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Background: Immunoglobulin heavy chain (IgHV) mutation status is a unique prognostic indicator for 
predicting clinical course and response to targeted therapy in chronic lymphocytic leukemia (CLL). Most of 
the tests for the IgHV mutation status require extensive and complicated genomic evaluation. We explored 
the potential of using RNA expression data generated from routine targeted RNA sequencing by Next 
Generation Sequencing (NGS) along with machine learning for the prediction of the IgHV mutation status.
Methods: NGS is used first to sequence IgHV DNA and to determine mutation status of 120 CLL 
samples. The RNA of these samples was sequenced using targeted panel of 1,408 genes. Geometric Mean 
Naïve Bayesian (GMNB) was used to select genes that distinguish between mutated and unmutated. Machine 
learning algorithm then used to predict the IgHV mutation status.  
Results: The algorithm showed a receiver operating characteristic curve with area under the curve 
(AUC) of 0.927. A sensitivity of 86% (95% confidence interval: 74.5–93%) and specificity of 93% (95% 
confidence interval: 82–98%) were achieved in distinguishing between the IgHV mutated and unmutated. 
Validation using leave one out showed AUC of 0.870. Blind testing of 22 additional CLL samples showed 
91% concordance between IgHV mutation status as detected by DNA sequencing and mutation status as 
predicted by RNA and machine learning algorithm. The selected top 23 genes used in this machine learning 
model included growth factors, transcription factors, and oncogenes.
Conclusions: This data demonstrates that RNA expression when combined with a machine learning 
algorithm can reliably predict IgHV mutation status with high sensitivity and specificity. This approach 
is simple and not dependent on the purity of the isolated CLL clone. Furthermore, this approach defines 
specific genes that are crucial in distinguishing between mutated and unmutated CLL.
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Introduction

The mutation status of the variable region of the 
immunoglobulin heavy chain (IgHV) represents one 
of the most widely established prognostic markers of 
chronic lymphocytic leukemia (CLL) (1,2). The somatic 
hypermutation status of the clonotypic IgHV, in particular, 
has been shown to underpin the risk stratification process 
and clinical decision-making for patients with CLL (3). The 
IgHV genes can be either mutated or unmutated in patients 
with CLL, with the latter having inferior outcomes with 
standard therapies (4).

This comprehension of CLL and IgHV mutation status 
has several clinical applications, including deducing the 
appropriate course of treatment for patients. An enhanced 
response to chemoimmunotherapy in CLL patients with 
mutated IgHV has been demonstrated with about 60% 
of patients with no evidence of disease with a plateau at  
15 years (5). On the other hand, patients with unmutated IgHV 
have an overall inferior response to chemoimmunotherapy 
and a shorter time to next therapy as well as a lower overall 
survival (4,6,7). Jain et al. [2018] found that higher variation 
levels in IgHV mutations were increasingly and significantly 
associated with better progression-free survival and overall 
survival in CLL patients treated with FCR (fludarabine, 
cyclophosphamide and rituximab) (8). These results were 
replicated in the CLL8 trial, reported on by Fischer et al. 
[2016], which reported a significant increase in long-term 
remissions and overall survival in patients with mutated 
IgHV CLL after receiving FCR (9).

Most of the current testing for IgHV is performed using 
Sanger sequencing of PCR-amplified clonal or rearranged 
IgH variable complementarity determining regions 3 
(CDR3). Sangar sequencing involves two distinct steps 
to determine IgHV mutation status. Firstly, clonality is 
detected. Second, the gene is then sequenced using Sanger 
sequencing and compared to predetermined germline genes 
obtained through immunoglobulin databases (10-12).

Despite the success and widespread acceptance of 
Sanger sequencing for IgHV mutation status detection, this 
approach of testing is not without its limitations. There 
are a large number of techniques available to detect IgHV 
mutation status; hence, discrepancies between institutions 
are rife.

