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Background: Current machine-learning (ML) models have been developed to predict mortality for 
specific diseases, procedures, and setting at a given time; however, the risk for in-hospital mortality changes 
throughout a patient’s hospital stay. A model that could predict in-hospital mortality throughout a patient’s 
stay regardless of disease or procedure could improve clinical outcomes. 
Methods: We conducted a prognostic study where cohorts were created from electronic health records 
(EHR) with encounters between January 1, 2014 and January 30, 2020 at tertiary academic hospital and 
community hospital. The initial dataset contained 228,405 patients. EHR of 176,526 patients remained in 
the study after adjusting for age (18 or older), length of stay (LOS) (between 0 and 365 days), and encounter 
dates within study period. Training and testing cohorts, stratified by length-of-stay and in-hospital mortality, 
were created with an 80/20 split.
Results: The study included 176,526 patients {mean [interquartile range (IQR)] age of 52.2 [34–68] years; 
55.3% female, 63.7% white, 92.7% non-Hispanic} who were admitted for 5.6 [2–6] days. The in-hospital 
mortality rate for the training and testing cohorts was 3.0%. The CatBoost classifier model, trained with 
a combination of undersampling and oversampling, demonstrated a F2 score of 0.510 [95% confidence 
intervals (CI): 0.496–0.516]. The F2 score is highest for patients with a one-day LOS (0.811; 95% CI: 0.776–
0.843). Even though the F2 score is lower for patients who stayed more than a day, the F2 score generally 
increases each day until the day of discharge or mortality.
Conclusions: This study investigated an ML model that predicted risk of in-hospital mortality regardless 
of patient demographics and level of care setting. The model accounted for changes in patient condition 
throughout the LOS. An implementation study should be conducted to determine how this model can be 
integrated into clinical workflow to support decision making.
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Introduction

A multitude of tasks, actions, and medical providers interact 
with a patient’s unique clinical characteristics throughout 
a hospital stay to result in an outcome. Unfortunately, for 
more than 700,000 patients annually in the United States 
(US) that outcome is death (1). Although there are validated 
clinical scores to predict in-hospital mortality (2-4), they 
require manual data entry—a time and labor-intensive 
process and potentially a source of error(s). Additionally, 
those scoring tools only allow for an analysis of data at 
a particular moment in time as it relates to a patient’s 
condition (5). Using a machine learning (ML) approach 
with electronic health record (EHR) data can account for 
the complexity and number of fluctuating inputs to better 
predict and reduce in-hospital mortality. 

While many open-source ML algorithms for predicting 
in-hospital mortality exist, to date, they were developed 
using the Medical Information Mart for Intensive Care 
III (MIMIC-III) publicly available dataset (6-12). Data in 
MIMIC-III comprise patients admitted to the intensive care 
unit (ICU) at a single hospital (13), thus restricting the use 
of the open-source models to the intensive care setting and 
limiting the ability to apply them to the general care floor 
setting. The current literature indicated that many ML 
approaches focused on mortality due to specific conditions 
(14-16) and after specific procedures (17-19). With 
nonspecific diseases being the fifth underlying cause of 
death for inpatient hospital mortality (20), ideally a model 
would predict mortality beyond a particular condition or 
procedure. Additionally, certain patients admitted to a non-
ICU can be at risk for rapid deterioration (21,22), and 
therefore merit further attention. Besides reviewing the 
patient’s mortality risk at triage or admission (23,24), an 
ideal model would continuously evaluate the mortality risk 
through the patient’s admission, given that more extended 
hospital stays are more prevalent in patients who died in 
the hospital (1). Indeed, ICU mortality prediction is more 
accurate with a continuous model than static scoring or 
prediction (25). 

Given the limitations of static validated scoring systems 
and existing open-source models, the objective of this 
study was to develop a machine-learning (ML) model that 
predicts in-hospital mortality throughout a patient’s hospital 
stay, regardless of the patient’s specific cause or location of 
admission. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
jmai.amegroups.com/article/view/10.21037/jmai-21-28/rc).

Methods

Setting, participants & outcome

University of Florida (UF) Health system has two campuses 
in Northeast Florida. UF Health Jacksonville (UFHJ) is a 
teaching hospital and level 1-trauma center and UF Health 
North is a community hospital with an outpatient medical 
complex. The hospitals combined have 695 licensed beds 
with approximately 33,000 admissions annually. UF’s 
Institutional Review Board approved the study, and an 
honest broker at the UF Integrated Data Repository (IDR) 
extracted the data. This study adheres to the TRIPOD 
(Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis) guidelines 
for prediction model development. We utilized EHR for 
patients having an inpatient hospital visit from January 1,  
2014 to January 30, 2020. Records were excluded for 
patients who were less than 18 years old at the time of 
encounter. Records for inpatient visits were also excluded 
if the length of stay (LOS) was less than one day or greater 
than 365 days. For patients with multiple inpatient visits, 
only the most current visit was kept.

The primary outcome of interest was in-hospital 
mortality. A patient was determined to have the outcome 
‘died in hospital’ if they had a recorded death date equal to 
the discharge date of their inpatient visit. Patients were split 
into training and testing sets using an 80/20 split of the data 
stratified on a combination of outcome and total hospital 
LOS. Figure 1 details the cohort selection and exclusion 
criteria. The training data utilized the total data available 
for the patients up until the day before discharge or death. 
For the patients in the test data, we created observations 
and predictions for each day the patient was in the hospital 
using data available up until that day. 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by University of Florida’s Institutional Review 
Board (IRB201903477) and individual consent for this 
retrospective analysis was waived.

Software

The model was developed with Python Programming 
Language  (RRID:SCR_008394 ) .  Packages  u sed 
in  data  c leaning  and manipula t ion  were  Pandas 

https://jmai.amegroups.com/article/view/10.21037/jmai-21-28/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-21-28/rc
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Figure 1 Cohort selection and exclusion criteria. LOS, length of stay.
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(RRID:SCR_018214), NumPy (RRID:SCR_008633), 
and FuzzyWuzzy (RRID:SCR_021699). The dataset 
was  spl i t  with sc iki t- learn (RRID:SCR_002577) . 
Imputation of missing data was done with LightGBM 
(RRID:SCR_021697) and PyCaret (RRID:SCR_021695). 
The imbalanced dataset was resampled with imblearn 
(RRID:SCR_021698). The ML model was developed 
with Catboost  (RRID:SCR_021694),  and PyCaret 

(RRID:SCR_021695). BorutaShap (RRID:SCR_021696) 
was used for feature selection. Graphs and plots were 
created with PyCaret (RRID:SCR_021695), MatPlotLib 
(RRID:SCR_008624), and Plotly (RRID:SCR_013991). 

