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Background and Objective: Artificial intelligence (AI) uses computers and machines to simulate how 
the human mind makes decisions and solves problems. In radiotherapy practice, AI technologies continue 
to be promising in image registration, synthetic computed tomography (CT), image segmentation, motion 
management, treatment planning, and delivery procedures, patient follow-up and quality assurance (QA). 
This, therefore, provides a new window of opportunity to improve upon the accuracy and output times of the 
manual implementation of these procedures. The goal of this review was to explore how machine learning AI 
technologies in radiotherapy could affect the clinical practice of medical physicists. 
Methods: A narrative literature review was conducted from PubMed, Science Direct and Scopus using the 
search terms: artificial intelligence, medical physicist, radiation therapy, radiation oncology, and treatment planning 
in the English language within 6 months.
Key Content and Findings: The roles of AI and the clinical medical physicist are complementary in 
radiotherapy practice. Both the medical physicists and AI technology are highly needed to support the full 
implementation and optimization of radiotherapy procedures.
Conclusions: To achieve successful implementation of AI in radiotherapy and optimize radiotherapy 
procedures, clinical medical physicist should receive some compulsory training in AI technologies during 
their education and training. They should ultimately be involved in the incorporation of machine learning 
technologies in radiotherapy equipment. 
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Introduction

Medical physicists play a critical role in radiation therapy 
by contributing to the processes of simulation, treatment 
planning, dose delivery, and post-treatment follow-up (1). 
It however appears that advances in technologies employed 
for radiation therapy procedures are gradually limiting the 
direct involvement of medical physicists in these clinical 
radiotherapy procedures. Technologies now incorporate 
artificial intelligence (AI) in the radiotherapy process; 
AI tools implement algorithms in radiation machines 
and imaging equipment to accurately plan and deliver 
radiation treatment (2). The need for AI in radiotherapy 
practice has become necessary because the workflow of 
radiation therapy is time-consuming due to the multiple 
manual inputs involving the medical physicist, radiation 
oncologist, dosimetrist, and radiation therapist, coupled 
with the increasing incidence of cancer (3,4). As a result, AI 
has the benefit of reducing human intervention, workload, 
and treatment technique bias, potentially improving plan 
quality and accuracy of treatment planning procedures (5). 
AI was first introduced in the United States in 1956 during 
the Summer Research Project at Dartmouth College (3,4). 
It uses machine learning to apply data-driven algorithms 
to copy human habits and deep learning to develop 
models (6,7). The computer algorithms execute tasks that 
need human intelligence to increase performance (8). 
For example, through AI, data obtained from computed 
tomography (CT) scans can instantly be uploaded 
to a treatment planning system without manual dose 
calculations. In addition, for complex body tissues involving 
many cross-sections, computerized planning systems 
via dose distribution algorithms are more accurate and 
feasible than manual dose calculations (2). For full clinical 
adoption of AI, a specialized multidisciplinary team (e.g., 
radiation oncologist, medical physicist, IT professional, and 
radiation therapist) who have a fundamental understanding 
of relevant AI models and patient cohorts are required to 
assess the strength and limitations of AI in radiation therapy 
to guarantee patient safety (5). However, the people who 
plan the treatments are frequently less familiar with these 
algorithms due to their limited knowledge underlying the 
theoretical principles of the algorithms. This means that the 
person who executes treatment planning operations other 
than the medical physicist will eventually become an expert. 
Hence, the role of a medical physicist may be shifted from 
treatment planning procedures (2). This review presents 
the applications of AI in radiotherapy practice, with the 

evolving role of the medical physicist in radiation therapy in 
the era of AI. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
https://jmai.amegroups.com/article/view/10.21037/jmai-
22-27/rc).

Methods

This review provides an overview of the application 
of AI in the delivery of radiotherapy and examines the 
evolving role of the medical physicist in the radiotherapy 
workflow. A preliminary search of the literature on AI in 
radiation practice was conducted to identify relevant studies 
previously published. Table 1 below shows a summary of the 
search strategy.

Content and findings 

Applications of AI in radiotherapy practice

Monte Carlo (MC) simulation has been the acknowledged 
target standard for treatment planning methods in 
radiotherapy because of its ability to give a real physical 
interaction process in biological tissues. These simulations, 
on the other hand, are complex, time-consuming, and 
necessitate a significant amount of processing and data 
storage power. Using patient data, AI can provide more 
efficient, convenient, and tailored therapeutic practice 
in a shorter amount of time (9). Radiation therapy uses 
high-energy beams to kill cancer cells. The process is 
not straightforward but involves a multitude of steps in 
sequential order. There are five steps (Figure 1) in the 
general radiation therapy procedure. 

Initial consultation

The first step in the radiotherapy procedure is consultation, 
which can be frustrating especially when the waiting 
time for an appointment or consultation is too long (10). 
During consultation, the radiation oncologist decides on 
the most appropriate radiation treatment method using 
the clinical information obtained from the patient. Based 
on the medical history, pathology information, physical 
examinations, patient symptoms, and diagnostic report, the 
radiation oncologist can recommend treatment plans (8). 
To assist radiation oncology staff, AI can allow an integrated 
and thorough assessment of the patient’s status using all 
accessible information in oncology information systems. 

https://jmai.amegroups.com/article/view/10.21037/jmai-22-27/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-22-27/rc
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Because machines are generally dedicated to a specific duty, 
a radiation oncologist’s judgment can be more accurate than 
those made by AI machines (e.g., patient identification, 
prioritization, monitoring, or patient workflow checks). 
Radiation oncologists contact patients on a regular basis and 

are capable of understanding their unstated requirements and 
values. In this respect, AI technologies should be viewed as 
computer assistants to the staff, who would still be in charge 
of patient care (11). Before seeing a doctor, the AI module 
can assist in evaluating outpatients, depending on their main 
complaints by automatically scheduling imaging or laboratory 
tests. This would drastically reduce patient waiting times and, 
as a result, improve outpatient service processes (10). AI has 
proven to be promising in predicting pathological responses 
with treatment methods (e.g., chemotherapy, surgery, or 
radiation therapy) and treatment outcomes using patient data 
to conduct simulation routines (8).