Moreover, when using PCR, there is a risk that an 
alternative transcript will be amplified, giving inaccurate 
results. A similar disadvantage arises regarding certain 
primers omitting subclones (13).  It  has also been 
reported that using framework-region primers does not 

enable a full-length transcript to be deduced, leading to 
inaccuracies when calculating the percentage similarity 
to the homologous germline V region sequence (14). 
Although the availability of the immunoglobulin databases 
is an initial advantage when determining IgHV mutation 
status; this variable also poses a limitation to detection 
methods due to a large number of inconsistencies between 
the data provided. Variations may also be present in 
the software programs adopted to calculate the overall 
percentage of nucleotide mutations (13). Furthermore, it is 
well established that more than one clone in the CLL cell 
population can be seen in almost 10% of cases (15). This 
makes it very difficult to obtain accurate evaluation of the 
mutation status using Sanger sequencing.

Using NGS in sequencing can overcome most of these 
problems, especially when long sequence is used and 
covered leader region along with the other framework 
regions (16). NGS methodology also allows the detection 
of various subclones and families involved in the neoplastic 
process. However, NGS introduces a different set of 
problems, specifically determining the overall mutation 
status when IgHV families mutated and others that are 
not mutated present in the same sample. Furthermore, the 
IgHV mutation status sequencing does not provide any 
information on the presence of mutations in oncogenic 
genes that are relevant for evaluating the aggressiveness of 
the neoplastic clone.

Here we describe the use of RNA expression profiling 
generated from routine targeted RNA sequencing by NGS 
along with machine learning for the prediction of the IgHV 
mutation status in patients with CLL. We present the 
following article in accordance with the STARD reporting 
checklist (available at https://jmai.amegroups.com/article/
view/10.21037/jmai-22-28/rc). 

Methods

Study design

The work was retrospective study for the training set 
designed to develop a machine learning algorithm to 
explore the ability of using RNA expression profiling that 
is generated in the course of evaluating CLL samples in 
routine clinical testing to predict the IgHV mutation status. 
For validating this algorithm, prospective samples were 
tested using the developed algorithm and the conventional 
sequencing method (Figure 1). The goal is to eliminate the 
need for performing independent complicated and costly 
testing by sequencing IgHV locus.

https://jmai.amegroups.com/article/view/10.21037/jmai-22-28/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-22-28/rc
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Participants

Peripheral blood or bone marrow samples from a total 
of 142 patients with confirmed CLL by morphology and 
flow cytometry were studied (Figure 1). CLL diagnosis 
was the only required criteria for including in the study. 
Patients with monoclonal B-cell lymphocytosis were not 
included. CLL diagnosis was confirmed by morphology 
demonstrating small lymphocytes with scant cytoplasm 
and by the demonstration of the expression of CD19, CD5 
and CD23 by flow cytometry. Molecular studies were also 
performed for evaluating various mutations especially 
detected in CLL (TP53, ATM, SF3B1, NOTCH1, 
XPO1, etc.). The samples were collected consecutively 
after confirming diagnosis of CLL. DNA and RNA were 
extracted from these samples for IgHV mutation status 
analysis and for RNA sequencing using a targeted 1,408 
gene panel. 120 samples were used for establishing the 
machine learning system. This included 64 patients (53%) 
unmutated IgHV and 56 (47%) mutated. Twenty-two 
samples were used for independent blind validation of the 
machine learning system. This included 17 unmutated and 

5 mutated. These 22 samples were collected consecutively 
after developing the algorithm and tested in prospective 
fashion. They are imbalanced, but since they are used for a 
secondary validation, their imbalance should not affect the 
algorithm. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by Institutional Review Board (IRB) by Western 
Copernicus Group (New England IRB, Aspire IRB, and 
Midlands IRB) (No. 1-1476184-1). Samples were collected 
in the course of routine clinical testing. Samples were 
de-identified and participants were not required to give 
informed consent per IRB approval.