Data variables 

Data uti l ized included demographics,  emergency 
department and inpatient medications, laboratory (lab) 
data, procedures, and other orders. We also utilized tobacco 
use history available from the EHR. For each patient, the 
last available record for demographic data and tobacco 
use history were used. Inpatient consults were mapped 
to a priori-determined relevant consult groups according 
to clinical domain expert authors (JNF & CCG). All 
international classification of diseases (ICD) 9/10 records 
were recorded after the conclusion of an inpatient visit; 
therefore, only ICD information available prior to the 
start date of each patient’s current inpatient visit is used, 
acting as a proxy for medical history. All ICD9 codes were 
mapped to ICD10 codes using the crosswalk from the 
National Bureau of Economic Research (26). Those codes 
were mapped to the clinical classifications software refined 
(CCSR) groupings using the crosswalk from the Agency for 
Healthcare Research and Quality (27). Consult and ICD 
features indicating end-of-life were dropped. 

Medication order descriptions were cleaned and matched 
to a flattened version (author GPLL) of the anatomical 
therapeutic chemical (ATC) classification (28) using 
fuzzy string-matching and proofread by manual review 
(authors JNF, CCG, & SJD). Each ATC classification 
was grouped into its highest available level up to Level 4. 
Lab names and units were cleaned and concatenated. The 
variations were mapped to a priori-determined relevant 
labs according to authors with clinical experience (JNF & 
CCG). Conservative thresholds were set for outliers at the 
upper/lower quartiles ± 5× the training data’s interquartile 
range (IQR). Any value outside of that range was replaced 
with the threshold. Vital sign measurements [blood pressure 
(BP), Braden Score, heart rate, Glasgow Coma Score (GCS), 

pain scale, respiratory measurements, and temperature] 
were bounded to their appropriate clinically defined or 
physiologically possible ranges. Any values outside of these 
ranges were removed. For all labs and vitals, the first, last, 
minimum, maximum, mean, and standard deviations (SD) 
for each patient were incorporated. For labs, minimum and 
maximum values were replaced with an indicator of high 
or low using hospital lab outlier thresholds. All categorical 
variables were one-hot encoded.

 For data from consults, demographics, ICD codes, 
medications, and tobacco history, all patients with missing 
data were assigned a value of ‘unknown’ for each respective 
category. All ‘unknown’ features were dropped from the 
dataset to reduce multicollinearity except for lab data and 
vital signs. For lab data, we imputed mean, first, and last 
values with normal physiologic values. The threshold values 
used in vital sign measurements and lab data are listed in 
Tables S1,S2 in the supplementary appendix online. SD 
was imputed with a value of zero. Missing vital signs were 
imputed during model training using mean values or an 
iterative imputation procedure.

Feature selection

The training and test datasets contained a combined 
1,479 features. The BorutaShap wrapper method (29-31), 
using the CatBoost classifier with SHAP values for feature 
importance, was utilized for feature selection. Both accepted 
and tentative features were kept for a reduced feature set of 
60 attributes.

Machine learning algorithm

CatBoost is a machine learning algorithm that utilizes 
gradient boosting on decision trees for both regression and 
classification. Gradient boosted decision trees have recently 
been used with great success across various disciplines, and 
CatBoost is a preferable model choice for large datasets 
with heterogenous and categorical data (32,33). A total of 
15 different CatBoost models were trained using the default 
hyperparameters in PyCaret. 

Statistical analysis

Models were tested with both mean and iterative imputation 
for missing data. Various resampling methods were explored 
for class imbalance such as random undersampling, random 
oversampling, SMOTE (34), random undersampling 

https://cdn.amegroups.cn/static/public/JMAI-21-28-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JMAI-21-28-Supplementary.pdf
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fo l lowed by  random oversampl ing ,  and  random 
undersampling followed by SMOTEEEN (35). The F2 
measure was chosen as the metric for model selection based 
on its relative weighting of recall and precision. Unlike 
the F1 measure, the F2 measure, Eq. [1], emphasizes recall 
more heavily which is vital in medical applications where 
the cost of a false negative (predicting survival when in 
fact the patient dies) outweighs the cost of a false positive 
(misclassifying a patient as more likely to die when they 
actually survive).

2 5
4

precision recallF
precision recall

×
= ×

× + 	 [1]

We also reviewed accuracy, recall, precision, area under 
the receiver operating characteristic curve (AUROC), area 
under the precision-recall curve (AUPRC), and F1 score. 
Accuracy was measured as the proportion of all patient 
outcomes, both survival and death, predicted correctly. 
Recall was measured as the proportion of all patients 
accurately predicted to die out of all the patients who did 
die. Precision was measured as the proportion of all patients 
accurately predicted to die out of all the patients who were 
prediction to die. The precision-recall curve plots precision 
as a function of recall for various classification thresholds. 
The AUPRC is an overall measure of the tradeoff of 
precision and recall for the model. The ROC curve is a plot 
of true positive rate against false positive rate for various 
classification thresholds. The AUROC is an alternative 
measure of diagnostic accuracy of a model, but is typically 
more useful when there is not large class imbalance. The F1 
score, like the F2 score, is an F-measure. It is defined as the 
harmonic mean of precision and recall.

The model with the highest F2 score was then tuned to 
select optimal hyperparameters via a grid search. The tuned 
model was then calibrated using an isotonic method (36). 
Baseline models were created using Braden Score and GCS. 
For each baseline model, the test data set was used to find 
the threshold of the score that led to the greatest F2 score 
for classifying patients. The tuned and calibrated model 
and the baseline models were used to predict mortality on 
each subset of the test data stratified by the current LOS. 
Predictions were made using an empirical bootstrapping 
method using 1,000 iterations with resampling of the test 
data for each subset to obtain estimates and confidence 
intervals (CI) for the metrics. We also evaluated the model 
for patient subsets of total LOS. We then tested the model 
against sub-populations to uncover potential predictive 

biases against gender, race, and age group. 

