distribution 
among the 4 categories of breast density; 2,130 were used 
for the tuning phase, and 776 were used for testing. The 
ground truth was the category assigned in the study report. 
In the test phase, an accuracy of 73.32% was achieved. For 
development and testing, we used images from multiple 
manufacturers of mammographs.

The CNN architecture consists of 5 convolutional layers 
interspersed with 5 grouping layers, and 5 dense layers with 
dropout regularization. The network has 4 output nodes 
representing each ACR density category. The input images 
were preprocessed at a size of 256×256 pixels.

For development, Python 3.5 and the Keras library 
version 2.2.5 were used.

The CNN was baptized with the name Artemisia in 
honor of the Baroque painter Artemisia Gentileschi.

Once the network was developed and tested, its 
performance was evaluated before a group of professionals 
and commercial software applications.

As there was no gold standard in the evaluation of breast 
density, it was decided to use a reference standard that 
was the report of the majority of the observers. This is 
the statistical mode among all the categories reported by 
professionals (25). In the cases of a tie in the evaluation, a 
seventh evaluator with 7 years of experience participated 
to define the corresponding category. This process was 
repeated in two stages, with an interval of one month, in 
order to evaluate the variability of the majority report and 
the intra-observer variability (quote).
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Variables of interest and statistical analysis

For each of the stages, we evaluated the matches of 
Artemisia, the observers, a commercial software application 
and the majority report, by calculating linearly weighted 
Kappa coefficients (k). In turn, we report the intra-observer 
variability for each of the participants, comparing the 
agreement between both stages. For the calculation we 
use the method described by Cohen and Fleiss (26,27) and 
we take as reference the subdivision of the coefficient k of 
Landis and Koch (0: “poor”; from 0 to 0.2: “slight”; from 
0.21 to 0.4: “fair”; from 0.41 to 0.6: “moderate”; from 0.61 
to 0.8: “substantial”; from 0.81 to 1: “almost perfect”) (28). 
Additionally, according to the clinical relevance, the results 
were dichotomized in non-dense pattern (A or B) and dense 
pattern (C or D).

The diagnostic performance of Artemisia was also 
evaluated in comparison with the majority report through 
sensitivity, specificity, positive and negative predictive 
value with their respective confidence intervals. We chose 
to report these last metrics only from the first stage. On 
the one hand to avoid redundancy and on the other hand 
because they reflect the professionals’ first encounter with 
the images.

For the descriptive analysis, continuous variables were 
reported as mean with their standard deviation. Quantitative 
variables were reported as a percentage and their absolute 
number. We report the results with a 95% confidence 
interval (CI). The statistical software application is STATA v. 

14 and R version 3.6.0.
A sample estimate was made calculating 80% of 

sensitivity with a 0.05 confidence interval and a prevalence 
of high breast density of 50% using 451 images in total (29).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). It was approved 
by the institutional ethics committee of Hospital Italiano de 
Buenos Aires, (NO.: CEPI #4057); and individual consent 
for this retrospective analysis was waived.

Results

We took the categories assigned by the six professionals, the 
commercial software application, the CNN and the majority 
report for the 451 mammographic images. The prevalence 
of high breast density in the sample was 41%. Table 1 of 
liner kappa coefficients presents the concordances between 
all the participants in each stage. The levels of agreement 
between the CNN and the majority report were k=0.64 
(95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 
0.52–0.63) in the second stage. In turn, the values of the 
professionals with respect to the majority report were in the 
ranges k=(0.64; 0.84) in the first stage and k= (0.54; 0.83) in 
the second stage. As for the commercial software application 
with respect to the majority report, the kappa for the two 
stages were 0.46 and 0.44, respectively. Considering the 
dichotomized category dense and non-dense, the agreement 
between the CNN and the majority report was k=0.71 
(0.64–0.78) and k=0.70 (95% CI: 0.63–0.76).