Test methods

Determining IgHV mutation status by next generation 
sequencing
DNA is extracted using Maxwell RSC 48 kit (for PB/BM 
samples). A multiplex PCR uses primers targeting the 
conserved framework (FRI) and the constant region (17). 
All primers included are tagged with partial IDT (Integrated 

IgHV mutation status study

Training set
120 patients

DNA sequencing DNA sequencing

91% concordance

RNA sequencing RNA sequencing

Gene selection

Algorithm development
AUC =0.927

Testing by the 
algorithm

IgHV testing using 
conventional testing
64 (53%) Unmutated  

IgHV testing using 
conventional testing 
17 (77%) unmutated

Validation using leave-one-out
AUC =0.870

Developing training algorithm

Testing set
22 consecutive patients

Figure 1 Study design flowchart. Initial training set was composed of 120 samples. The machine learning algorithm was developed in two steps. 
We first ranked the genes that distinguish between the two classes of IgHV (mutated vs. unmutated). Second, we selected the top genes that 
were adequate for distinguishing between the two classes. The algorithm was validated using leave-one-out of the training set. The algorithm 
was also validated using an independent set of consecutive samples. IgHV, immunoglobulin heavy chain; AUC, area under the curve.
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DNA Technology, Coralville, IA) adaptors. After first PCR, 
the extra-primers were removed by enzymatic digestion. 
The second PCR was performed using IDT adaptor/index 
as primers. After AMPure (Beckman Coulter, Brea, CA) 
wash to remove the excess primers, the quality/quantity 
of the library was assessed by Agilent (Santa Clara, CA) 
Tapestation and real time PCR. Pooling and normalization 
of libraries was based on real time quant. Up to 96 samples 
can be pooled into a one MiSeq (Illumina, San Diego, 
CA) run using 250×2 cycles. After MiSeq run finish, the 
FASTQ data were run MiXCR software, which generate 
IGH clonality/clonal type and quality report. All sequences  
from a sample obtained from MiXCR with >2% clonality 
were submitted to NCBI IgBlast using an automatic 
script (http://www.ncbi.nlm.nih/igblast/; last accessed 
11/12/2021). A IgHV gene family (or families) were 
assigned to the patient based on the top germline IgHV 
gene match. A mutated status is determined when there 
is a >2% deviation from a germline sequence. The data 
generated from this testing was used as a reference standard 
index testing.

Targeted RNA next generation sequencing and 
expression profiling 
The Agencourt FormaPure Total 96-Prep Kit was used 
to extract DNA and RNA from the same FFPE tissue 
lysates using an automated KingFisher Flex following the 
protocols recommended by the manufacturers. Samples 
were selectively enriched for cancer-associated genes 
using reagents provided in the Illumina® TruSight® 
RNA Pan-Cancer Panel. This panel covers 1,408 genes. 
cDNA was generated from the cleaved RNA fragments 
using random primers during the first and second strand 
synthesis. Sequencing adapters were ligated to the resulting 
double-stranded cDNA fragments. The coding regions 
of the expressed genes were captured from this library 
using sequence-specific probes to create the final library. 
Sequencing was performed using an Illumina NextSeq 550 
system platform. Ten million reads per sample in a single 
run were required, and the read length was 2×150 bp. The 
sequencing depth was 10×–1,739×. An expression profile 
was generated from the sequencing coverage profile of each 
individual sample using Cufflinks. Expression levels were 
measured as fragments per kilobase of transcript per million.

Using machine learning algorithm for classifying 
samples 
The RNA expression data of 120 samples of IgHV mutated 

and unmutated were used to select the proper genes that 
distinguish between the two groups (Figure 1). To reduce 
the effects of noises and avoid overfitting in selecting these 
genes, we employed a leave-one-out cross validation to 
obtain a robust performance measure. For an individual 
gene, a Geometric Mean Naïve Bayesian (GMNB) classifier 
(identical to standard Naïve Bayes for a single gene) is 
constructed on the training subset and tested on the testing 
subset. The complement of the cross-validation error rate is 
used as the discriminant measure for the bins.

1
1

k
c

c c

errord
n=

= −∑ 	 [1]

Instead of the overall error rate, the value d takes a sum 
of the error rates of the individual classes. This definition 
would avoid the bias when the sample sizes are not balanced 
for different classes. The genes were ranked by d with 
higher values corresponding to better performing genes 
for classifying the two classes. To address stability issues, 
we used the t-test to measure the significance of a gene 
in separating the 2 classes. By setting a P value threshold, 
insignificant bins can be filtered out.