Results

Our dataset comprised 176,526 patients, of which 63.7% 
were white, and 27.3% were black. Slightly over half 
(55.3%) of patients were female and 44.6% were male  
(Table 1). A total of 5,275 (3.0%) patients died in the 
hospital. Most patients (77.6%) were discharged or died 
by day 6. From day 7 and after, the percentage of patients 
with a total LOS for any specific number of days became 
low (0.0–4.0%); therefore, patients with an LOS of seven 
or more days were reclassified as having an LOS of 7+. We 
analyzed patients’ mortality rate against their LOS and 
noted a high mortality rate for patients staying one day. The 
mortality rate was the lowest on days 2 and 3 (1.432% and 
1.437% vs. 2.005–6.027% for remaining days). From day 3,  
the mortality rate increased as LOS increased. By day 4, 
66.5% were discharged alive. Over half (54.9%) of patients 
who did not survive died by day 6. Figure 2 illustrates the 
mortality distribution. 

The combination of various imputation and resampling 
methods produced 15 models (Table 2). The CatBoost 
classifier using mean imputation and an under-sampling 
strategy of 0.25 followed by oversampling to achieve class 
balance performed best with an F2 score of 0.506. That 
model was tuned and calibrated, and the final model, 
MONITOR, achieved an F2 score of 0.510, a recall of 0.644, 
and an AUROC of 0.905 (Figure 3 and Table 3). The feature 
importance analysis showed that the Braden Score and 
GCS had the highest predictive power, followed by the last 
heart rate, the last mean arterial pressure, age, and LOS.  
Tables S3,S4 in the supplementary appendix lists the data 
features by the cohorts. 

We established the performance metrics for the GCS 
Score, Braden Score, and MONITOR models for each day 
of stay. MONITOR systematically outperformed the score-
based models for F2 score (0.466–0.543), recall (0.729–
0.759), AUROC (0.889–0.920), and AUPRC (0.362–0.391). 
Figure 4 illustrate the comparison between the three 
models. The detailed performance metrics between the 
three models can be found in Table S5 of the supplementary 
appendix online.

Figure 5 shows how F2 score varies by day when patients 
are grouped by total LOS. The F2 score is highest for 
patients on day 1 or with a total LOS of one day (0.811) and 
lowest for patients with a total LOS of seven or more days 
(0.380). For patients with staying seven or more days, the 

https://cdn.amegroups.cn/static/public/JMAI-21-28-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JMAI-21-28-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JMAI-21-28-Supplementary.pdf
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Table 1 Characteristics of patients in training and test data sets

Characteristic Total (n=176,526)

Train (80%) Test (20%)

Discharged 
(n=137,000)

Died in hospital 
(n=4,220)

Total 
(n=141,220)

Discharged 
(n=34,251)

Died in hospital 
(n=1,055)

Total 
(n=35,306)

LOS, mean [IQR], days 5.6 [2–6] 5.4 [2–6] 10.5 [2–13] 5.6 [2–6] 5.4 [2–6] 10.5 [2–13] 5.6 [2–6]

Age, mean [IQR], years 52.2 [34–68] 51.8 [34–67] 64.4 [56–76] 52.2 [34–68] 51.7 [34–67] 64.8 [56–77] 52.0 [34–67]

Sex, n (%)

Female 97,665 (55.3) 76,350 (55.7) 1,807 (42.8) 78,157 (55.3) 19,028 (55.6) 480 (45.5) 19,508 (55.3)

Male 78,800 (44.6) 60,600 (44.2) 2,413 (57.2) 63,013 (44.6) 15,214 (44.4) 573 (54.3) 15,787 (44.7)

Unknown 61 (0.0) 50 (0.0) 0 (0.0) 50 (0.0) 9 (0.0) 2 (0.2) 11 (0.0)

Race, n (%) 

White 112,524 (63.7) 87,258 (63.7) 2,754 (65.3) 90,012 (63.4) 21,836 (63.8) 676 (64.1) 22,512 (63.8)

Black 48,131 (27.3) 37,393 (27.3) 1,153 (27.3) 38,546 (27.3) 9,289 (27.1) 296 (28.1) 9,585 (27.1)

Asian 1,961 (1.1) 1,519 (1.1) 28 (1.0) 1,547 (1.1) 411 (1.2) 3 (0.3) 414 (1.2)

Other 11,576 (6.6) 9,076 (6.6) 151 (3.6) 9,227 (6.5) 2,307 (6.7) 42 (4.0) 2,349 (6.7)

Unknown 2,334 (1.3) 1,754 (1.3) 134 (1.3) 1,888 (1.3) 408 (1.2) 38 (3.6) 446 (1.3)

Ethnicity, n (%)

Not Hispanic 163,713 (92.7) 127,050 (92.7) 3,948 (94.6) 130,998 (92.8) 31,733 (92.6) 982 (93.1) 32,715 (92.7)

Hispanic 10,138 (5.7) 7,949 (5.8) 121 (2.9) 8,070 (5.7) 2,040 (6.0) 28 (2.7) 2,068 (5.9)

Unknown 2,675 (1.5) 2,001 (1.5) 151 (1.5) 2,152 (1.5) 478 (1.4) 45 (4.3) 523 (1.5)

LOS, length of stay; no., number; IQR, interquartile range. 

Figure 2 Distribution and proportion of mortality rate against LOS. LOS, length of stay.
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F2 score increases to 0.543 for predictions made on day 7. 
Similar trends in increasing scores are observed for other 
subgroups for all of the reported metrics (Figure 5).

The subgroup analysis revealed no statistical differences 
between age, race, and sex; with the exception in sex on  
days 5 and 6 (Figure 6). The F2 score for males on day 5 
was 0.490 (0.454–0.528) whereas 0.579 (0.540–0.618) for 
females. The F2 score for males on day 6 was 0.515 (0.475–
0.553) whereas 0.577 (0.536–0.617) for females. 

Discussion

The adoption of EHRs has increased the availability of 
data, facilitating the uptake of ML approaches in the 
healthcare setting (37). Enhancing EHRs with modern 
data visualizations and multi-domain machine learning 

can provide a 360-degree view of the patient, provider, 
hospital, and healthcare system to better understand and 
act upon mortality risk throughout the patient’s hospital 
stay. However, many ML approaches to date for predicting 
mortality are limited to a specific setting (e.g., the ICU), 
conditions (e.g., sepsis), or procedures (e.g., PCI) at a 
singular moment in time. Because clinicians evaluate 
a patient’s conditions throughout his/her hospital stay, 
the same time-varying approach should be applied when 
evaluating mortality risk. Therefore, we developed an 
ML model to predict mortality risk throughout a patient’s 
hospital stay.