Table 1 Kappa coefficients with linear weighting between the different participants, for stage 1 and for stage 2

Stage 1

Stage 2 LINEAR, KAPPA CNN MR C. soft. Ob 1 Ob 2 Ob 3 Ob 4 Ob 5 Ob 6

CNN 1* 0.64 0.54 0.61 0.52 0.43 0.61 0.6 0.6

Majority report 0.57 0.8 0.46 0.66 0.77 0.64 0.84 0.83 0.67

C. Soft 0.54 0.44 1* 0.57 0.37 0.31 0.43 0.44 0.49

Ob 1 0.58 0.67 0.51 0.76 0.49 0.37 0.59 0.61 0.73

Ob 2 0.53 0.83 0.38 0.59 0.7 0.66 0.71 0.68 0.51

Ob 3 0.39 0.54 0.3 0.35 0.56 0.85 0.6 0.57 0.4

Ob 4 0.53 0.78 0.41 0.68 0.68 0.43 0.72 0.69 0.62

Ob 5 0.55 0.82 0.4 0.56 0.72 0.59 0.65 0.68 0.62

Ob 6 0.57 0.74 0.48 0.57 0.62 0.4 0.61 0.64 0.73

The values on the diagonal of the table correspond to the intra-observer concordance between stage 1 and stage 2. CNN, Convolutional 
Neural Network; MR, Majority report. C. Soft: Commercial software application. Ob: Observer. *, the variability of the automated methods 
is nil.

https://paperpile.com/c/xnzfIL/zqme+RaUt
https://paperpile.com/c/xnzfIL/zqme+RaUt
https://paperpile.com/c/xnzfIL/zqme+RaUt
https://paperpile.com/c/xnzfIL/rCmI
https://paperpile.com/c/xnzfIL/rCmI
https://paperpile.com/c/xnzfIL/rCmI
https://paperpile.com/c/xnzfIL/sr7C
https://paperpile.com/c/xnzfIL/sr7C
https://paperpile.com/c/xnzfIL/sr7C


Journal of Medical Artificial Intelligence, 2021 Page 5 of 8

© AME Publishing Company. J Med Artif Intell 2021;4:5 | http://dx.doi.org/10.21037/jmai-20-43

Table 2 Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of CNN for each category and 
dichotomized categories dense/non-dense

A B C D Dense or not Dense

Sensitivity 89.5 (75.2–97.1) 74.2 (68.1–79.8) 68.5 (61.2–75.2) 100.0 (29.2–100.0) 83.2 (76.9–88.3)

Specificity 93.2 (90.4–95.4) 84.2 (78.8–88.8) 89.6 (85.4–93.0) 93.5 (90.8–95.6) 88.4 (83.9–92.0)

PPV 54.8 (41.7–67.5) 82.9 (77.1–87.8) 81.6 (74.5–87.4) 9.4 (2.0–25.0) 83.2 (76.9–88.3)

NPV 99.0 (97.4–99.7) 76.0 (70.2–81.2) 80.9 (76.0–85.2) 100 (99.1–100) 88.4 (83.9–92.0)

Agreement 0.92 (0.90–0.95) 0.79 (0.75–0.82) 0.81 (0.77–0.84) 0.93 (0.91–0.95) 0.86 (0.83–0.89)

Majority report as standard reference.

The intra-observer concordances, in other words, the 
coincidence between stage 1 and stage 2 for the same 
observer, are distributed on the diagonal of Table 1. For 
the six observers, the range of values   for intra-observer 
variability is k=0.68 to 0.85. Furthermore, the majority 
report also shows intra-observer variability with k=0.8 (CI). 
In other words, the reference contains an intrinsic variability, 
which affects the performance evaluation in the rest of the 
participants. Automated methods have no intra-observer 
variability: the values   for the CNN and the commercial 
software application are k=1. Because of this, the agreement 
between the CNN and the commercial software is the same 
for both stages: k=0.54 (95% CI: 0.48–0.60).

The concordances of the six professionals with the 
commercial software application ranges between k=0.31 
and 0.57 in the first stage, and between 0.30 and 0.51 in 
the second stage. In which cases, for the first stage, the 
CNN is within the coincidence range of the professionals. 
In the second stage, the CNN exceeds the range of the 
professionals. Besides, the CNN overcomes the majority 
report concordance, k=0.44 and k=0.46, for each stage, 
respectively.

In addition, we report sensitivity, specificity, positive 
predictive value, negative predictive value, and the 
agreement of the CNN for each category, and for 
dichotomization in dense (C and D) and non-dense (A 
and B) breast tissue (Table 2). This evaluation is reported 
for stage 1, and with a majority report as the reference 
standard.