The selected genes were used to distinguish between 
IgHV mutated and unmutated with k-fold cross-validation 
procedure (with k=12). A naïve Bayesian classifier was 
constructed on the training of k-1 subsets and tested on the 
other testing subset. We applied GMNB as the classifier 
to predict specific class. GMNB is a generalized naïve 
Bayesian classifier by applying a geometric mean to the 
likelihood product, which would eliminate the underflow 
problem commonly associated with the standard naïve 
Bayesian classifiers with high dimensionality (18). The 
training and testing subsets then rotated, and the average of 
the classification errors was used to measure the relevancy 
of the gene. The classification system was trained with the 
selected subset of most relevant genes. The processes of 
Gene selection and IgHV mutation status were applied 
iteratively to obtain an optimal classification system and a 
subset of genes relevant to distinguishing between the two 
groups were defined and isolated. 

Statistical analysis 

After  select ing the individual  genes and specif ic 
combinations of these genes as described above using cross 
validation and leave one out, we used the most reliable 
combination of genes in developing the overall algorithm. 
The final model was also tested first by leave one out and 

http://www.ncbi.nlm.nih/igblast/
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then by an independent testing set. Agreement between 
the two testing methods was done by analyzing receiver 
operating characteristic (ROC) curve and the area under the 
curve (AUC). The above-described algorithm provided a 
score for the prediction of mutated CLL. The ROC curve 
is used to select the proper cut-off point for the proper 
sensitivity and specificity for distinguishing between mutated 
and unmutated CLL. As expected, increasing sensitivity 
is associated with decreasing specificity. The generated 
ROC curve is used to determine the proper sensitivity and 
specificity and the exact cut-off point for the score. The 
sensitivity, specificity, positive predictive value, and negative 
predictive value of the new test were also calculated. 

Results

High specificity in the detection of unmutated IgHV in CLL

Using RNA levels, the machine learning system was 
trained using all the 120 cases. The training set showed a 
receiver operating characteristic curve with AUC of 0.927 
(Figure 2A) when 23 genes were used. Using smaller or 
larger numbers of genes showed similar results with some 
variation. To validate the system and test for overfitting, 
we used the leave-one-out (LOO) approach. Using the 23 
genes showed AUC of 0.870 (Figure 2B). Using a larger 
number of genes improved the prediction mildly but 
LOO showed significant deterioration in the prediction 
confirming overfitting. The 23 gene model using the 
scoring system generated by the algorithm, a cut-off 
point at 0.503 showed sensitivity of 86% (95% confidence 
interval: 74.5–93%) and specificity of 93% (95% confidence 

interval: 82–98%) (Table 1). This data indicates that  
23 gene model is adequate to distinguish between mutated 
and unmutated. These 23 genes are listed in Table 2.

To validate the system, an independent set of 22 samples  
were first tested blindly by the algorithm and then 
tested by routine sequencing of the IgHV. Results were 
then compared between IgHV sequencing data and the 
algorithm data. There was 91% concordance between the 
two methodologies. One mutated case and one unmutated 
by IgHV DNA sequencing were misclassified by the RNA 
and machine learning approach. 

Classification of CLL cases with more than one gene 
family
Of the 120 CLL cases, 21 (17.5%) showed the presence 
of more than one IgHV clone from completely different 
family. Additional 24 (20%) samples showed more than 
one clone but within the same family. Only three samples 
showed contradictory (mutated and unmutated) mutation 
status. The algorithm classified the three cases in a fashion 
consistent with the dominant clone (Table 3).
Defining genes distinguishing IgHV unmutated from 
mutated CLL 
Defining the important genes that play a major role 
in distinguishing IgHV unmutated CLL cases is very 
important not only for classification, but for understanding 
the biology behind the aggressive course of the unmutated 
CLL. The machine learning selected 23 genes that can 
distinguish between the mutated and the unmutated. These 
genes are listed in Table 2 in the order of their importance 
for distinguishing between the two groups. These genes 
are involved in the major pathways involved in cell 
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Figure 2 High accuracy of the machine learning algorithm in classifying IgHV mutation status. (A) ROC curve for prediction of IgHV 
mutation status in samples 120 CLL samples. The AUC of 0.927 is obtained using 23 genes. (B) Validation ROC curve using LOO showing 
AUC of 0.870. TPF, true positive fraction (sensitivity); FPF, false positive fraction (specificity); IgHV, immunoglobulin heavy chain; ROC, 
receiver operating characteristic; CLL, chronic lymphocytic leukemia; AUC, area under the curve; LOO, leave one out.
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Table 1 Sensitivity, specifiability, and predictive values of the 
machine learning algorithm in accurately predicting IgHV status

Detection of IgHV status Percentage 95% confidence interval

Sensitivity 86% 74.5–93%

Specificity 93% 82–98%

PPV 93% 83–98%

NPV 85% 73–93%

PPV, positive predictive value; NPV, negative predictive value.