Previously published models that predicted in-
hospital mortality at the time of admission achieved an 
AUROC of 0.84–0.94 (24,38-40). In addition to using 
data from the entire LOS to train our model, we also 

Table 2 Performance metrics for various models after imputation and resampling

Imputation Resampling Accuracy AUROC Recall Precision AUPRC F1 F2

Mean Undersampling.25_
Oversampling

0.8979 0.9060 0.7258 0.2283 0.3731 0.3473 0.5055

Mean Undersampling.50_
Oversampling

0.8821 0.9085 0.7625 0.2074 0.3783 0.3262 0.4967

Mean Undersampling.25_
SMOTE_EEN

0.8793 0.9053 0.7607 0.2030 0.3460 0.3205 0.4910

Mean Oversampling 0.9312 0.9007 0.5878 0.2918 0.3613 0.3900 0.4887

Mean Undersampling.75_
Oversampling

0.8729 0.9085 0.7762 0.1967 0.3756 0.3138 0.4883

Mean Undersampling 0.9310 0.9013 0.5872 0.2910 0.3626 0.3892 0.4879

Iterative Undersampling.25_
SMOTE_EEN

0.8880 0.9005 0.7233 0.2103 0.3456 0.3259 0.4861

Mean Undersampling.75_
SMOTE_EEN

0.8812 0.8994 0.7374 0.2021 0.3308 0.3173 0.4821

Mean Undersampling.50_
SMOTE_EEN

0.8729 0.9017 0.7631 0.1946 0.3378 0.3101 0.4817

Iterative Undersampling 0.8651 0.9076 0.7815 0.1876 0.3682 0.3025 0.4785

Iterative Undersampling.50_
SMOTE_EEN

0.8816 0.8939 0.7268 0.2010 0.3281 0.3149 0.4772

Iterative Oversampling 0.9325 0.8984 0.5623 0.2916 0.3521 0.3840 0.4743

Iterative Undersampling.75_
SMOTE_EEN

0.8838 0.8886 0.7037 0.2003 0.3291 0.3119 0.4683

Mean SMOTE 0.9571 0.9029 0.3585 0.4160 0.3607 0.3851 0.3687

Iterative SMOTE 0.9602 0.9061 0.3354 0.4564 0.3747 0.3867 0.3542

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.
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updated our predictions each day as new time-series data 
became available. Models trained on time-series data have 
demonstrated increased predictive ability (25). For patients 
that had longer LOS, it was more difficult to ascertain the 
discharge outcome early during the patient’s stay. However, 
the model’s performance increased as more data became 
available. Another main difference between our model and 
prior studies is that we selected the F2 measure to rank the 
different models instead of AUROC. Real-world datasets 
can exhibit imbalanced class distributions, especially in 
mortality where there is a binary minority class. Using the 
F-measure instead of accuracy can be more useful when 
dealing with class imbalance (41). Furthermore, the F2 
measure balances precision and recall with more attention 
towards minimizing false negatives, considering the grave 
consequences of failing to identify an at-risk patient. For 
the same reason, other studies also optimized the F-measure 
in developing their models (42,43). 

Healthcare professionals have been using medical 
calculations and scores as part of clinical decision tools for 
decades. Both the Braden Score and GCS, among other 
scoring systems, are integral parts of clinical practice, albeit 

not intended originally as mortality risk prediction scores. 
The Braden Scale is used to assess pressure-injury risk in 
various healthcare settings. A GCS assessment is done to 
determine a patients’ level of consciousness. However, 
both the Braden and GCS have been expanded to predict 
mortality in different studies (44-48). Even though the 
Braden and GCS scores were the highest ranked individual 
features in our model, our results suggested a more holistic 
ML approach is better as it has the ability to capture data 
spanning various clinical functions, including sequential 
time series temporal trends. 

Our study has several limitations to consider. Lab and 
vital sign measurements were only included in the data 
if they occurred after an inpatient designation status for 
a patient. Data collected before patient handoff from 
other departments (e.g., emergency department) might 
be insightful but were discarded with our methodology. 
Additionally, we omitted several other possible predictors, 
including missingness indicators and features from clinical 
notes that other studies have shown to be helpful. Our 
choice of statistics for time-series data (first, last, maximum, 
minimum, mean, and SD) was also limited, and more 

Figure 3 Confusion matrix, calibration plot, AUROC, and PRC for MONITOR. AUROC, area under the receiver operating characteristic 
curve; PRC, precision-recall curve. 
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sophisticated techniques may have led to better model 
performance. Our model was also impacted by incomplete 
patient records and missing data. Alternatively, other 
models such as recurrent neural networks or LSTMs may 
be utilized to capture signals from time series data that 
may retain some more clinically meaningful variations. 
The output of these models can be used as features in 
the final Catboost model. While different imputation 
types were utilized, more complete patient records would 
provide better results. Additionally, we assigned the survival 
outcome to each patient in the training dataset associated 
with the occurrence of a discharge event. However, in 
practice and in the LOS-stratified test set, patients may 
experience several events, including discharge, mortality, 
a continuation of stay, or departmental transfer. Although 

we believe that the use of F2 measure over AUROC as 
the guiding metric is more indicative of the real impact 
of misclassifications in the hospital setting, we were 
unable to validate our decision without a complete cost-
benefit analysis. The tradeoff between false positives and 
false negatives may depend on the current conditions and 
constraints of each hospital and need to be evaluated on an 
individual basis. 

Conclusions

This study investigated an ML model that can be utilized 
for both ICU and non-ICU inpatient mortality. Though 
limited to a single institution, it performs equally well 
regardless of patient demographics. Additionally, it accounts 

Table 3 AUROC, PRC, and performance metrics for CatBoost, tuned CatBoost, and calibrated tuned CatBoost (MONITOR) models

Model CatBoost model Tuned CatBoost model
Calibrated tuned CatBoost (MONITOR) 
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for the change in patient condition as the patient continues 
to stay in the hospital. Moving forward, the model needs 
to be validated internally with prospective data as well 
as externally to determine how the model performs with 
other patient cohorts. Further implementation research is 
required to understand how we can integrate this model 
with clinical workflow in order for this model to be 
impactful in an operational setting. 
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Supplementary

Table S1 Thresholds used in vital sign measurements

Measurement Low cutoff High cutoff Unit

Braden Score 6 23 Score

Mean arterial pressure 0 200 mmHg

GCS 3 15 Score

Pain scale 0 10 Score

SpO2 0 100 %

Respiration rate 0 200 BPM

FiO2 0 100 %

BMI 0 500 kg/m2

Weight 0 700 lbs

Height 20 110 in

Heart rate 0 500 BPM

Temperature 0 120 ℉

GCS, Glasgow Coma Score. 