Simulation

This phase of radiation therapy uses data obtained from the 
initial consultation to simulate the exact tumor location and 
configuration of the treatment beam via X-ray or CT scans. 
During this phase, the patient is immobilized to avoid gross 
body motion and target areas to be irradiated are accurately 
marked manually with a tiny tattoo dot. The procedure can 
be complex depending on the site of the tumor especially 
when it involves organ motion (8,12). The simulation phase 
includes image registration, synthetic CT (sCT)/MRI, 
image segmentation, motion management, etc.

Image registration
The process of determining a spatial transformation that 
maps two or more images to a common coordinate frame 
so that related anatomical structures are properly aligned is 
known as image registration (13). Many clinical applications 
use medical image registration, including image guidance, 
motion tracking, segmentation, dose accumulation, and 
image reconstruction (14). Image registration methods can 

1 
Initial 

consultation

5 
Post treatment 

follow-up

2 
Simulation

3 
Treatment 
planning

4 
Treatment
delivery

Radiation 
therapy procedure

Table 1 The search strategy summary of the literature

Items Specification

Date of search March 22, 2022 to May 2, 2022.

Databases and other sources searched PubMed, Scopus, and Science Direct

Search terms used Artificial intelligence, medical physicist, radiation therapy, radiation oncology, and treatment 
planning

Time frame 2002 to 2022

Inclusion and exclusion criteria Articles published in the English Language were included in the review. Articles published in 
any other language were excluded

Selection process The search was conducted independently by all authors

Figure 1 Steps in radiation therapy. The radiation therapy process 
begins with an initial consultation among the clinical team (step 1)  
regarding a treatment plan. The plan to be implemented is 
then simulated using computer software (step 2), which is then 
subsequently planned on the patient (step 3) delineating the treatment 
and target volumes and dosage estimation. Radiation is then delivered 
(step 4) based on the treatment plan, and the patient follows up after 
every session of treatment (where radiation is fractionated), or only 
returns for evaluation of the effectiveness of the treatment (in one-
dose treatment procedures). The process is repeated in a cycle when 
more treatment sessions are required (step 5 to 1). 
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be divided into intensity-based and feature-based. The (dis)
similarity of the two images is described in terms of the 
correlation between pixel/voxel intensities in intensity-based 
registration (15). The intensity-based image registration 
approach immediately establishes the similarity measure 
function based on intensity information and then registers 
the images by performing the associated transformation. 
Examples of traditional algorithms used in this approach 
are cross-correlation, mutual information, and the sequence 
similarity detection technique (16). Image features (such 
as edges, lines, contours, and point-based features) are 
extracted prior to the registration process in feature-based 
registration approaches, and the correspondence between 
these features is utilized to establish the (dis)similarity. Both 
types of approaches rely on establishing the transform that 
minimizes a cost function that describes the dissimilarity 
between the fixed image and the transformed moving 
image, assuming one of the images is fixed and the other is 
moving (15). Examples of transformation models used to 
bring the images into the same coordinate system based on 
the region of interest (i.e., brain, thorax, lung, abdomen, 
etc.) include rigid, affine, parametric splines, and dense 
motion fields. The aligned images could then be used 
to supplement decision-making, allow for longitudinal 
change analysis, or guide minimally invasive therapy (17). 
Conventional image registration is an iterative optimization 
procedure that involves extracting proper features, choosing 
a similarity measure (to assess registration quality), selecting 
a transformation model, and finally, investigating the search 
space with a mechanism. Multi-modal image registration 
with the conventional method is not efficient and could 
cause stagnation or convergence. Besides, conventional 
image registration can be extremely slow due to the iterative 
manner of its implementation (18). 

Deep learning AI algorithms can learn the optimum 
features for registration directly from the input data. 
The affine image registration deep learning model was 
effectively utilized to predict transformation parameters 
and register two 3D images using a twelve-element output 
vector modified from 2D DenseNet. To extract features 
from the image pair, an encoder was initially utilized. The 
characteristics were then concatenated as input to many 
fully connected layers, which used regression to fulfill the 
registration process (15).

Other types of deep learning AI models used in medical 
image registration include CNN, Staked Auto-Encoders 
(SAEs), Generative Adversarial Network (GAN), Recurrent 
Neural Network (RNN), and Deep Reinforcement 

Learning (DRL). Among these models, the CNNs are 
considered the most successful and powerful deep learning 
approaches since the entire image (or certain extracted 
patches) is fed directly to the network. In terms of accuracy 
and computing efficiency, the CNNs have surpassed similar 
existing state-of-the-art approaches. With CNN, Kernels 
are trained to extract the most important features by 
convolving with the input. The output of each layer, known 
as a feature map, is then fed into the next layer, and when 
the number of layers is large enough, a hierarchical feature 
set can be obtained, allowing the network to be classified 
as deep CNN. For the final classification, the feature maps 
of the last layer are concatenated and vectorized to feed a 
fully linked two or three-layer network (18). For instance, 
to forecast parameters for rigid-body transformations and 
conduct multi-modal medical image registration, synthetic 
images could be created from a manual transformation and 
trained with the CNN regression model. The model could 
be first trained on a large number of synthetic images and 
then fine-tuned with a smaller number of image sets (18). 
Researchers have obtained some results using deep learning 
algorithms in the registration of chest CT images, brain 
CT and MR images, 2D X-ray and 3D CT images since the 
first registered spinal ultrasonography and CT images using 
CNN (16).