Table 2 The machine learning system selected 23 genes for distinguishing between mutated and unmutated CLL, these genes are involved in cell 
apoptosis, proliferation, transcription activation, splicing, and cell migration

Order Gene Full name Biological role*
Level in 
unmutated

1 GAB1 Growth factor receptor 
bound protein 
2-associated protein 1

Member of the IRS1-like multisubstrate docking protein family. It is an  
important mediator of branching tubulogenesis and plays a central role in 
cellular growth response, transformation and apoptosis

High

2 BCL7A B-cell CLL/lymphoma 7 
protein family member A

Related to the pathogenesis of a subset of high-grade B cell non-Hodgkin 
lymphoma. The N-terminal segment involved in the neoplastic process via 
translocations

High

3 ADD3 Adducin 3 Membrane-cytoskeleton-associated protein that promotes the assembly of  
the spectrin-actin network. Plays a role in actin filament capping

Low

4 BAG4 Bcl-2-associated 
athanogene 4

An anti-apoptotic protein that functions through interactions with a variety 
of cell apoptosis and growth-related proteins including BCL-2, Raf-protein 
kinase, steroid hormone receptors, growth factor receptors and members of 
the heat shock protein 70 kDa family. This protein contains a BAG domain 
near the C-terminus, which could bind and inhibit the chaperone activity of 
Hsc70/Hsp70. This protein was found to be associated with the death domain 
of TNF-R1 and DR3, and thereby negatively regulates downstream cell death 
signaling

Low

5 TRAF2 TNF receptor-associated 
factor 2

A member of the TRAF protein family. TRAF proteins associate with, and 
mediate the signal transduction from members of the TNF receptor superfamily. 
This protein directly interacts with TNF receptors, and forms a heterodimeric 
complex with TRAF1. This protein is required for TNF-alpha-mediated 
activation of MAPK8/JNK and NF-κB. The protein complex formed by this 
protein and TRAF1 interacts with the inhibitor-of-apoptosis proteins (IAPs), and 
functions as a mediator of the anti-apoptotic signals from TNF receptors. The 
interaction of this protein with TRADD, a TNF receptor associated apoptotic 
signal transducer, ensures the recruitment of IAPs for the direct inhibition of 
caspase activation

High

6 AKT2 AKT serine/threonine 
kinase 2

A protein belonging to a subfamily of serine/threonine kinases containing  
SH2-like domains, which is involved in signaling pathways. The gene serves 
as an oncogene in the tumorigenesis of cancer cells. The encoded protein is a 
general protein kinase capable of phophorylating several known proteins, and 
has also been implicated in insulin signaling

Low

7 KLHL6 Kelch like family member 
6

A member of the KLHL family of proteins, which is involved in B-lymphocyte 
antigen receptor signaling and germinal-center B-cell maturation. Naturally 
occurring mutations in this gene are associated with chronic lymphocytic 
leukemia

High

Table 2 (continued)

proliferation, apoptosis, kinase signaling and migration. 