Table S2 Thresholds used in laboratory data

Name Sex Low_value High_value Normal_value

abg_lactic_acid B 0.7 2.7 1.7

Albumin B 3.8 4.9 4.35

alkaline_phosphatase F 35 104 69.5

alkaline_phosphatase M 40 129 84.5

alt_(sgpt) B 10 42 26

anion_gap B 4 16 10

arterial_o2 B 80 100 90

arterial_pco2 B 35 45 40

arterial_po2 B 80 100 90

arterial-venous_ph B 7.35 7.45 7.4

ast_(sgot) B 14 33 23.5

atypical_lymphocyte B 0 12 0

banded_neutrophils B 34 73 53.5

Bicarbonate B 21 27 24

bilirubin_direct B 0 0.2 0.1

bilirubin_indirect B 0.2 0.9 0.55

bilirubin_total B 0.2 1 0.6

blood_urean_nitrogen B 6 22 14

bun-creatinine_ratio B 7.5 34 20.75

Calcium B 8.6 10 9.3

calcium_ionized B 4.64 5.28 4.96

carbon_dioxide B 22 30 26

Chloride B 101 110 105.5

creatine_kinase B 22 195 108.5

Creatinine F 0.4 0.9 0.65

Creatinine M 0.8 1.2 1

EGFR B 59 500 60

fibrinogen_level B 186 461 323.5

Globulin B 2.3 3.5 2.9

Glucose B 71 99 85

Hematocrit M 40 54 47

Hematocrit F 37 47 42

Hemoglobin M 14 18 16

Hemoglobin F 12 16 14

Inr B 0.8 1.1 0.95

Ketones_ua B 0 20 20

Lipase B 0 60 30

Lymphocytes B 24 44 34

Magnesium B 1.8 2.6 2.2

Neutrophils B 0 5 2.5

nt_pro_bnp B 0 2,000 400

partial_thromboblastin_time B 25 37 31

Phosphorus B 2.5 4.5 3.5

plasma_lactic_acid B 0.7 2.7 1.7

platelet_count B 140 440 290

Potassium B 3.3 4.6 3.95

pro_bnp B 0 125 62.5

Procalcitonin B 0 0.15 0.075

Protime B 9.4 12.5 10.95

rbc_count M 4.5 6.3 5.4

rbc_count F 4.2 5.4 4.8

Sodium B 136 145 140.5

total_protein B 6.5 8.3 7.4

venous_o2 B 37 43 40

venous_pco2 B 44 46 45

venous_po2 B 37 43 40

wbc_count B 4.5 11 7.75

arterial_o2_content B 16 20 18

venous_o2_content B 12 15 13.5

B, both sexes; F, female; M, male.
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Table S3 Data features (continuous variables)

Features

Train—80% Test—20%

Alive (n=137,000—97.0%) Dead (n=4,220—3.0%) Total (n=141,220) Alive (n=34,251—97.0%) Dead (n=1,055—3.0%) Total (n=35,306)

Missing Mean SD Missing Mean SD Missing Mean SD Missing Mean SD Missing Mean SD Missing Mean SD

Features—from cohort and vital sign measurements

Age at encounter (y) 0.0% 51.8 19.5 0.0% 64.4 15.5 0.0% 52.2 19.5 0.0% 51.7 19.5 0.0% 64.8 16.0 0.0% 52.0 19.6

Braden Score Last 5.8% 19.4 2.7 7.9% 11.6 3.0 5.8% 19.1 3.0 5.8% 19.3 2.8 7.7% 12.5 3.3 5.8% 19.1 3.0

Braden Score Mean 5.8% 19.1 2.6 7.9% 12.8 2.9 5.8% 18.9 2.8 5.8% 19.1 2.7 7.7% 13.2 3.1 5.8% 18.9 2.9

Braden Score Min 5.8% 17.7 3.3 7.9% 10.6 2.9 5.8% 17.5 3.5 5.8% 17.8 3.2 7.7% 11.5 3.0 5.8% 17.6 3.3

FiO2 Last (%) 87.7% 34.6 17.3 40.2% 56.7 24.3 86.3% 37.5 19.8 88.5% 35.8 17.0 46.4% 53.8 22.8 87.3% 38.0 18.8

GCS score Last 37.6% 14.7 1.1 21.3% 8.4 4.5 37.1% 14.5 1.8 38.5% 14.7 1.2 22.8% 9.4 4.6 38.0% 14.5 1.8

GCS score Mean 37.6% 14.6 1.2 21.3% 9.9 4.1 37.1% 14.4 1.7 38.5% 14.6 1.3 22.8% 10.1 4.2 38.0% 14.4 1.7

GCS score Min 37.6% 13.7 2.7 21.3% 6.8 4.4 37.1% 13.5 3.1 38.5% 13.8 2.6 22.8% 7.8 4.6 38.0% 13.6 2.9

Heart rate Last (BPM) 0.7% 80.1 14.6 0.7% 94.5 24.0 0.7% 80.5 15.2 0.8% 80.4 14.7 1.0% 92.4 21.9 0.8% 80.7 15.1

Heart rate Max (BPM) 0.7% 114.9 32.7 0.7% 145.9 42.8 0.7% 115.9 33.5 0.8% 113.7 31.0 1.0% 138.3 41.2 0.8% 114.4 31.7

Heart rate Mean (BPM) 0.7% 81.3 13.2 0.7% 92.2 16.8 0.7% 81.6 13.5 0.8% 81.5 13.3 1.0% 91.6 16.9 0.8% 81.8 13.5

Heart rate Min (BPM) 0.7% 57.8 19.6 0.7% 51.3 27.0 0.7% 57.6 19.9 0.8% 58.8 18.9 1.0% 56.4 25.6 0.8% 58.8 19.2

Mean arterial pressure Last (mmHg) 0.4% 87.6 13.5 0.5% 74.5 19.1 0.4% 87.2 13.9 0.4% 87.7 13.7 0.9% 78.2 17.8 0.5% 87.4 13.9

Mean arterial pressure Mean (mmHg) 0.4% 87.5 11.1 0.5% 80.5 12.2 0.4% 87.3 11.2 0.4% 87.5 11.2 0.9% 81.0 11.9 0.5% 87.3 11.3

Mean arterial pressure SD (mmHg) 1.3% 11.6 4.3 0.8% 14.1 5.2 1.3% 11.6 4.3 1.3% 11.5 4.4 1.5% 14.2 5.9 1.3% 11.6 4.4

Pain Last 2.7% 2.6 3.1 33.3% 2.2 3.3 3.6% 2.6 3.1 3.3% 2.6 3.1 35.1% 2.3 3.3 4.2% 2.6 3.1