The interested reader can find the table of values   with 
their confidence intervals in Table S1. 

Discussion

Intra-observer and inter-observer variability is a well-
documented problem in the evaluation of breast density 

proposed by ACR-BIRADS, as we have already established 
in our work team (12). In order to overcome this problem, 
we developed a convolutional neural network named 
Artemisia. Deep learning methods have the ability to model 
the visual criteria used by professionals to categorize breast 
density. Due to the fact that they are automated systems, 
they do not have intra-observer variability. We evaluated 
performance, analyzing the concordance between the 
convolutional neural network, the report of the majority, 
the professionals and a commercial software application. 
We decided to report the kappa coefficient with linear 
weighting, since it penalizes the disagreements between the 
categories proportionally to their ordinality.

The concordance between the majority report and the 
convolutional neural network was substantial for the first 
stage and moderate for the second one. Similar outcomes 
have been reported in different studies. Wu et al. applied 
a deep learning model to evaluate breast density. They 
reported a moderate concordance between their model and 
the evaluation of an experienced radiologist, with κ values 
of 0.48 (20). They also reported the concordances with a 
student (κ=0.53) and a resident (κ=0.60), demonstrating 
again the variability that exists in density categorization. 
These kappa values are not weighted. The deep learning 
model of Lehman group showed a substantial agreement 
with κ of 0.78 (95% CI: 0.73–0.82). The agreement with 
the original reports was κ=0.67 (22).

These studies demonstrate the feasibility of convolutional 
neural networks for the categorization of breast density. 
Deep learning algorithms achieve professional-like 
performances (20,30). However, regardless of the neural 
network architectures implemented in the different 
studies, the main challenge lies in mitigating variability and 
consequently defining and evaluating precision correctly. 
For this objective, we propose the comparison with the two 
references: the majority report and the commercial software 
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application.
If we establish the commercial software application 

category as a reference standard, since it is an external 
invariant participant with commercial validation, we 
observe that the concordance of the CNN is within or 
above the range of professionals’ values, for each stage. This 
contributes to affirm that the CNN achieved a professional-
like performance.

The CNN had a moderate agreement with the 
commercial software application. The different approaches 
may explain differences in categorization results. While 
the commercial software application applies traditional 
methods for processing images, our strategy is based on 
deep learning. Commercial software applications calculate 
the percentage of dense tissue and the CNN attempts 
to simulate the professional visual criteria. In that sense, 
ACR BI-RADS Atlas® 5th Edition density categories are 
no longer based on tissue percentage, so the visual criteria 
is crux (9). However, interpretability is a limiting factor 
of deep learning models. They also may have biases. 
Therefore, rigorous validation designs are necessary to 
mitigate these risks. 

Even though ACR classifies mammographic density 
patterns into 4 categories, the clinical impact for patient risk 
management is defined by the dichotomized dense and non-
dense breast patterns. We also decided to report the values 
in Table 2, since they are the most common metrics in the 
health field. When evaluating the concordance between the 
neural network and the majority report for dichotomous 
analysis of breast density between dense and non-dense, the 
agreement was substantial. Sensitivity and specificity have 
the same values as positive predictive value and negative 
predictive value, respectively, because the number of false 
positives and false negatives in the first stage are the same. 
Due to the very low prevalence of D pattern according to 
the majority report, the positive predictive value in this 
category is low.

As regards the sample used, it had a low number of cases 
with an extremely dense mammographic pattern (ACR-d), 
according to the prevalence reported in the institution over 
the last five years, during which the records were around 
1–2%. Even so, the total high-density prevalence (categories 
c and d) in the sample was 41%, also in accordance with the 
prevalence in our hospital population.

The aim of these developments is to achieve an accurate 
categorization, as well as to reduce the variability of the 
labelling among professionals. There is current evidence 
that automated tools integrated within the workflow of 

medical professionals contribute to reduce variability (22). 
This will be our next stage. For this implementation, it will 
be necessary to define a categorization by study, since this 
validation was carried out considering the category of each 
image in the study, in order to compare the performance 
with a commercial software application.