Discussion

CLL is a heterogenous disease with different significant 
variation in its clinical course. The clinical staging system 
provides important prognostic information on prognosis 
and clinical course, but multiple additional biological and 
genetic markers are routinely used to guide therapeutic 
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Table 2 (continued)

Order Gene Full name Biological role*
Level in 
unmutated

8 ZNF331 Zinc finger protein 331 A zinc finger protein containing a KRAB domain found in transcriptional 
repressors. This gene may be methylated and silenced in cancer cells

Low

9 MSI2 Musashi-2 An RNA-binding protein that is a member of the Musashi protein family. The 
encoded protein is transcriptional regulator that targets genes involved in 
development and cell cycle regulation

High

10 DUSP22 Dual specificity 
phosphatase 22

Enables non-membrane spanning protein tyrosine phosphatase activity and 
protein tyrosine kinase binding activity. Involved in several processes, including 
cellular response to epidermal growth factor stimulus; negative regulation of 
focal adhesion assembly; and negative regulation of non-membrane spanning 
protein tyrosine kinase activity. Acts upstream of or within negative regulation 
of transcription by RNA polymerase II

Low

11 APLP2 Amyloid beta precursor 
like protein 2

An APLP2, which is a member of the APP family including APP, APLP1 and 
APLP2. This protein is ubiquitously expressed. This protein interacts with MHC 
class I molecules. This protein has been implicated in the pathogenesis of 
Alzheimer’s disease

High

12 MAP2K1 Mitogen-activated protein 
kinase kinase 1

A member of the dual specificity protein kinase family, which acts as a MAP 
kinase kinase. MAP kinases, also known as ERKs, act as an integration point 
for multiple biochemical signals. This protein kinase lies upstream of MAP 
kinases and stimulates the enzymatic activity of MAP kinases upon wide variety 
of extra- and intracellular signals. As an essential component of MAP kinase 
signal transduction pathway, this kinase is involved in many cellular processes 
such as proliferation, differentiation, transcription regulation and development

High

13 EBF1 EBF transcription factor 1 Enables DNA-binding transcription activator activity, RNA polymerase II-
specific and RNA polymerase II cis-regulatory region sequence-specific DNA 
binding activity. Predicted to be involved in positive regulation of transcription 
by RNA polymerase II. Predicted to act upstream of or within positive regulation 
of transcription, DNA-templated

Low

14 MYBL1 MYB proto-oncogene like 
1

Enables DNA-binding transcription activator activity, RNA polymerase II-
specific and RNA polymerase II cis-regulatory region sequence-specific 
DNA binding activity. Involved in positive regulation of transcription by RNA 
polymerase II

Low

15 TNFRSF10D tumor necrosis factor 
receptor superfamily 
member 10D

A member of the TNF-receptor superfamily. This receptor contains an 
extracellular TRAIL-binding domain, a transmembrane domain, and a truncated 
cytoplasmic death domain. This receptor does not induce apoptosis, and has 
been shown to play an inhibitory role in TRAIL-induced cell apoptosis

High

16 RASGEF1A RasGEF domain family 
member 1A

Enables guanyl-nucleotide exchange factor activity. Involved in cell migration 
and positive regulation of Ras protein signal transduction

High

17 PER1 Period circadian protein 
homolog 1 

A member of the Period family of genes and is expressed in a circadian 
pattern in the suprachiasmatic nucleus, the primary circadian pacemaker 
in the mammalian brain. Genes in this family encode components of the 
circadian rhythms of locomotor activity, metabolism, and behavior. This 
gene is upregulated by CLOCK/ARNTL heterodimers but then represses this 
upregulation in a feedback loop using PER/CRY heterodimers to interact with 
CLOCK/ARNTL

Low

Table 2 (continued)
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Table 2 (continued)

Order Gene Full name Biological role*
Level in 
unmutated

18 MAGED1 Melanoma-associated 
antigen D1

A member of the MAGE family. Although the protein encoded by this gene 
shares strong homology with members of the MAGE family, it is expressed 
in almost all normal adult tissues. This gene has been demonstrated to be 
involved in the p75 neurotrophin receptor mediated programmed cell death 
pathway

High

19 MKL1 Megakaryoblastic 
leukemia 1

Interacts with the transcription factor myocardin, a key regulator of smooth 
muscle cell differentiation. The encoded protein is predominantly nuclear and 
may help transduce signals from the cytoskeleton to the nucleus