Pain Mean 2.7% 3.1 2.5 33.3% 2.3 2.5 3.6% 3.1 2.5 3.3% 3.1 2.5 35.1% 2.5 2.5 4.2% 3.1 2.5

Pain Min 2.7% 0.5 1.5 33.3% 0.5 1.9 3.6% 0.5 1.6 3.3% 0.5 1.5 35.1% 0.5 1.8 4.2% 0.5 1.5

Respiration rate Last (BPM) 25.6% 17.4 2.6 25.4% 21.1 7.4 25.6% 17.5 3.0 25.5% 17.4 2.7 25.5% 20.5 7.3 25.5% 17.5 3.0

Respiration rate Max (BPM) 25.6% 26.0 9.8 25.4% 37.6 14.2 25.6% 26.3 10.2 25.5% 25.5 9.2 25.5% 34.4 13.3 25.5% 25.8 9.4

Respiration rate Mean (BPM) 25.6% 16.8 2.9 25.4% 20.0 4.3 25.6% 16.9 3.0 25.5% 16.8 2.9 25.5% 19.4 4.4 25.5% 16.8 3.0

Respiration rate Min (BPM) 25.6% 10.6 5.4 25.4% 9.4 5.2 25.6% 10.6 5.4 25.5% 10.8 5.3 25.5% 10.2 5.2 25.5% 10.8 5.3

Respiration rate SD (BPM) 26.4% 3.0 1.9 25.6% 4.9 2.0 26.4% 3.0 1.9 26.2% 2.9 1.8 25.8% 4.6 2.5 26.2% 3.0 1.8

SpO2 Last (%) 26.6% 96.8 3.0 25.5% 93.6 9.8 26.6% 96.7 3.4 26.5% 96.8 2.8 25.7% 95.0 7.6 26.4% 96.8 3.1

SpO2 Mean (%) 26.6% 97.4 1.8 25.5% 96.3 3.4 26.6% 97.4 1.9 26.5% 97.4 1.9 25.7% 96.4 3.4 26.4% 97.4 2.0

SpO2 Min (%) 26.6% 89.1 10.4 25.5% 75.5 19.3 26.6% 88.7 11.0 26.5% 89.6 9.5 25.7% 79.6 17.1 26.4% 89.3 10.0

SpO2 SD (%) 27.4% 2.0 1.4 25.8% 3.7 2.9 27.4% 2.0 1.5 27.2% 2.0 1.3 25.9% 3.5 2.9 27.2% 2.0 1.4

Temperature Last (°F) 16.2% 98.2 1.0 13.4% 98.2 2.3 16.1% 98.2 1.1 16.7% 98.3 0.8 12.6% 98.2 2.2 16.6% 98.3 0.9

Temperature SD (°F) 18.7% 1.1 2.2 15.4% 1.6 2.0 18.6% 1.1 2.2 19.3% 1.0 2.1 14.9% 1.4 2.0 19.1% 1.0 2.1

Features—from laboratory data

Complete blood count

Lymphocytes SD (%) 0.0% 27.7 10.4 0.0% 19.0 14.6 0.0% 27.4 10.6 0.0% 27.5 10.5 0.0% 19.3 14.4 0.0% 27.3 10.8

Neutrophils Last (%) 0.0% 41.9 33.9 0.0% 60.0 34.8 0.0% 42.5 34.1 0.0% 41.7 34.3 0.0% 58.4 35.4 0.0% 42.2 34.5

Neutrophils SD (%) 0.0% 41.9 33.9 0.0% 60.0 34.8 0.0% 42.5 34.1 0.0% 41.7 34.3 0.0% 58.4 35.4 0.0% 42.2 34.5

PLT count Last (thousand/μL) 0.0% 248.3 96.8 0.0% 194.3 120.7 0.0% 246.6 98.0 0.0% 241.2 88.1 0.0% 188.0 112.7 0.0% 239.6 89.4

PLT count SD (thousand/μL) 0.0% 248.3 96.8 0.0% 194.3 120.7 0.0% 246.6 98.0 0.0% 241.2 88.1 0.0% 188.0 112.7 0.0% 239.6 89.4

RBC count Last (million/μL) 0.0% 4.2 0.9 0.0% 3.6 1.0 0.0% 4.2 0.9 0.0% 4.2 0.9 0.0% 3.6 1.0 0.0% 4.2 0.9

WBC count Last (million/μL) 0.0% 9.0 3.8 0.0% 13.6 8.4 0.0% 9.2 4.1 0.0% 9.1 3.9 0.0% 13.0 8.2 0.0% 9.2 4.2

WBC count SD (million/μL) 0.0% 9.0 3.8 0.0% 13.6 8.4 0.0% 9.2 4.1 0.0% 9.1 3.9 0.0% 13.0 8.2 0.0% 9.2 4.2

Chemistry results

Albumun Last (g/dL) 0.0% 4.0 0.6 0.0% 3.1 0.9 0.0% 3.9 0.6 0.0% 4.0 0.6 0.0% 3.2 0.9 0.0% 4.0 0.6

Albumun Mean (g/dL) 0.0% 4.0 0.6 0.0% 3.2 0.8 0.0% 4.0 0.6 0.0% 4.0 0.6 0.0% 3.3 0.9 0.0% 4.0 0.6

Anion gap Last (mEq/L) 0.0% 10.9 2.8 0.0% 13.8 6.0 0.0% 11.0 3.0 0.0% 10.9 2.8 0.0% 13.3 5.5 0.0% 11.0 2.9

AST (SGOT) (units/L of serum) 0.0% 28.4 25.5 0.0% 67.3 71.0 0.0% 29.5 28.7 0.0% 28.6 26.7 0.0% 61.2 66.1 0.0% 29.6 29.2

Bilirubin total Last (μmol/L) 0.0% 0.6 0.5 0.0% 1.2 1.3 0.0% 0.6 0.5 0.0% 0.6 0.5 0.0% 1.2 1.3 0.0% 0.6 0.5

BUN Last (mg/dL) 0.0% 15.9 11.0 0.0% 36.5 27.3 0.0% 16.5 12.3 0.0% 15.8 10.8 0.0% 32.4 23.1 0.0% 16.3 11.7

BUN Mean (mg/dL) 0.0% 16.4 10.9 0.0% 32.3 21.8 0.0% 16.9 11.7 0.0% 16.3 10.9 0.0% 30.5 21.0 0.0% 16.7 11.6

BUN SD (mg/dL) 0.0% 15.9 11.0 0.0% 36.5 27.3 0.0% 16.5 12.3 0.0% 15.8 10.8 0.0% 32.4 23.1 0.0% 16.3 11.7