Synthetic CT/MRI
Both CT and MRI images are vital to radiotherapy 
treatment planning workflow. Whiles CT images rely on 
electron density maps to calculate organ doses, MRI images 
are used to segment and delineate organs at risk (OARs) 
because of their exceptional soft-tissue contrast. sCT 
generation refers to the methods for generating electron 
density and CT images from MR images (19). There are 
three types of sCT generation methods: bulk density, atlas-
based, and machine learning (ML) methods (including 
deep learning methods). The bulk density methods divide 
MRI images into various categories (usually air, soft tissue, 
and bone). The dose can then be estimated by assigning a 
homogenous electron density to each of these delimited 
volumes. The atlas-based approach on the other hand 
follows a fusion step to generate the sCT by registering 
one or more co-registered MRI-CT atlases with a target 
MRI (20). Guerreiro et al. (21) demonstrated the viability 
of treating children with abdominal malignancies using 
automatic atlas-based segmentation of tissue classes 
followed by a voxel-based MRI intensity to Hounsfield unit 
(HU) conversion algorithm. 
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Deep learning generates sCT by modeling the 
associations between HU CT readings and MRI intensities. 
Once the optimal DL parameters have been determined, 
the model can be used to create the associated sCT from a 
test MRI. Deep learning models have the benefit of being 
quick to generate sCTs, and some do not even require 
deformable inter-patient registration (20). Deep learning-
based methods are gaining popularity for image synthesis 
because they can give a more complicated nonlinear 
mapping from input to output image through a multilayer 
and fully trainable model (19). CNNs are a common type 
of deep neural network (DNN) that detect image features 
using a series of convolution kernels/filters. It consists of 
three layers (i.e., an input layer, multiple hidden layers, 
and an output layer). Convolutions with trainable kernels 
are performed in the hidden layers (20). Han used a CNN 
model consisting of 27 convolutional layers interspersed 
with pooling and un-pooling layers and 37 million free 
parameters to create sCT using CT and T1-weighted MR 
brain tumor images of eighteen patients. When trained 
via principal transfer, the model was capable of learning 
a direct end-to-end mapping from MR images to their 
corresponding CTs. The average mean absolute error  
(84.8±17.3 HU) for all individuals was found to be much 
lower than the atlas-based method’s average mean absolute 
error (94.5±17.8 HU). When the mean squared error and 
the Pearson correlation coefficient were examined, the 
CNN approach showed much superior accuracy (22).

Image segmentation
The technique  o f  ex t rac t ing  the  des i red  ob jec t 
(organ) from a medical image (2D or 3D) is known as 
medical image segmentation. There are two types of 
segmentation: intensity-based segmentation and shape-
based segmentation. The idea of the former is that voxels 
within an organ of interest have similar intensity (gray 
value), whereas the latter group assumes that the shape of 
the target to be segmented is roughly known (23). Auto 
segmentation algorithms based on machine learning AI 
can successfully contour structures with typical shapes or 
identify them from among other surrounding organs (24).  
For example, during segmentation users initially define 
precise imaging parameters and features, based on 
professional knowledge to extract the shapes, areas, and 
histogram of image pixels of regions of interest (i.e., tumor 
regions). To understand the features, a specific AI machine 
learning algorithm is chosen for training using part of the 
specified number of available data items, while the rest 

is used for testing. Principal component analysis (PCA), 
support vector machines (SVMs), and convolutional neural 
networks (CNNs) are examples of algorithms. The trained 
algorithm is then meant to recognize the features and 
classify the image for a particular testing image (25). The 
CNN, a key block in the building of deep networks, is the 
most efficient model for image analysis. CNN entails the 
creation of a number of optimization techniques, including 
LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet, and 
ResNet. CNN is a robust feature extractor that can extract 
features from images and has a deep layer. Deep learning 
techniques, particularly convolutional networks, are 
quickly gaining popularity as a way of evaluating medical 
images (26). AI in three dimensions CNN was utilized 
to delineate nasopharyngeal cancer with a 79% accuracy, 
well-matched with delineation performed by a radiation 
specialist (8,24,27). With AI advancements, segmentation 
applications may be able to outline increasingly difficult 
structures including the prostate, spinal canal, and planning 
target volume (PTV) (28).

Motion management
Treatment of lesions in the thorax and upper abdomen is 
complicated by respiratory motion. Organs and tumors in 
the thoracic and abdominal cavities move in a dynamic and 
complex manner due to daily physiological changes, which 
can vary minute by minute or breath by breath. Breath-
holding has become more common in breast irradiation to 
decrease pulmonary and cardiac damage. To accommodate 
for respiratory motion, respiratory motion management 
(RMM) has traditionally relied on the inclusion of 
considerable planning margins. The images obtained during 
simulation can be a useful source of respiratory motion 
data (29). AI algorithms can be applied to the motion data 
to optimize the simulation phase and correct for errors 
resulting from organ motion (8). AI can create strong-
motion management models that account for motion 
variations, such as magnitude, amplitude, and frequency. 
These models can predict respiratory motion using data 
from external surrogate makers as inputs (30). 

Using CNN and the adaptive neuro-fuzzy inference 
system, Zhou et al. (31) created an AI model to predict 3D 
tumor movements (ANFIS). Patients whose respiration-
induced motion of the tumor fiducial markers exceeded 
8 mm were given 1,079 logfiles of infrared reflective (IR) 
marker-based hybrid real-time tumor tracking. The CNN 
model’s historical dataset included 1,003 logfiles, with the 
remaining 76 logfiles supplementing the evaluation dataset. 
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The logfiles captured the positions of external IR markers 
at 60 Hz and fiducial markers as surrogates for detected 
target positions every 80–640 ms for 20–40 seconds. The 
prediction models for each log file in the evaluation dataset 
were trained using data from the first three-quarters of 
the recording period. The percentage of projected target 
positions within 2 mm of the detected target position was 
used to rank the overall performance of the AI-driven 
prediction models. For the CNN and ANFIS, the projected 
target location was 95.1% and 92.6% within 2 mm of the 
detected target position, respectively. When compared to 
a regression model, AI-driven prediction models beat the 
regression model, with the CNN model doing marginally 
better than the ANFIS model overall (31).