High

20 DDX3X DEAD-box helicase 3 
X-linked

A member of the large DEAD-box protein family, that is defined by the  
presence of the conserved Asp-Glu-Ala-Asp (DEAD) motif, and has ATP-
dependent RNA helicase activity. This protein has been reported to display a 
high level of RNA-independent ATPase activity, and unlike most DEAD-box 
helicases, the ATPase activity is thought to be stimulated by both RNA and 
DNA. In its nuclear roles include transcriptional regulation, mRNP assembly, 
pre-mRNA splicing, and mRNA export. In the cytoplasm, this protein is 
thought to be involved in translation, cellular signaling, and viral replication. 
Misregulation of this gene has been implicated in tumorigenesis

Low

21 AKT3 AKT serine/threonine 
kinase 3 

A member of the AKT, also called PKB, serine/threonine protein kinase family. 
AKT kinases are known to be regulators of cell signaling in response to insulin 
and growth factors. They are involved in a wide variety of biological processes 
including cell proliferation, differentiation, apoptosis, tumorigenesis, as well 
as glycogen synthesis and glucose uptake. This kinase has been shown to be 
stimulated by PDGF, insulin, and IGF1

High

22 SNX29 Sorting nexin 29 Enables phosphatidylinositol binding activity High

23 FNBP1 Formin binding protein 1 A member of the formin-binding-protein family. Required to coordinate 
membrane tubulation with reorganization of the actin cytoskeleton during 
the late stage of clathrin-mediated endocytosis. Binds to lipids such as 
phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes 
membrane invagination and the formation of tubules. Also enhances actin 
polymerization via the recruitment of Wiskott-Aldrich Syndrome-Like/N-Wiskott-
Aldrich Protein, which in turn activates the Arp2/3 complex. Actin polymerization 
may promote the fission of membrane tubules to form endocytic vesicles

Low

*, data is collected from http://www.genecards.org (accessed 6/17/22). CLL, chronic lymphocytic leukemia; TNF-R1, tumor necrosis factor 
receptor type 1; DR3, death receptor-3; TNF, tumor necrosis factor; TRAF, TNF receptor associated factor; SH2-like, Src homology 2-like; 
KLHL, kelch-like; KRAB, Kruppel-associated box; APLP2, amyloid precursor- like protein 2; APP, amyloid precursor protein; MHC, major 
histocompatibility complex; MAP, mitogen-activated protein; ERKs, extracellular signal-regulated kinases; TRAIL, TNF-related apoptosis-
inducing ligand; ARNTL, aryl hydrocarbon receptor nuclear translocator-like protein 1; CRY, cryptochrome circadian regulator; MAGE, 
melanoma antigen gene; PDGF, platelet-derived growth factor; IGF1, insulin-like growth factor 1; Arp2/3, actin related protein 2/3. 

decisions. Deletion or mutations TP53 gene and specific 
cytogenetic changes are routinely used to predict prognosis 
and clinical course in CLL. IgHV mutational status is one 
of the important prognostic markers that is considered 
at diagnosis and for selecting therapeutic approaches.  In 
patients that present with unmutated IgHV, novel targeted 
therapies should be considered as the current literature 
suggests these are equally effective irrespective of the 

patient’s IgHV status (19,20). However, therapy based on 
chemotherapy can be considered when CLL is mutated. 
These novel therapies include a vast number of treatments, 
such as Bruton tyrosine kinase (BTK) inhibitors, the 
apoptosis regulator B-cell leukemia/lymphoma 2 (BCL2) 
inhibitors, and phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit delta (PI3Kδ) inhibitors (21).

Routinely the heavy chain variable genes of the clonal 

http://www.genecards.org
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Table 3 Three of the 120 CLL samples showed contradictory (mutated and unmutated) mutation status of IgHV

Sample Clone fraction IgHV family Mutation rate, % Algorithm classification

1,554 57.14% IGHV5-51 0.4 Unmutated

42.86% IGHV1-18 5.2

4,455 38.71% IGHV4-34 6.7 Mutated

3.01% IGHV1-18 5.2

2.86% IGHV1-8 0

2.11% IGHV3-48 0

3,289 63.12% IGHV1-8 0 Unmutated

36.88% IGHV3-23 2

The algorithm classified the three cases according to the dominant clone. CLL, chronic lymphocytic leukemia; IgHV, immunoglobulin 
heavy chain. 