EGFR Mean (mL/min/1.73 m2) 0.0% 62.0 20.0 0.0% 51.3 24.8 0.0% 61.7 20.2 0.0% 61.9 19.8 0.0% 51.5 25.6 0.0% 61.6 20.1

Glucose SD (mmol/L) 0.0% 114.6 45.2 0.0% 138.3 60.0 0.0% 115.3 45.9 0.0% 115.2 46.2 0.0% 139.9 60.6 0.0% 116.0 46.9

Sodium Last (mEq/L) 0.0% 139.0 3.2 0.0% 141.3 6.8 0.0% 139.0 3.4 0.0% 139.0 3.3 0.0% 140.8 6.7 0.0% 139.1 3.5

Arterial blood gas

Arterial pCO2 (mmHg) 0.0% 40.2 3.6 0.0% 40.7 9.9 0.0% 40.2 4.0 0.0% 40.2 3.6 0.0% 39.9 8.5 0.0% 40.2 3.8

Arterial pO2 (mmHg) 0.0% 96.0 28.8 0.0% 123.0 54.9 0.0% 96.8 30.3 0.0% 95.6 28.3 0.0% 120.4 55.0 0.0% 96.3 29.7

Coagulation

PTT Mean (s) 0.0% 31.7 6.9 0.0% 38.1 15.0 0.0% 31.9 7.3 0.0% 31.6 6.7 0.0% 37.7 15.6 0.0% 31.8 7.2

Protime Last (s) 0.0% 12.4 3.0 0.0% 17.5 7.7 0.0% 12.5 3.4 0.0% 12.3 3.0 0.0% 17.0 7.2 0.0% 12.5 3.3

Protime Mean (s) 0.0% 12.4 3.0 0.0% 17.2 6.5 0.0% 12.5 3.2 0.0% 12.4 3.0 0.0% 16.9 6.4 0.0% 12.5 3.2

Protime SD (s) 0.0% 12.4 3.0 0.0% 17.5 7.7 0.0% 12.5 3.4 0.0% 12.3 3.0 0.0% 17.0 7.2 0.0% 12.5 3.3

SD, standard deviation; GCS, Glasgow Coma Score; Min, minimum; Max, maximum; PLT, platelet; RBC, red blood cell; WBC, white blood cell; BUN, blood urea nitrogen; PTT, partial thromboblastin time.
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Table S4 Data features (categorical variables)

Features

Train—80% Test—20%

Alive  
(n=137,000—97.0%)

Dead  
(n=4,220—3.0%)

Total (n=141,220)
Alive  

(n=34,251—97.0%)
Dead  

(n=1,055—3.0%)
Total (n=35,306)

Count Proportion Count Proportion Count Proportion Count Proportion Count Proportion Count Proportion

ATC R03AA—alpha and beta adrenoreceptor agonists

0 132,663 96.8% 3,166 75.0% 135,829 96.2% 33,357 97.4% 866 82.1% 34,223 96.9%

1 4,337 3.2% 1,054 25.0% 5,391 3.8% 894 2.6% 189 17.9% 1,083 3.1%

Demographics—sex (M)

0 76,400 55.8% 1,807 42.8% 78,207 55.4% 19,037 55.6% 482 45.7% 19,519 55.3%

1 60,600 44.2% 2,413 57.2% 63,013 44.6% 15,214 44.4% 573 54.3% 15,787 44.7%

ICD/CCSR—other lower respiratory disease

0 122,239 89.2% 3,187 75.5% 125,426 88.8% 30,612 89.4% 811 76.9% 31,423 89.0%

1 14,761 10.8% 1,033 24.5% 15,794 11.2% 3,639 10.6% 244 23.1% 3,883 11.0%

Lab—arterial pCO2 low

0 129,216 94.3% 2,169 51.4% 131,385 93.0% 32,560 95.1% 599 56.8% 33,159 93.9%

1 7,784 5.7% 2,051 48.6% 9,835 7.0% 1,691 4.9% 456 43.2% 2,147 6.1%

LOS

1 24,423 17.8% 814 19.3% 25,237 17.9% 6,106 17.8% 203 19.2% 6,309 17.9%

2 30,020 21.9% 436 10.3% 30,456 21.6% 7,505 21.9% 109 10.3% 7,614 21.6%

3 22,656 16.5% 330 7.8% 22,986 16.3% 5,664 16.5% 83 7.9% 5,747 16.3%

4 14,034 10.2% 287 6.8% 14,321 10.1% 3,509 10.2% 72 6.8% 3,581 10.1%

5 9,352 6.8% 243 5.8% 9,595 6.8% 2,338 6.8% 61 5.8% 2,399 6.8%

6 6,828 5.0% 206 4.9% 7,034 5.0% 1,707 5.0% 51 4.8% 1,758 5.0%

7+ 29,687 21.7% 1,904 45.1% 31,591 22.4% 7,422 21.7% 476 45.1% 7,898 22.4%

Tobacco status—never smoker

0 76,329 55.7% 3,013 71.4% 79,342 56.2% 19,030 55.6% 753 71.4% 19,783 56.0%

1 60,671 44.3% 1,207 28.6% 61,878 43.8% 15,221 44.4% 302 28.6% 15,523 44.0%

ICD, international classification of diseases; CCSR, clinical classifications software refined; Lab, laboratory; LOS, length of stay. 



Table S5 Performance metrics with CI between MONITOR, Braden, and GCS

Model LOS Accuracy AUROC Recall Precision AUPRC F1 F2

MONITOR 1 0.894 (95% CI: 0.891–0.897) 0.911 (95% CI: 0.902–0.919) 0.750 (95% CI: 0.725–0.775) 0.185 (95% CI: 0.174–0.198) 0.370 (95% CI: 0.339–0.402) 0.297 (95% CI: 0.281–0.314) 0.466 (95% CI: 0.446–0.486)

2 0.916 (95% CI: 0.913–0.919) 0.920 (95% CI: 0.911–0.928) 0.729 (95% CI: 0.701–0.758) 0.220 (95% CI: 0.204–0.235) 0.376 (95% CI: 0.342–0.409) 0.338 (95% CI: 0.317–0.356) 0.498 (95% CI: 0.475–0.520)

3 0.904 (95% CI: 0.900–0.908) 0.915 (95% CI: 0.904–0.924) 0.738 (95% CI: 0.707–0.769) 0.228 (95% CI: 0.212–0.245) 0.381 (95% CI: 0.346–0.421) 0.349 (95% CI: 0.328–0.370) 0.510 (95% CI: 0.485–0.535)