Similarly, Lin et al. (32) also trained a super learner model 
that integrates four base machine models (i.e., Random 
Forest, Multi-Layer Perceptron, LightGBM, and XGBoost) 
to assess lung tumor movements in 3D space. As inputs, they 
used sixteen non-4D diagnostic CT imaging features and 
eleven clinical features derived from the Electronic Health 
Record (EHR) database. Tumor motion predictions in the 
superior-inferior (SI), anterior-posterior (AP), and left-
right (LR) directions were generated by the super-learner 
model and compared to tumor motions detected in free-
breathing 4D CT images. Mean Absolute Error (MAE) 
and Root Mean Square Error (RMSE) were used to assess 
prediction accuracy. In the SI direction, the MAE and RMSE 
of forecasts were 1.23 and 1.70 mm; in the AP direction, the 
MAE and RMSE of predictions were 0.81 and 1.19 mm; 
and in the LR direction, the MAE and RMSE of predictions 
were 0.70 and 0.95 mm. According to the findings, the super-
learner model can reliably predict tumor motion ranges 
as assessed by 4D CT and could give a machine learning 
framework to help radiation oncologists decide on an active 
motion management strategy for patients with substantial 
tumor motion (32). Therefore, by accounting for changes in 
organ motion during the course of treatment, AI can enhance 
precision during adaptive radiation therapy to ensure that 
the proper dose is delivered at the right time to the right spot 
with little damage to healthy tissue.

Treatment planning

The primary goal of treatment planning is to deliver an 
appropriate dose of radiation to the tumor or cancer cells 
while minimizing the dose to surrounding healthy tissues as 
low as reasonably achievable (3). AI technology can extract 
and analyze a significant quantity of clinical data from 

medical records and generate cancer treatment options, 
allowing treatment plans to be developed automatically 
from the learning of clinical big data of cancer patients (27).  
Because of automated treatment planning (ATP), plan 
generating time and repetitive human interactions have both 
been reduced (33). Previously, machine learning techniques 
were the most common application in ATP based on the 
fact that many cases exhibit patient-geometrical and clinical-
goal characteristics (34). More recently, deep learning 
algorithms are largely used to automatically generate 
treatment plans and optimal radiation doses for cancer 
patients (8). Xia et al. (35) created a deep learning-based 
automatic treatment plan for rectal cancer patients. A CNN 
was used in the segmentation of targets, OARs, as well as 
dose distribution. Manual segmentation was compared to 
PTV and OAR automatic segmentation. Between the auto 
and manual plans, there were no significant differences (35).  
There are different methods for generating automatic 
treatment plans, most of which are centered on a knowledge 
base DVH set derived from voxel-based dose distribution 
and open-source fluence map optimization (36). 

Knowledge-based dose-volume histogram (DVH) 
The knowledge-based DVH is one of the most reliable 
methods for achieving desired target dose conformity and 
sufficient sparing of critical structures in both IMRT and 
VMAT planning (37,38). The goal of knowledge-based 
planning (KBP) is to lessen the impact of user variability 
on final plan quality. This is accomplished by referring to 
a “model” that was created with the best treatment options 
in mind. Given the relative geometry and departmental 
planning technique, KBP determines the link between 
the dose to at-risk organs and treatment goals. Based on 
previous plans with similar characteristics, this information 
is utilized to estimate the DVH for each new patient (39). 
Information acquired from KBP can be used to create 
automatic treatment plans. Certain automated procedures 
can use this data as input to a treatment planning system. 
The development of automatic treatment plans entails 
analyzing similar prior “good” cases, which necessitates 
directly introducing certain planning characteristics (e.g., 
beam configurations and DVH objectives in inverse 
planning) or using them as decision references for a 
current case. Using best clinical judgment and knowledge, 
researchers have used statistical models to extract key 
aspects from earlier “good” cases (36). 

Knowledge-based DVH prediction has demonstrated 
promising outcomes, particularly in the treatment planning 



Journal of Medical Artificial Intelligence, 2022 Page 7 of 16

© AME Publishing Company. J Med Artif Intell 2022;5:13 | https://dx.doi.org/10.21037/jmai-22-27

of head and neck, pancreatic, and prostate cancers (37). 
Kostovski developed automated plan models for head and 
neck and prostate IMRT. The geometry of an organ at risk 
(OAR) relative to the PTV was represented by the distance-
to-target histogram (DTH), and characteristic geometry 
and dosimetric features were derived from DTH and DVH 
by PCA. The method provided a precise dose prediction 
in both modeled sites. However, due to a lack of specific 
knowledge, the DVH-based technique was not perfect, as 
planners may need more time to address some instances 
with sophisticated OAR/target geometry (33).

Researchers have looked into various deep learning 
network designs for knowledge-based predictions during 
the last few years. For instance, U-Net, which was originally 
developed for image segmentation, has recently been utilized 
to forecast the radiation dosage distribution without the 
requirement for the sophisticated dose computations that 
are commonly employed in treatment planning (40). Zhong  
et al. (41) showed that by utilizing voxel-based dosage 
prediction, the clinical application of ATP for renal cancer 
patients is feasible. In their study, PTVs and contour 
delineation of the OARs were used as input and 3D 
dose distribution as output to create a 3D-UNet deep 
learning model. Intensity-modulated radiation treatment 
(IMRT) plans were developed automatically using post-
optimization procedures based on the voxel-wise predicted 
dose distribution, including a complicated clinical dose goal 
metrics homogeneity index (HI) and conformation index (CI). 
The 3D dose distributions of the plan, as well as the DVH 
parameters of OARs and PTV, were compared to those of 
manual plans. The ATP system has the ability to generate 
IMRT plans that are clinically acceptable and equivalent to 
dosimetrist-generated plans (41). The U-Net design has also 
been employed in radiopharmaceutical dosimetry, where the 
network was trained to predict 3D dose rate maps from mass 
density and radioactivity maps (40).

RapidPlan (Varian Medical Systems, Palo Alto, CA, 
USA), a new commercial KBP optimization engine, was 
created and released for clinical usage. RapidPlan predicts 
feasible DVHs and produces optimization objectives 
automatically to actualize the prediction. Although the 
benefits of RapidPlan are still being researched, many 
reports of improvements in sparing OARs using KBP have 
been published. KBP’s mechanical and dosimetric accuracy 
have also been validated, indicating that it might be utilized 
safely in clinical practice (42).