B-cells are sequenced to assess the mutation status. The 
level of mutation defines each group. CLL with IgHV 
mutation ≤2% are classified as unmutated and cases with 
mutation rate >2% are classified as mutated (22). The 
presence of ≤2% divergence of the germline is accepted 
as a cut-off, but cases with 2-3% mutation are considered 
gray zone or intermediate with prognosis that is believed 
to be intermediate. The exception to this classification 
is CLL cases that express the IGHV 3–21 gene family. 
These cases have been shown to have clinical course similar 
to unmutated irrespective of the mutation status (23).  
Cases with IgHV 3–21 belong to stereotype subset #2, 
which dictates poor outcome irrespective of mutation 
status. Although it remains debatable, unmutated CLL are 
reported to be similar to pre-germinal center lymphoid cells 
and mutated CLL cells resemble post-germinal center cells. 

Accuracy in sequencing and determining the mutation 
status is very important due to the clinical implication of 
this classification (3,4,24). However, several technical and 
biological issues complicate the accuracy of determining 
the mutation status. The presence of more than one clone 
or family in the clonal population makes determining the 
mutation status very difficult, especially when the cut-off 
point is so tight between 2% and 3%. NGS with its ability 
to delineate between various subclones and families made it 
easier to determine the mutation status but also introduced 
the problem of determining the overall mutation status 
when mutated clone and unmutated are detected. While 
the goal of testing for IgHV is to determine the clinical 
behavior and biology of the disease, conceptually expression 
profile might reflect this biology more accurately. Multiple 
researchers used different analysis methods (25,26), yet 

sequencing RNA using NGS allowed us to quantify RNA 
accurately and reproducibly (27). Here we used RNA levels 
in machine learning approach to distinguish between IgHV 
mutated and unmutated CLL. The approach allows us to 
classify CLL cases in routine molecular profiling. NGS 
of RNA and DNA of gene involved in the oncogenesis of 
CLL provides information that can be used for confirming 
diagnosis and predicted prognosis and response to therapy. 
It provides information on chromosomal structural 
abnormalities, mutation and now the IgHV mutation status. 
The use of RNA-based classification overcome the problem 
associated with Sanger sequencing or NGS because it is not 
dependent on isolating a specific clone and more reflects 
the biology of the disease. Furthermore, this approach 
overcomes the problem when mutated and unmutated 
clones are present in the neoplastic process.

The machine learning system selected 23 genes as best 
and adequate for distinguishing between mutated and 
unmutated CLL. Defining these genes is important because 
they may provide information for potential development 
of therapeutic approaches and targeted therapy. As shown 
in Table 2, these genes are involved in multiple pathways 
that present critical biological processes that play role in 
the clinical behavior of the disease. IgHV mutation status 
most likely reflects level of B-cell receptor (BCR) signaling 
status rather than oncogenic status. However, it is clear 
that the activation status of the BCR play a role in CLL 
cells survival and proliferation because therapy targeting 
members of this receptor pathway such as BTK is effective 
in treating CLL. The 23 genes selected by the algorithm 
to distinguish between mutated and unmutated includes 
genes likely involved in the BCR activation pathway (such 
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as ADD3, TRAF2, KLHL6, etc.) and genes involved in the 
growth and proliferation (such as BAG4, GAB1, BCL7A 
and others). Thirteen of the 23 genes are overexpressed 
and 10 are downregulated in the unmutated CLL cases as 
compared with mutated CLL.

The relatively small number of cases used in establishing 
and confirming this model system is one of the limitations 
of this study. Further validation using large number of cases 
needs to be performed.

In summary these data provide a new method for 
distinguishing between mutated and unmutated CLL. This 
approach has multiple advantages over sequencing the 
IgHV and determining if mutations from germline are less 
or greater than 2%. However, this approach is not practical 
as a standalone RNA test and should be considered as a 
part of general overall molecular evaluation of CLL cases 
upon sequencing DNA and RNA to determine the various 
oncogenic mutations and prognostic and therapeutic RNA 
biomarkers. The described 23 genes should be included in 
such general evaluation so they can be used with the proper 
algorithm to evaluate the IgHV mutation status without 
having to perform a separate test. However, our approach 
should be confirmed with larger studies preferably with 
clinical outcome.
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