4 0.885 (95% CI: 0.880–0.891) 0.901 (95% CI: 0.888–0.913) 0.740 (95% CI: 0.705–0.775) 0.231 (95% CI: 0.212–0.249) 0.381 (95% CI: 0.342–0.422) 0.352 (95% CI: 0.328–0.376) 0.513 (95% CI: 0.486–0.541)

5 0.871 (95% CI: 0.865–0.877) 0.892 (95% CI: 0.879–0.905) 0.759 (95% CI: 0.725–0.791) 0.241 (95% CI: 0.221–0.261) 0.362 (95% CI: 0.323–0.402) 0.366 (95% CI: 0.341–0.390) 0.531 (95% CI: 0.503–0.556)

6 0.856 (95% CI: 0.849–0.863) 0.890 (95% CI: 0.876–0.903) 0.757 (95% CI: 0.717–0.795) 0.240 (95% CI: 0.220–0.259) 0.391 (95% CI: 0.347–0.436) 0.364 (95% CI: 0.339–0.389) 0.529 (95% CI: 0.499–0.555)

7 0.852 (95% CI: 0.845–0.860) 0.886 (95% CI: 0.870–0.900) 0.756 (95% CI: 0.717–0.795) 0.255 (95% CI: 0.232–0.279) 0.388 (95% CI: 0.340–0.436) 0.381 (95% CI: 0.354–0.410) 0.543 (95% CI: 0.512–0.575)

Braden 
Score

1 0.945 (95% CI: 0.942–0.947) 0.661 (95% CI: 0.646–0.676) 0.358 (95% CI: 0.330–0.389) 0.229 (95% CI: 0.210–0.250) 0.102 (95% CI: 0.089–0.115) 0.280 (95% CI: 0.257–0.302) 0.322 (95% CI: 0.297–0.347)

2 0.919 (95% CI: 0.916–0.922) 0.752 (95% CI: 0.737–0.768) 0.575 (95% CI: 0.543–0.605) 0.199 (95% CI: 0.182–0.215) 0.127 (95% CI: 0.114–0.141) 0.295 (95% CI: 0.275–0.317) 0.417 (95% CI: 0.393–0.442)

3 0.901 (95% CI: 0.897–0.905) 0.734 (95% CI: 0.716–0.752) 0.554 (95% CI: 0.519–0.591) 0.187 (95% CI: 0.171–0.204) 0.119 (95% CI: 0.106–0.134) 0.280 (95% CI: 0.259–0.302) 0.398 (95% CI: 0.372–0.425)

4 0.882 (95% CI: 0.877–0.888) 0.726 (95% CI: 0.706–0.746) 0.554 (95% CI: 0.515–0.592) 0.191 (95% CI: 0.174–0.210) 0.125 (95% CI: 0.111–0.141) 0.284 (95% CI: 0.262–0.309) 0.402 (95% CI: 0.374–0.432)

5 0.864 (95% CI: 0.859–0.870) 0.718 (95% CI: 0.699–0.740) 0.557 (95% CI: 0.518–0.599) 0.193 (95% CI: 0.175–0.212) 0.129 (95% CI: 0.115–0.145) 0.287 (95% CI: 0.264–0.311) 0.404 (95% CI: 0.377–0.434)

6 0.850 (95% CI: 0.843–0.857) 0.717 (95% CI: 0.696–0.738) 0.568 (95% CI: 0.525–0.608) 0.197 (95% CI: 0.177–0.216) 0.135 (95% CI: 0.119–0.151) 0.292 (95% CI: 0.267–0.316) 0.412 (95% CI: 0.379–0.440)

7 0.838 (95% CI: 0.830–0.847) 0.707 (95% CI: 0.684–0.731) 0.557 (95% CI: 0.510–0.605) 0.199 (95% CI: 0.177–0.222) 0.138 (95% CI: 0.120–0.157) 0.293 (95% CI: 0.265–0.322) 0.410 (95% CI: 0.374–0.446)

GCS Score 1 0.946 (95% CI: 0.944–0.948) 0.657 (95% CI: 0.644–0.671) 0.351 (95% CI: 0.323–0.378) 0.232 (95% CI: 0.212–0.253) 0.101 (95% CI: 0.089–0.113) 0.279 (95% CI: 0.258–0.301) 0.318 (95% CI: 0.294–0.342)

2 0.946 (95% CI: 0.943–0.948) 0.674 (95% CI: 0.658–0.690) 0.385 (95% CI: 0.353–0.417) 0.238 (95% CI: 0.215–0.260) 0.110 (95% CI: 0.096–0.125) 0.294 (95% CI: 0.269–0.319) 0.342 (95% CI: 0.314–0.370)

3 0.938 (95% CI: 0.935–0.941) 0.670 (95% CI: 0.652–0.688) 0.381 (95% CI: 0.346–0.417) 0.247 (95% CI: 0.224–0.274) 0.116 (95% CI: 0.101–0.133) 0.300 (95% CI: 0.273–0.328) 0.344 (95% CI: 0.313–0.376)

4 0.927 (95% CI: 0.923–0.931) 0.663 (95% CI: 0.645–0.682) 0.376 (95% CI: 0.338–0.411) 0.254 (95% CI: 0.227–0.283) 0.122 (95% CI: 0.105–0.141) 0.303 (95% CI: 0.273–0.333) 0.343 (95% CI: 0.310–0.375)

5 0.917 (95% CI: 0.911–0.921) 0.661 (95% CI: 0.641–0.679) 0.377 (95% CI: 0.339–0.412) 0.259 (95% CI: 0.230–0.288) 0.128 (95% CI: 0.110–0.146) 0.307 (95% CI: 0.275–0.336) 0.345 (95% CI: 0.310–0.377)

6 0.906 (95% CI: 0.901–0.912) 0.665 (95% CI: 0.642–0.688) 0.394 (95% CI: 0.350–0.440) 0.262 (95% CI: 0.230–0.295) 0.137 (95% CI: 0.115–0.159) 0.315 (95% CI: 0.279–0.349) 0.358 (95% CI: 0.318–0.397)

7 0.898 (95% CI: 0.891–0.905) 0.666 (95% CI: 0.643–0.688) 0.402 (95% CI: 0.358–0.447) 0.269 (95% CI: 0.235–0.304) 0.144 (95% CI: 0.123–0.168) 0.322 (95% CI: 0.287–0.358) 0.365 (95% CI: 0.327–0.404)

CI, confidence intervals; GCS, Glasgow Coma Score; LOS, length of stay; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve. 
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