The usage of KBP could aid workers who are not 
familiar with inverse planning, allowing them to produce 

automatic plans that are comparable to those produced by 
expert planners. Experienced planners may also benefit 
from a preliminary set of goals that will result in a high-
quality plan, decreasing the time and effort required for 
plan optimization. KBP could also be used as a teaching 
tool for novice planners, as well as a tool to quantitatively 
verify the quality of an RT plan. This could result in higher 
average plan quality, lower inter-patient plan variability, 
faster patient throughput, and possibly better patient 
outcomes (39).

Auto fluence map optimization
A fluence map is a two-dimensional (2D) photon intensity 
image of a single beam that forecasts the dosage distribution 
of that beam in the patient. The fluence map optimization 
problem can be thought of as an inverse problem in which 
one specifies the desired dose distribution and then seeks 
to find the optimal beamlet intensity vector to actualize 
it. This prediction paradigm necessitates a second inverse 
optimization phase to convert the desired dosage to 
deliverable fluence maps that match machine specification 
parameters such as MLC leaf control points (43,44). 

Wang et al. (43) utilized direct prediction of fluence 
maps and anticipated field dose distribution from CT 
images of patient anatomy to generate automatic treatment 
plans for pancreas stereotactic body radiation therapy. 
The method employed a deep learning model with two 
CNNs, one of which predicts the field-dose distributions 
in the region of interest and the other the final fluence 
map per beam. The anticipated fluence maps were input 
into a treatment planning system for leaf sequencing and 
dose computation. The gold standard for training the 
model was a nine-beam benchmark plan with standardized 
goal prescription and organ-at-risk constraints data. The 
quality of the automatic treatment plan was found to be 
clinically feasible when compared to manual planning (43). 
Ma et al. (45) also suggested a DL-based inverse mapping 
method for predicting fluence maps for desired VMAT 
dose distributions, which was backed up by a theoretical 
foundation. Clinical Head and Neck full-arc VMAT designs 
were used to train and evaluate this fluence map prediction 
approach (45).

In a different study, a DNN was effectively employed 
to automatically forecast clinically acceptable dose 
distributions from organ outlines in IMRT. Organ outlines 
and dose distributions from 240 prostate plans were used 
in training the DNN. With just a few errors, the DDN 
was able to generate fluence maps. Following training, 
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45 synthetic plans (SPs) were created using the generated 
fluence maps. The SPs were then compared with clinical 
plans (CPs) using a variety of plan quality metrics such as 
homogeneity and conformity indices for the target and 
dose constraints for OAR such as the rectum, bladder, and 
bowel. The SPs’ attributes were comparable to those of the 
corresponding CPs. The time it took to generate fluence 
maps and the quality of SPs showed that the suggested 
method has the potential to increase treatment planning 
efficiency and assist preserve plan quality (46).

A software system and method for the automatic 
prediction of fluence maps and subsequent generation 
of radiation treatment plans have been created by Duke 
inventors and colleagues. This software employs deep 
learning neural networks to estimate field dosage distribution 
based on patient anatomy data and treatment goals. Deep 
learning-based projections of corresponding beam’s eye 
view projections are used to forecast a final fluence map per 
beam. These fluence maps have been validated in dozens 
of retrospective pancreatic, prostate, and head-and-neck 
cancer cases, resulting in treatment plans that are clinically 
comparable to those created by human planners (47).

Treatment delivery

The patient on the first day of treatment is placed in 
position for treatment with the aid of immobilized devices 
for delivery of the prescribed radiation dose (8). Due to 
respiratory movements, complete immobilization of a 
patient is not possible, thereby compromising the precision 
of irradiation. Artificial Neural Networks have been proven 
to be effective in predicting tumor location from respiratory 
motion measures, allowing adaptive beam realignment to 
take place in real-time (48). Also, significant changes in a 
patient’s anatomy between the planning appointment and 
therapy delivery, or even during treatment, may necessitate 
re-planning. These fluctuations are frequently due to 
tumor-shrinking or growth, as well as physical variables 
such as bowel movement, which could result in different 
dosages to the tumor and organs. Machine learning AI 
has been developed to identify potential candidates for re-
planning intervention as well as the best timing to do so (48).  
In addition, accurate placement of the patient in a 
reproducible position during the simulation phase is critical 
and can be achieved with high-quality images. With AI 
tools, the quality of cone-beam computed tomography 
(CBCT) images commonly used for positioning the patient 
can be enhanced through multimodal imaging techniques. 

During radiation delivery, patient-specific dynamic motion 
management models are used to correct for changes in 
patient or organ motion (8). 

Modern radiotherapy necessitates high accuracy 
standards and methodologies for predicting dose 
distribution variations that occur during treatment 
administration. AI can be utilized to extrapolate a dose 
that is really administered to the patient. To predict these 
disparities from plan files (i.e., leaf position and velocity, 
movement toward or away from the isocenter), a machine 
learning approach was devised. When comparing the 
predicted leaf position to the delivered leaf position, 
the results showed that the predicted leaf position was 
significantly closer than planned, resulting in a more 
realistic representation of plan delivery (33).

Patients who miss radiation therapy sessions during 
cancer treatment have a higher risk of their disease 
returning, even if they finish their course of radiation 
treatment. In a study published by Chaix et al. (49) in 
2019, a “chatbot” was designed to assess the efficacy of 
text message interactions utilizing AI technologies among 
breast cancer patients. Patients were quite responsive to 
medication reminders, and many of them suggested the 
“chatbot” to their friends (49) due to its effectiveness.

Post-treatment follow-up

This is the final phase of radiation therapy where the 
response to treatment and overall health of the patient is 
monitored at specific periods. AI can offer information on 
tumor response throughout treatment and predict cancer-
specific outcomes such as disease progression, metastasis, 
and overall survival of patients (8). AI technology was 
integrated with radiomics to create a predictive model that 
could evaluate the response to bladder cancer treatment (28).  
To characterize an image in radiomics, quantitative 
parameters such as size and shape, image intensity, texture, 
voxel relationships, and fractal properties are retrieved. 
The image-based attributes can then be correlated with 
biological observations or clinical outcomes using machine 
or deep learning methods (50). During follow-up, data was 
collected to build a model and this model can be then used 
during the consultations to guide clinicians to select the 
best treatment options (8).