The sample size and the randomization of the study 
order, avoided memory biases due to possible familiarization 
effects that may occur along mammography readings by the 
observers. Moreover, our design guaranteed the blindness of 
the observers to the reports of the automatic classification 
software and the diagnoses of the rest of the participants. 

Finally, this work was carried out in a single institution. It 
is a reference hospital and it daily receives referrals from all 
over the country. A multicenter study would be convenient 
to evaluate this new technology. 

Currently, after the validation process, Artemisia has 
been applied in clinical practise. Engineers had developed a 
solution to integrate the tool into physicians daly practise. 
Others studies will be needed in order to evaluate its 
performance in this context. 

In order to access the full study protocol, please contact 
the corresponding author.

Conclusions

As a conclusion, considering the internal reference (majority 
report) and the external reference (commercial software 
application) and based on the concordances obtained, 
we can affirm that the performance of Artemisia is at the 
level of our professionals. These findings were what we 
expected, considering that Artemisia was trained with 
mammographies labeled by physicians of our institution.
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Table S1 Kappa coefficients with linear weighting between the different participants, for stage 1 and for stage 2

Stage 1

Stage 2 KAPPA MR SC obs1 obs2 obs3 obs4 obs5 obs6 CNN

MR 0.80 (0.76–0.85) 0.46 (0.39–0.052) 0.66 (0.60–0.72) 0.77 (0.72–0.83) 0.64 (0.58–0.70) 0.84 (0.80–0.89) 0.83 (0.78–0.87) 0.67 (0.61–0.73) 0.64 (0.58–0.69)

SC 0.44 (0.38–0.50) 0.57 (0.51–0.63) 0.37 (0.30–0.43) 0.31 (0.25–0.36) 0.43 (0.37–0.49) 0.44 (0.37–0.50) 0.49 (0.43–0.56) 0.54 (0.48–0.60)

obs1 0.67 (0.62–0.73) 0.51 (0.45–0.57) 0.76 (0.71–0.81) 0.49 (0.42–0.56) 0.37 (0.31–0.43) 0.59 (0.53–0.66) 0.61 (0.55–0.67) 0.73 (0.68–0.79) 0.61 (0.55–0.66)

obs2 0.83 (0.78–0.88) 0.38 (0.32–0.45) 0.59 (0.52–0.65) 0.70 (0.64–0.76) 0.66 (0.60–0.72) 0.71 (0.65–0.76) 0.68 (0.62–0.74) 0.51 (0.44–0.57) 0.52 (0.46–0.58)

obs3 0.54 (0.48–0.61) 0.30 (0.24–0.35) 0.35 (0.30–0.41) 0.56 (0.50–0.62) 0.85 (0.80–0.89) 0.60 (0.54–0.66) 0.57 (0.50–0.63) 0.40 (0.33–0.46) 0.43 (0.38–0.49)

obs4 0.78 (0.73–0.83) 0.41 (0.35–0.47) 0.68 (0.61–0.74) 0.68 (0.62–0.74) 0.43 (0.37–0.50) 0.72 (0.66–0.77) 0.69 (0.63–0.75) 0.62 (0.56–0.68) 0.61 (0.55–0.66)

obs5 0.82 (0.77–0.87) 0.40 (0.34–0.46) 0.56 (0.49–0.62) 0.72 (0.66–0.78) 0.59 (0.52–0.65) 0.65 (0.58–0.71) 0.68 (0.63–0.74) 0.62 (0.56–0.68) 0.60 (0.54–0.66)

obs6 0.74 (0.68–0.79) 0.48 (0.41–0.55) 0.57 (0.51–0.64) 0.62 (0.56–0.68) 0.40 (0.34–0.46) 0.61 (0.55–0.68) 0.64 (0.58–0.71) 0.73 (0.68–0.79) 0.60 (0.54–0.66)

CNN 0.57 (0.52–0.63) 0.54 (0.48–0.60) 0.58 (0.52–0.64) 0.53 (0.47–0.59) 0.39 (0.33–0.44) 0.53 (0.47–0.59) 0.55 (0.50–0.61) 0.57 (0.51–0.63)

*, the variability of the automated methods is nil. CNN, Convolutional Neural Network; MR, majority report; SC., Commercial software application; Obs, Observer.
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