Quality assurance (QA) in radiation therapy

The medical physicist is mainly in charge of QA in 
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radiotherapy. Machine QA, patient-specific QA, and 
delivery errors are the three basic types of QA in 
radiotherapy. Machine QA involves evaluating the 
performance of radiation medical devices like linear 
accelerators, electronic portal imaging devices, onboard 
imaging, and CT scanners. During machine QA, image 
quality mechanical and dosimetric qualities are constantly 
evaluated. On the other hand, patient-specific QA tasks 
involve in vivo dosimetry, monitor units, and dosimetric 
measurements of patient treatment plans. Dosimetric 
measurements are performed in phantoms with one of 
the following detectors: ion chamber matrix, films, or 
electronic portal imaging devices. The third type of 
radiation QA looks for delivery errors in log files generated 
during treatment (51). Errors detected during delivery are 
used to minimize or prevent problems associated with the 
linac systems. Several aspects of a radiation QA program 
have been documented in the areas of error detection 
and prevention, treatment machine QA, and time-series 
analysis. Examples of these areas include predicting linear 
accelerator performance over time, detection of problems 
with the Linac imaging system, prediction of multi-leaf 
collimator positional errors, detection anomalies in QA 
data, quantifying the value of quality control checks in 
radiation oncology, predicting planning deviations from the 
initial intentions and predicting the need for re-planning, 
and predicting when the head and neck of patients treated 
with photons will require re-planning, etc. (50).

AI can help medical physicists with machine QA to 
develop automated analysis tools to identify image artifacts 
for QA of onboard imaging, QA of gantry sag and MLC 
offset, prediction of dosimetric symmetry of beams using 
CNN time series modeling, and prediction of dose profiles 
for different file sizes during the commissioning of linear 
accelerator systems (51). QA of linac commissioning can be 
labor-intensive and time-consuming. Machine learning can 
be used to lessen the work burden of linac commissioning 
by creating an autonomous prediction model based on the 
data collected during commissioning. Specifically, one can 
train a machine-learning algorithm to simulate the intrinsic 
correlation of beam data under various configurations using 
previously obtained beam data, and the trained model can 
then create accurate and trustworthy beam data for linac 
commissioning for everyday radiation (31). For instance, 
using patient-specific planar dose maps from 186 IMRT 
beams from 23 IMRT plans, Nyflot et al. (52) studied a deep 
learning approach to categorize the presence or absence 
of radiation treatment delivery errors. For planning, each 

plan was supplied to the electronic portal imaging device. 
The doses measured from the planning were then used to 
create gamma images. A CNN with triplet learning was 
used to extract image features from the gamma images. A 
handcrafted technique based on texture features was also 
used for the same purpose. In order to assess if images 
had the added errors, the resulting metrics from both 
procedures were fed into four machine learning classifiers. 
303 and 255 gamma images were used for training and 
testing the model respectively. The deep learning strategy 
yielded the highest categorization accuracy (52). El Naqa  
et al. (53) also studied machine learning algorithms for 
gantry sag, radiation field shift, and multileaf collimator 
(MLC) offset data gathered using electronic portal imaging 
devices for prospective visualization, automation, and 
targeting of QA (EPID). Nonlinear kernel mapping with 
support vector data description-driven (SVDD) techniques 
was employed for automated QA data analysis. The data 
was collected from eight LINACS and seven institutions. 
At four cardinal gantry angles, a standardized EPID image 
of a phantom with fiducials provided deviation estimates 
between the radiation field and phantom center. The 
gantry sag was determined using horizontal deviation 
measurements, while the field shift was determined 
using vertical deviation measurements. With changing 
hypersphere radii, these measurements were entered into 
the SVDD clustering algorithm. MLC analysis revealed one 
outlier cluster that matched with TG-142 limits along the 
Leaf offset Constancy axis. Machine learning algorithms 
based on SVDD clustering show promise for establishing 
automated QA tools (53).

QA of dose distribution can also be more difficult with 
some radiation therapy techniques such as volumetric 
modulated arc therapy (VMAT) and intensity-modulated 
radiation therapy (IMRT) which use both point dose and 
2D plane dose measurements (54). During treatment 
planning, gamma index QA is one of the analysis methods 
used to identify and quantify dose distribution techniques 
to minimize errors that may result from patient setup, beam 
modeling, beam profile, and output that may affect the 
gamma index (5,55). Evaluation of planar dose distribution 
with gamma index in the IMRT technique is based on 
preselected dose difference (DD) and distance to agreement 
(DTA) criteria (54). The DTA is a measure of alignment 
between the dose distribution (in the high and low dose 
gradient region) and the dose difference histogram. A 
good alignment indicates that the difference between the 
two distributions is zero. On the other hand, DD is the 
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percentage difference, implying that the two distributions 
are perfectly aligned. A predefined acceptance criterion can 
be used to compare the acceptability of a DD and DTA (56). 
Although the selection of DD, DTA, and the passing rate 
criteria may vary with one another, the passing percentage 
of gamma values ≤1 has been the standard method for 
determining if the two-dose distributions agree (54).

To develop virtual IMRT QA using machine learning 
models, patient QA data must first be gathered and 
accessed, in order to extract all parameters from plan files, 
including features for calculating all complexity metrics 
that affect passing rates. The fluence map for each plan 
is fed into the CNN, which is a form of neural network 
designed to evaluate images without the use of expert-made 
features. The machine models are then trained to forecast 
IMRT QA gamma passing rates with the aid of TensorFlow 
and Keras (57). Valdes et al. mention in their 2016 work 
that they want to build a virtual IMRT QA where planners 
can forecast the gamma indices of a plan before executing 
the QA, potentially preventing overmodulated plans and 
saving time. This is especially true for head and neck 
treatment programs, which are more complicated than 
other anatomical regions. The authors started by using 
roughly 500 Eclipse-based treatment plans (Varian) to 
train a generalized linear model with Poisson regression 
and LASSO regularization. Subsequently, the model was 
supplemented with portal dosimetry values from a separate 
institution and updated their 500-plan model with a CNN 
termed VGG-16 in their most recent article. The CNN 
and the Poisson-regression model produced similar results, 
but the CNN had numerous advantages over the Poisson 
model, including calculation speed (after model training) 
and independence from user-selected parameters (58). 
In addition, QA based on deep learning models predicts 
gamma passing rate using input training data such as PTV, 
rectum, and overlapping region, as well as the monitor unit 
for each field (57). 

The MC approach is another valuable QA analysis tool 
for calculating radiation therapy doses by utilizing phase-
space information (i.e., particle type, energy, charge, 
rotational, and spatial distributions) of beam particles. 
There have been reports of significant discrepancies in 
dosage distributions between MC estimates and treatment 
plans created using traditional dose calculation algorithms. 
However, the MC technique has the potential to replace 
conventional-dose calculation because of its ability to 
properly forecast dose distributions for complex beam 
delivery systems and heterogeneous patient anatomy. 

Currently, several commercial radiotherapy treatment 
planning systems are utilizing the MC approach because of 
its ability to achieve the maximum accuracy in radiotherapy 
dose computation (59,60). Three steps are often used in 
MC Treatment Planning; i.e., (I) calculating phase-space 
data after the primary set of Linac collimators, which is a 
machine calculation but not patient-specific; (II) calculating 
the phase-space data after the secondary or MLCs, which 
define the radiation field for a given treatment; and (III) 
simulation of the patient-specific CT geometry, where the 
dose-planning distribution is computed (61). The phase 
space data is calculated by simulating the path of each 
individual ionizing particle (photons or electrons) across 
the volume of interest. The particle may interact with the 
substance it passes through along the route, such as through 
Compton scattering (for photons) or Coulomb scattering 
(for electrons) (62). The particles are transported until 
they reach a user-defined energy cut-off (e.g., 0.01 MeV 
for photons and 0.6 MeV for electrons). The quantity of 
interest, such as the deposited energy in each voxel, can be 
determined using a large number of simulations (13). The 
program samples the distance l to the ‘next’ interaction 
for a particle at a particular place and with velocity vector 
v in a specific direction using a random number generator 
and probability distributions for the various types of 
interactions. The particle is then transmitted over the 
distance l to the interaction point with velocity v. The 
program then selects the type of interaction that will 
occur. The dose is the quantity of energy deposited per 
unit of mass (in SI units, J/kg = Gy). As a result, the MC 
code determines the energy balance for each simulated 
interaction by calculating the energy of the ‘incoming’ 
particle(s) minus the energy of the ‘outgoing’ one(s). The 
dose in a certain volume is determined as the ratio of the 
contributions from all interactions occurring inside the 
volume and the mass in the volume (62). However, AI 
trained on MC-derived data has the ability to replicate dose 
distributions that are almost identical to the MC approach 
while being much faster to deploy (17).

Challenges with AI in radiotherapy

Although AI has a lot of potential in radiation therapy, 
a significant number of challenges may prevent its full 
adoption in the clinical setting. Firstly, AI research, 
especially deep learning techniques requires a large number 
of quality data sets. Deep learning algorithms are tasked 
with creating classifiers and designing the best features 
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from raw data. This is especially critical when human 
professionals, such as computer vision experts, are unable 
to develop adequate characteristics or quantify a given 
process. The small amount of the datasets available in 
radiation oncology is a significant restriction on using deep 
learning for segmentation. Deep learning models have 
millions of parameters and hence require more data than 
typical machine learning algorithms because the system is 
tasked with finding both the features and the classifier (50). 
Ideally, each data collected should be divided into three 
subsets (i.e., training, validation, and test data). The model 
should be trained using both training and validation data, 
with the validation data being utilized to tweak the model 
during training. Cross-validation can be used to do model 
training. After model validation, the test data should be 
utilized to evaluate the model’s performance. The test data 
set is sometimes not used and the validation findings are 
given as the research endpoint when using restricted size 
of data for automatic treatment planning (ATP), which can 
lead to overestimation of model performance or modeling 
error (36). The data augmentation approach, which has 
the potential to increase the usable number of data by 
adding affine image transformations such as translations, 
rotations, and scaling to the original image sets during the 
data training for auto segmentation, could overcome the 
challenges with limited data. Alternatively, model learning 
could also use high-level handmade features that reflect 
statistics from small data sets to correct the modeling error. 
This strategy, however, necessitates a deep understanding 
of AI algorithms at a low hierarchical level, which might 
be difficult for those without a strong computer science 
background (36). In situations where deep learning has been 
successful, tens of thousands of observations were used to 
train the models (50). 

Secondly,  AI ATP procedure can be somewhat 
complicated, especially when there are a lot of subsequent 
tasks. This can make the computation of ATP simulation 
process expensive (36) and deep learning models difficult to 
interpret. It is critical to have a thorough grasp of the reason 
for the plan generation process before deploying a model 
to automate the treatment planning process for patients. A 
model’s interpretability is required to ensure its generality 
and resilience over a wide range of patients. Lack of 
interpretability could result in unanticipated model failure 
during clinical deployment, putting patients at risk (63).  
By imposing simple principles during ATP, researchers 
can limit the complexity. Manual treatment planning is a 
common practice, and it follows rules based on a variety 

of factors, including machine hardware restrictions, 
radiological-based clinical preferences, and institutional 
practice guidelines. The ATP workflow complexity can be 
reduced by integrating these rules by correcting related 
variables. More crucially, developing a realistic ATP process 
for AI training necessitates collaboration among medical 
physicists, radiation oncologists, radiation dosimetrists, 
radiation therapists, and other personnel engaged in the 
creation and verification of radiotherapy plans (36).

The third challenge that may limit the advancement of 
AI technology in radiation therapy has to do with ethical 
and legal concerns. The majority of AI research necessitates 
the utilization of huge healthcare datasets, including 
imaging and clinical data. This raises legal and ethical 
concerns about who “owns” the data and who has the 
right to use it, especially when it has a commercial value. 
Although patient consent for data use would be desirable, 
given the vast number of patients in large datasets, especially 
in retrospective settings, this may not be feasible (46). AI 
systems are therefore created based on existing data in 
order to learn and draw conclusions. However, data sources 
may contain some bias (e.g., gender, sexual orientation, 
environmental, or economic characteristics), which can 
affect AI models trained on these data. Physicians in a 
certain clinical investigation ignored AI’s positive outcomes 
because the model’s positive predictive value was poor (3). 
This could be one of the reasons why some physicians, 
radiologists, and other health professionals regard AI 
models as a black box because they cannot fully verify and 
trust the algorithm (64). Besides, there are currently no 
globally consistent laws or regulations governing the use 
of AI in medicine to standardize practitioners’ behavior. 
Clinicians are totally responsible for the outcome of the 
patient’s diagnostic strategy, regardless of whether the 
AI system aided the strategy partially or completely. As a 
result, those who are unfamiliar with the inner workings of 
AI algorithms prefer to entrust complex clinical choices to 
a trustworthy ethical person (3). In a study by Wang et al., 
it was discovered that in complex scenarios, experienced 
planners outperform AP systems. In this sense, AP will be 
beneficial in reducing the workload from easy situations 
and allowing human planners to spend more time on hard 
issues, thus enhancing plan quality even more (36). One 
good step in dealing with AI-related ethical issues is when 
researchers cultivate the habit of sharing AI algorithms 
and data from a research study with other academics or 
practitioners so that they may independently validate and 
compare them to similar algorithms. This could ensure 
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reproducibility, transparency, and generalizability of AI 
technology in radiotherapy (65). It is also necessary to 
establish clear legal and ethical frameworks for the use of AI 
in radiation oncology, including input from all stakeholders 
(i.e., patients, hospitals, research institutes, government, 
legislation, and so on) (46).

The evolving role of the medical physicist in 
radiation therapy

A qualified medical physicist must have a role to play in the 
evaluation of current technologies and the incorporation of 
new inventions into clinical practice (66). Considering the 
benefits of AI technologies in segmentation, quantification, 
diagnosis, and most importantly QA in radiation therapy, 
who should be responsible when an AI system fails? (24).  
Medical physicists have often been at the helm of 
integrating AI with radiotherapy practice. With little input 
from the medical physicist in the radiotherapy process, 
AI can aid in knowledge-based treatment planning in 
its implementation. Machine learning algorithms are 
trained on a dataset that includes patient images, contours, 
clinical information, and treatment plans performed by 
an experienced medical physicist to automatically develop 
high-quality plans, allowing for faster radiotherapy plan 
design (67).

Medical physicists can use both machine and deep 
learning-based approaches to better identify IMRT 
QA measurement problems and establish proactive 
QA strategies (68). During the implementation of QA 
procedures using AI technologies, challenges that emerge 
are appropriately addressed by medical physicists (28). 
For instance, when AI tools predict a failure in a LINAC 
machine, a medical physicist can assist in identifying the 
reason for a machine failure and take corrective steps, such 
as calibrations or quality control tests. In addition, the 
dose predicted by deep learning algorithms is validated by 
the medical physicist who performs QA using correctly 
designed in-phantom film/ion chamber measurements and 
comparing against previously published dose calculation 
techniques (67) or verifies the planned dose against the 
delivered dose (8).

AI image registration methods are susceptible to artifacts, 
which can reduce the accuracy of segmentation and dose 
distribution during treatment planning and delivery. 
When such problems are discovered, the medical physicist 
works with other members of the team, such as physicians, 
therapists, and dosimetrists, to come up with a clinically 

acceptable remedy. In such circumstances, further manual 
modifications are usually required in order to achieve an 
acceptable clinical registration outcome. In a radiotherapy 
center without a dosimetrist, these modifications are 
performed by the medical physicist who designs the dose 
distribution and makes the necessary adjustments on a trial-
and-error basis in order to obtain the desired prescribed 
dose (8,67,69).

The concept of interaction of radiation with matter 
(i.e., the human body in this case) is not quite simple due 
to the many complex underlining theories associated with 
the process (70,71); this situation, therefore, requires 
expert medical physics knowledge. For this reason, dose 
computation, beam configuration, treatment source 
calibration, and dose delivery were previously handled by 
qualified medical physicists who acquired comprehensive 
knowledge in radiation interaction with matter at master 
and/or Ph.D. levels (2). As a result, it would be a challenge 
for radiotherapy procedures to be implemented on the 
back of AI technologies successfully without the input of a 
medical physicist. Therefore, it is recommendable for all 
academic institutions offering medical physics training to 
ensure that AI content is incorporated into the curriculum 
for training and education of trainee medical physicists (72), 
in order to harmonize and promote medical physics best 
practices in line with emerging advances in their practice (1). 

At the moment, all the AI technologies developed by 
academic researchers when migrated into clinical practice 
would eventually be evaluated by clinical medical physicists. 
This is because, to adopt new technologies, more QA is 
needed at the beginning. QA of an AI system would be quite 
difficult, and it would necessitate the involvement of many 
physicists (28). The medical physicist must approach AI in 
the same way they have approached previous technological 
advancements: with cautious optimism and a desire to 
participate (69). 

The application of AI in radiotherapy practice would 
not necessarily reduce or completely replace medical 
physicists but would rather assist them to spend less time 
during treatment planning, plan to check, and machine 
QA procedures. Medical physicists are needed to carefully 
perform an extensive check on treatment plans generated 
by AI technologies (28). After treatment plans have been 
completed and approved, the medical physicist performs 
plan checks and other QA checks to ensure that the 
performance of the radiation delivery machine is optimal 
and delivers the exact dose to the patient. The presence 
of a medical physicist to oversee the operation of these 
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automated devices and the patient will continue to be vital. 

Conclusions

AI has the capacity to outline complicated structures, 
produce autonomous treatment plans and ideal doses, 
and monitor patients’ treatment responses with accuracy 
comparable to the level of accuracy in manual procedures, 
but in a fraction of the time. However, more QA is required 
to implement new AI technologies. This is because the 
QA of an AI system can be very demanding and requires 
the participation of many clinical medical physicists. As a 
result, academic institutions that train medical physicists 
must incorporate AI content into their curricula, and 
radiotherapy equipment manufacturers must involve 
qualified medical physicists in the incorporation of AI 
technologies into their equipment. 
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